-\$300 Bid Floor Due to Renewable Subsidies? *Fix the Real Problem: Production-Based Incentives*

B.F. Hobbs The Johns Hopkins University CAISO MSC

MSC Meeting, March 18, 2011

(Appendix Corrected March 18, 2011)

Objectives in Designing Renewable Energy Policies

Not "renewableness" per se, but:

- Reduce emissions
- Improve technology
 - Learning curve effects
 - Accelerate innovation
- Minimize cost

Production-based subsidies that incent negative bids are inferior in terms of these objectives

 Avoiding large negative bids can lower emissions & costs, and still incent technology improvement

Subsidies that incent large negative bids are inefficient

- Compare with alternatives:
 - 1. RECs, tax incentives awarded for availability (no loss if curtailed)
 - Would increase renewable gen profit
 - 2. (a) Disallow RECs, tax breaks when real-time prices are negative, or (b) allow operator to curtail when price is negative (EU proposals)
 - Would decrease renewable gen profit
- \$0 bid would be optimal strategy for (1), (2a)
- Some stakeholder support

Comparison of Policy 1 with Production-Based Subsidy

- 1 *decreases* costs of running system
 - When price is negative, forcing ISO to take renewable power increases costs for thermal generators constrained by unit commitment limits
- 1 may *decrease* emissions (depends on policy)
 - If increased costs associated with thermal generators are fuel costs, fuel consumption increases, so emissions may increase
 - In absence of efficient market-wide emissions cap
 - In efficient cap-based system, emissions would not change if more renewable energy taken
- No obvious differences in incentive for innovation

Example

- Three plants:
 - 1. Efficient gas 100 MW (Min Run = 30 MW)
 - Start up cost = 12,000 \$ (all fuel)
 - \$5/MMBTU gas, 7000 BTU/kWh \rightarrow 35\$/MWh
 - 2. Inefficient gas 100 MW (no Min Run level)
 - 11,000 BTU/kWh → 55 \$/MWh
 - 3. Wind: 10 MW
- Load: 160 MW for 16 hours, 30 MW for 8 hrs
- Result taking wind for 16 hrs:
 - Plant 2 would stay committed for any offpeak price <u>></u> -15\$/MWh
 - System cost = \$108,400, emissions = 1264 tons CO2
- Result if 10 MW of wind taken for 24 hrs
 - Decommit #1, system cost = \$120,800, emissions = 1409 tons CO2
 - Most of increase in CO2 is due to start-up

• Here, taking wind when P<0 increases cost, emissions

Appendix: Calculations

Data				Must Run						
	SU Cost	MC	Capacity	level	Heat rate					
	\$/start up	\$/MWh	MW	MW	BTU/kWh		Fuel Cost:	5	\$/MMBTU	
Gen 1	12000	35	100	50	7000	Emission Rate:		0.0583	tons/MMBTU	
Gen 2	0	55	100	0	11000					
Gen 3	0	0	10	0	0					
Case 1. T	ake Wind on	ly during d	av (16 brs)		Var Cost	SILCost	Total Cost	Fuel Lise	Revenue	Profit
		Day (16hr)	Night (Shr	·)	\$/day	\$/dav	\$/Day	MMBtU	\$/day	\$/day
	Gen 1 MW	100	30	1	64400	<u>9/00</u>	64400	12880	84400	20000
	Gen 2 MW	50	0		44000	0	44000	8800		
	Gen 3 MW	10	0		0	0	0	0		
	Load MW	160	30		-	Total:	108400	21680		
Price \$/MWh 55		-15			Emissions:		1264	tons CO2		
Case 1: T	ake Wind All	24 Hours			Var. Cost	SU Cost	Total Cost	Fuel Use	Revenue	Profit
		Day (16hr)	Night (8hr)	<u>\$/day</u>	\$/day	\$/Day	MMBtU	\$/day	\$/day
	Gen 1 MW	100	0		56000	12000	68000	13600	88000	20000
	Gen 2 MW	50	20		52800	0	52800	10560		
	Gen 3 MW	10	10		0	0	<u>0</u>	<u>0</u>		
	Demand	160	30			Total:	120800	24160		
								1400	teres 000	