

Commitment Cost Enhancements Phase 3 (CCE3)

Technical Workshop July 20, 2015

Kallie Wells

Market Design and Infrastructure Policy

Agenda

Time	Торіс	Presenter
9:00 - 9:10	Introduction	Kristina Osborne
9:10 – 12:00	Background on CCE3Overview of modeling processModel Inputs	Kallie Wells
12:00 - 1:00	Lunch Break	
1:00 – 3:50	 Description of two Opportunity Cost models Model results Policy Issues Negotiated Opportunity Cost 	Kallie Wells
3:50 - 4:00	Wrap-Up and Next Steps	Kristina Osborne

ISO Policy Initiative Stakeholder Process

BACKGROUND

Background on the opportunity cost model

- Use limited capacity that cannot be fully optimized by the ISO's commitment processes due to operational limitations set by statutes, regulatory, ordinances, court orders, or design considerations.
- Currently:
 - Only use limited resources may remain on registered cost option. When opportunity costs are implemented, the registered cost option will be eliminated.
 - All other resources are on the proxy cost option.
- CCE3 will design a methodology to determine opportunity costs for limitations of use-limited resources.
 - Use limited resources may have a calculated or negotiated opportunity cost included in the bid caps.

Background on the opportunity cost model

Background on the opportunity cost model

- Opportunity cost model will calculate an opportunity cost for resources and limitations that are able to be modeled
- For limitations not able to be modeled, market participants will submit proper documentation and a negotiated opportunity cost.
- Calculated or negotiated opportunity cost will be added to the bid cap of the corresponding commitment cost as calculated by the proxy cost calculation.
 - Targeted implementation: Fall 2016
 - Bidding rules initiative is exploring modifications to bidding rules for commitment costs with Fall 2016 as targeted implementation date.

OVERVIEW OF MODELING PROCESS

Overview of modeling process

- The ISO will develop an opportunity cost model and model the limitations for resources that are able to be modeled.
 - Run the model, at a minimum, over the limitation horizon prior to the start of that time period.
 - Model results will calculate opportunity costs for each limitation stated in the use-limitation registration process.
- The calculated opportunity cost will be added to the bid cap as determined by the proxy cost calculation, further increasing the bid cap.
 - \$1,000/hr bid cap for minimum load will be increased by the opportunity cost for run hours, i.e. becoming \$1,200/hr.
- As the year progresses, there will be scheduled re-runs of the model to reflect market conditions and update opportunity costs.

Overview of modeling process

- Two models: GAMS and SAS
 - Both models use same input variables.
 - Estimated LMPs, costs, Masterfile minimum up and down times, Pmin, Pmax, and use limitation plan limits.
 - GAMS: General Algebraic Modeling System
 - Optimization program that maximizes profits over the time horizon.
 - Subject to resource characteristics and use limitation plan limits.
 - SAS: Statistical Analysis System
 - Sequential logical steps to achieve economical dispatch.
 - Respects resource characteristic.
 - Run unconstrained by use plan limitations.

Overview of modeling process: Sample resources

- Four sample resources were identified for testing.
 - Tested all resources through both models.
- Modeled each resource and estimated opportunity costs for 2014.
- Sample resources covered a wide range of limitations.
 - Starts (annual, monthly)
 - Run Hours (annual, quarterly)
 - Generation (annual)

INPUT VARIABLES

Estimated LMPs: DA vs FMM

- Estimated LMPs used in the opportunity cost model are based on 15 minute LMPs.
 - Most use limited resources are committed in the FMM.
 - FMM LMPs tend to be lower, on average, then IFM LMPs but are more volatile.
- Opportunity cost model determines optimal dispatch based on estimated 15 minute LMPs.
- Align the calculation of opportunity cost with the prices that determine unit commitment.
- For purposes of this workshop, 2013 HASP LMPs were used to estimate 2014 LMPs.
 - Once implemented, will use FMM LMPs.

Estimated LMPs: Implied heat rate

- Determine a series of implied heat rates for each resource based on prior year's nodal LMP.
 - Implied heat rates preserve the real-time volatility in the estimated LMPs.

$$\operatorname{Im} pHR_{i,t-1} = \frac{LMP_{i,t-1}}{NatGasP_{l,t-1} + (GHGas_{t-1} * EmRate)}$$

is the fifteen minute energy price at pnode <i>i</i> from the previous year's period, <i>t-1</i> .
is the greenhouse gas allowance price from the previous year's period, t-1.
is the emissions rate per MMBtu of gas, which is .0531148mtC02e/MMBtu
is the daily natural gas price from the region <i>I</i> of pnode <i>i</i> of the previous year's period, t-1

Estimated LMPs: Forecasting

 Future gas and greenhouse gas prices will be applied to the implied heat rates to estimate 15 minute nodal LMPs for each use-limited resource as follows:

$$LMPi, t = ImpHR_{i,t-1} * (NatGasF_{l,t} + (GHGasF_t * EmRate))$$

Where:

California ISO

- $LMP_{i,t}$ is the forecasted real time price at phode *i* for interval *t*
- $ImpHR_{i,t-1}$ is the calculated implied heat rate at pnode *i* from the previous year's period, *t*-1
- $NatGasF_{l,m}$ is futures gas price from the region *l* of phode *i* for the estimated month
- $GHGasF_{t,m}$ is the average greenhouse gas allowance price of the preceding month.

EmRateis the emissions rate per MMBtu of gas, which is.0531148 $mtCO_2e/MMBtu$

Estimated LMPs: Northern resource 2014 price distribution curve

 Estimated LMPs tend to be higher than market LMPs on the tail end of the curve.

Estimated LMPs: Northern resource 2014 price distribution curve

Top 5% of distribution curve

5% to 95% of distribution curve

Estimated LMPs: Southern resource 2014 price distribution curve

 Estimated LMPs tend to be higher than market LMPs on the tail end of the curve.

Estimated LMPs: Southern resource 2014 price distribution curve

5% to 95% of distribution curve

Other input variables

Estimated proxy start-up and minimum load costs

- Uses future gas prices, and
- Most recent months' costs for other costs included in the commitment cost calculation (i.e greenhouse gas, major maintenance adder, O&M, and GMC costs).
- Estimated default energy bid (DEB) curves
- Masterfile characteristics
 - Pmin, Pmax
 - Minimum up and down times
- Use plan limitations

MODELING

Modeling

- Use estimated LMPs and input variables in opportunity cost model.
- Opportunity cost model determines optimal dispatch for each uselimited resource.
- Model is run for, at a minimum, the limitation time horizon.
 - Example: Run for a year for annual, quarterly, monthly limitations.
- Determine the opportunity cost for each limitation as stated in the use-limitation registration process.
 - The profits a resource would forego if it had one less (or one more) start, run hour, or MWh.

Modeling: GAMS

- GAMS is an optimization based solver.
- Determines optimal dispatch to maximize resource profits given costs and constraints.

Objective function: Maximize profits = revenues – costs

Subject to: SUM(Startup) <= maximum allowed starts SUM(Commitment) <= maximum allowed run hours SUM(generation) <= maximum allowed generated energy Generator output >= minimum generation level if committed Generator output <= maximum generation level if committed Minimum up time constraint Minimum down time constraint

Modeling: GAMS

Start-up opportunity cost:

- 1. Run model with maximum starts = start limitation
- 2. Run model with maximum starts = start limitation 1 start
- 3. Start-up opportunity cost = $Profits_1 Profits_2$

Run hours opportunity cost:

- 1. Run model with maximum run hours = hour limitation
- 2. Run model with maximum run hours = hour limitation 1 hour
- 3. Run hour opportunity $cost = Profits_1 Profits_2$

Generation opportunity cost:

- 1. Run model with maximum generation = energy limitation
- 2. Run model with maximum generation = energy limitation 1MWh
- 3. Run hour opportunity $cost = Profits_1 Profits_2$

Solid red cost curve:

- Quick dispatch clean-up:
 - One interval cycling and
 - one interval less than minimum up time.
- **Profitability check:** Keep resource on over dispatch horizon if profitable after accounting for start up cost.
- **Minimum up time:** For dispatch horizons less than minimum up time, determine if profitable to extend dispatch to meet minimum up time.
- **Minimum down time:** Determine if profitable to bridge schedules where down time not met, or forego profit of dispatch horizon.
- Second profitability check: Keep resource on over dispatch horizon if profitable after adjustments and accounting for start-up costs.
- Obtain model dispatch.

• Start-up limitations:

- Sort dispatch horizons by profitability.
- If limited by X starts, the opportunity cost is the profit of the Xth dispatch horizon.

• Run hour limitations:

- Calculate hourly profitability for each dispatch horizon.
- Sort dispatch horizons by hourly profits.
- If limited by Y run hour, the opportunity cost is the hourly profit of the Yth run hour.

• Generation limitations:

- Calculate average MWh profit and total generation for each dispatch horizon.
- Sort dispatch horizons by average MWh profit.
- If limited by Z MWhs, the opportunity cost is the average MWh profit of the Zth MWh.

Dispatch Horizon	Total profit	Run hours	Total generation
1	\$10,000	5	500MWh
2	\$15,000	2.5	250MWh
3	\$5,000	1	75MWh
4	\$24,000	8	700MWh

S	tarts: 3	Run hours: 15		Generation: 1800MWh		Wh	
Dispatch	Profit	Dispatch	Profit/hour	Cumulative hours	Dispatch	Avg MWh profit	Cumulative MWh
4	\$24,000	2	\$6,000 = \$15,000/2.5	2.5	3	\$67/MWh = \$5,000/75MWh	75MWh
2	\$15,000 \$10,000	3	\$5,000 = \$5,000/1	3.5	2	\$60/MWh = \$15,000/250MWh	325MWh
3	\$5,000	4	\$3,000 = \$24,000/8	11.5	4	\$34/MWh = \$24,000/700MWh	1025MWh
		1	\$2,000 = \$10,000/5	16.5	1	\$20 = \$10,000/500MWh	1525MWh

MODEL RESULTS

Model Results: Annual start limited resources

Resource	SAS		GAMS	
	Percent of start limitation	Opportunity Cost (\$/starts)	Percent of start limitation	Opportunity Cost (\$/starts)
1	86%	\$0	83%	\$0
2	9%	\$0	9%	\$0
3*	67%	\$0	46%	\$0
4	83%	\$0	56%	\$0
*Unconstrained, GAMS model estimated 65% of start limitation				

- Both models estimated \$0 start up opportunity cost for all resources.
- Number of starts by resource were similar in both models.
- GAMS tends to have fewer starts.

Model Results: Other modeled limitations

Resource	SAS		GAMS	
	Modeled hours or dispatch	Opportunity cost	Modeled hours or dispatch	Opportunity cost
2	3% (Feb) Run hours	\$0	3% (Feb) Run hours	\$0
	5% Max output	\$0	5% Max output	\$0
3*	140% Run hours	\$366/hr	100% Run hours	\$310/hr
4	26% (Q4) Run hours	\$0	31% (Q4) Run hours	\$0
*Unconstrained, GAMS model estimated 168% run hours				

 Both models estimated similar opportunity cost for run hour limit.

•

Overall dispatch between the two models are similar in terms of run hours, starts, and dispatch.

Model Results: Overall estimated profits

- Estimated profits between the two models are nearly identical.
- GAMS is slightly higher, as would be expected.
- SAS has higher profits for resource 3 due to GAMS enforcing the run hour limitation in the optimization.

Model Results: Sample day dispatch

SAS vs GAMS

	SAS	Optimization based (such as GAMS)
Pros	 ISO already has license and a more common language within ISO. Fast processing time allows for more frequent updates. 	 Optimization based program finds optimal dispatch. Easy to model linear constraints.
Cons	 Not an optimization solver that maximizes profits. 	 Higher cost of licensing and external support. Full integration with ISO systems. Potentially slow processing time.

POLICY

Policy questions

- Use limitation plan registration process.
- How calculated opportunity costs are included in bid caps for minimum load costs, start up costs, and default energy bids.
- Opportunity cost updates through scheduled and impromptu re-runs.
- Modeling multi-stage generation (MSG) resources

Use limitation registration process

- Reliability Services initiative developing new use limitation registration process.
- It allows scheduling coordinators to
 - 1. Define the limit(s) and applicable time horizon for each limit.

2. Upload supporting documentation, such as use-limitation plans, affidavits, and methodology of determining its opportunity cost.

- It allows the ISO to
 - 1. Identify the limitations and applicable time horizon.
 - 2. Determine if the resource's limitations can be modeled or fall under the "other" category.
- Translating emission or fuel limitations to starts, run hours, dispatch
 - 1. SC translates and uploads methodology used
 - 2. ISO translates emissions/fuel into limits

Applying opportunity costs

- Registered cost option will be eliminated with the implementation of opportunity costs.
- For both modeled and non-modeled limitations, opportunity costs will be included in the following costs:
 - Start limitations: Added to the bid cap as determined by the proxy startup cost calculation.
 - Run hour limitations: Added to the bid cap as determined by the proxy minimum load cost calculation.
 - Generation limitation: Added to the resource's default energy bid.
- Bidding rules initiative is exploring modifications to bid caps as related to proxy cost calculations.

Opportunity cost updates: Scheduled re-runs

- As the year progresses, the ISO will have scheduled re-runs to recalculate opportunity costs.
 - If modeled time period longer than limitation, calculated opportunity costs for limitation period(s) that will occur prior to next scheduled re-run are binging.
 - i.e. run model for calendar year to model monthly limitation
- Reflect changes in market conditions that may have resulted in resource using more/less than estimated starts, run hours, or generation.
 - Gas prices, congestion patterns, market constraints such as MOCs, resource testing, etc.
- Need to determine the most effective way to update the limits while maintaining an unbiased opportunity cost.
 - ISO has identified three potential options.

Opportunity cost updates: Scheduled re-runs

- For illustrative purposes assume:
 - Resource with 400 starts per calendar year.
 - Initial model run for full year estimated 15 starts in first three months of the year.
 - Resource actually was started 20 times in first three months of the year.
- Option #1: Re-run the model for April December adjusting the limit by actual usage (380 starts).
 - Issue: Incentive to bid the resource in such a way to run through starts at the beginning of year and increase opportunity cost in the latter part of the year.

Opportunity cost updates: Scheduled re-runs

- Option #2: Re-run the model for April December adjusting the limit by estimated usage (385 starts).
 - Issue: Unanticipated market conditions may have warranted starting the resource more often than the model estimated, therefore should have a higher opportunity cost.
- Option #3: Re-run the model January December with the full limit using actual LMPs for the months past and estimated LMPs for the remaining months.
 - Issue: Assumes resources are bidding around marginal cost and resources are committed solely based on LMPs (i.e. no other market constraints/conditions commit resource).

Opportunity cost updates: Impromptu re-runs

- Metrics that trigger an impromptu re-run outside of scheduled updates.
 - Need to be persistent trends that cause resource to run through more of its limitations than model estimated.
 - More frequent scheduled updates may mitigate the need.
- Notifications from market participants of market conditions causing resource to run through limitations.
 - Resource testing, failed starts
- Incorporating future power prices to minimize need of impromptu rerung

Modeling MSG Resources

- ISO is currently not intending to model MSG resource limitations.
- MSG resources are complicated to model in both SAS and GAMS.
 - Permits may be applicable to individual configurations or at the parent resource level.
 - Transitions may or may not count towards starts for a resource with start limitations.
- ISO is anticipating to have MSG resources fall under the "other" category and have a negotiated opportunity cost.

NEGOTIATED OPPORTUNITY COST

Negotiated opportunity cost option

- Resources with accepted use limitation plans that cannot be modeled fall under the "other" category.
- A negotiated opportunity cost for each use limitation plan limit.
 - Opportunity cost will be added to corresponding commitment cost bid caps or default energy bids.
- Market participants will upload supporting documentation, affidavits, methodology, and negotiated opportunity cost.
 - Use limitation registration process developed through Reliability Services initiative.

STAKEHOLDER ENGAGEMENT SCHEDULE AND NEXT STEPS

Stakeholder engagement schedule

Date	Stakeholder process
July 20	Technical workshop
July 30	Comments due - technical workshop
August (TBD)	Straw proposal
	Stakeholder meeting
	Comments due - straw proposal
September (TBD)	Draft final proposal
	Stakeholder call
	Comments due – draft final proposal
November 5 - 6	ISO Board of Governors meeting

Materials related to this initiative are available on the ISO website at http://www.caiso.com/informed/Pages/StakeholderProcesses/CommitmentCostEnh ancementsPhase3.aspx

Next steps

 Submit written comments on the technical workshop presentation and discussion to <u>initiativecomments@caiso.com</u> by close of business July 30. Please use comments template available on the ISO website at

http://www.caiso.com/informed/Pages/StakeholderProcesse s/CommitmentCostEnhancementsPhase3.aspx

- Straw proposal posted early August, 2015; look for details in a forthcoming market notice
- Questions following the workshop can be submitted to email provided above.

