
Generator Contingency & RAS Modeling

Revised Issue Paper & Straw Proposal

November 15, 2016

Perry Servedio


Sr. Market Design & Regulatory Policy Developer

Agenda

Time	Topic	Presenter
9:00-9:05	Introduction	Tom Cuccia
9:05-9:30	Background & Objectives	Perry Servedio
9:30-10:30	Proposal	Perry Servedio

ISO Policy Initiative Stakeholder Process

Background & Objectives

Background

N-1 security including loss of generation

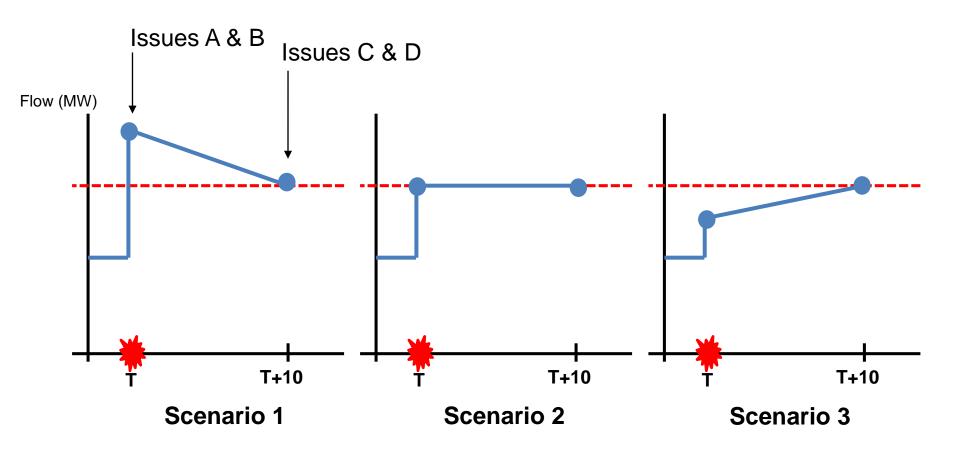
A secure transmission system must be able to withstand credible transmission contingencies as well as credible generation contingencies.

1. Transmission security for loss of transmission element

a. Transmission line or transformer loss

2. Transmission security for loss of generation

- a. Generator loss
- b. Generator loss due to RAS operation (includes loss of transmission element)


Issues

Four core transmission system issues related to loss of generation

Issue	Description	Timing	Operations Priority
Α	Gen loss onlyFlow <= emergency ratings	Т	2
В	Gen + Tx loss (RAS)Flow <= emergency ratings	Т	1
С	 Gen loss only Achieve power balance in 10 minutes Flow <= emergency ratings in 10 minutes 	T+10	3
D	 Gen + Tx loss (RAS) Achieve power balance in 10 minutes Flow <= emergency ratings in 10 minutes 	T+10	4

Issues

Illustrate the difference between the T issues and T+10 issues

Why are we here?

- Conducted cross-functional internal meetings to discover, properly segment, and prioritize root issues in the generator contingency space
- Pivot the initiative to solve ISO operations' and ISO regional transmission planning's highest priority issues from a reliability standpoint
- Generation-loss remedial action schemes can arm large portions of generation within the ISO and have the potential to drop large amounts of generation
- Transmission system security for these types of events is currently managed out-of-market
 - Potential for production cost savings
 - Potential to accurately reflect cost of supply in energy prices

Initiative Objectives Generator Contingency & RAS Modeling

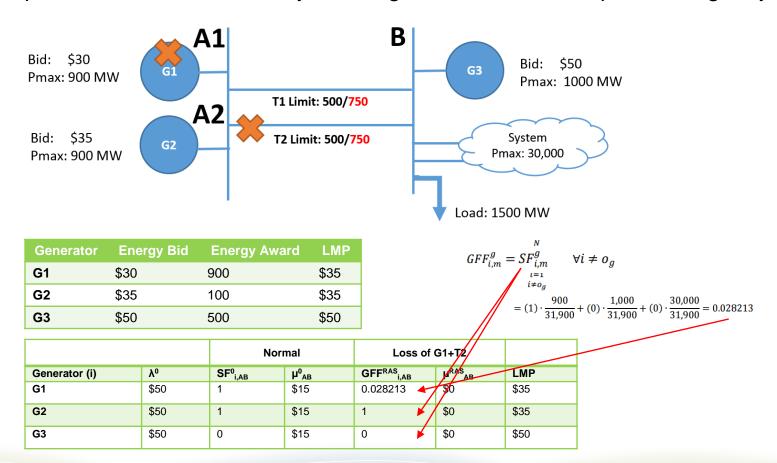
Focusing on **Issue A** and **Issue B** as they are fundamentally related:

- Allow for the benefits of increased transmission capability while protecting the transmission system for generation loss (including RAS events)
- Appropriately pre-dispatch generation such that all transmission lines will be below emergency ratings if generation loss events (including RAS events) were to occur
- 3. Accurately price the contribution to congestion

Proposal

Methodology Preventive constraint

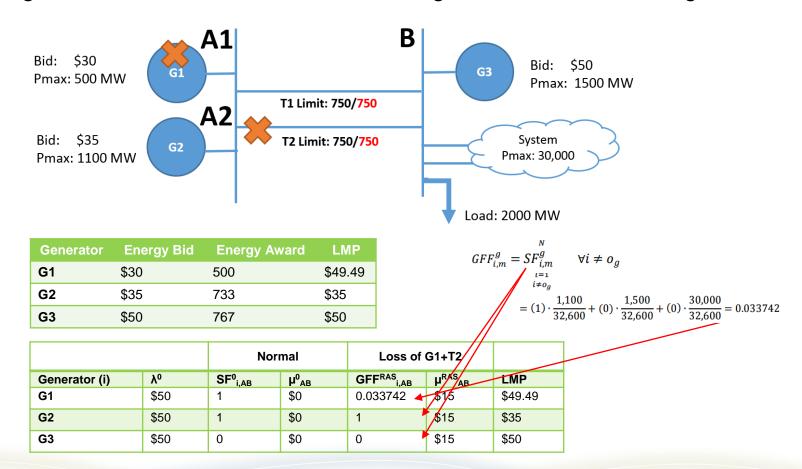
- Add a preventive constraint to the security constrained economic dispatch
- The new contingency removes generation from service and distributes the lost generation to all other nodes on the system pro-rata based on pmax
- Monitor initial flows on transmission lines plus the flows placed on transmission lines from the pro-rata distribution to be less than emergency ratings


Methodology Generation loss distribution

- The pmax of each node divided by the sum of the total pmax on the system is each node's generation distribution factor.
- Every node picks up a small portion of the contingency generator's output
- The resulting flows on the system are compared to transmission emergency ratings
- The marginal congestion contribution from a binding transmission constraint in a generator contingency to the LMP at the node of the generator outage includes the impact of the assumed generation loss distribution
- LMP's congestion component includes the impact of the generator contingency congestion

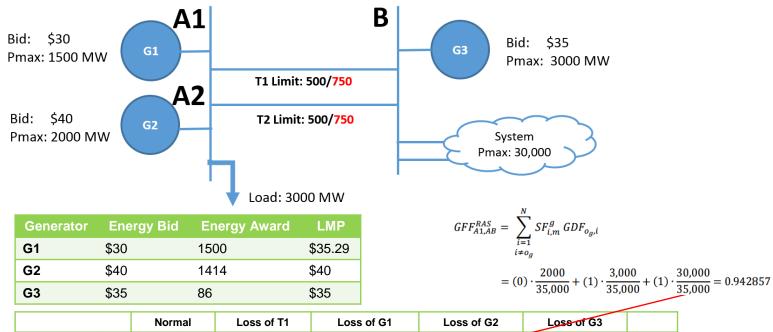
Examples

RAS modeled, normal limit binds, increased transfer capability


- Normal limit binds
- lower production cost solution by allowing 1,000 MW to flow pre-contingency.

Examples

RAS modeled, only emergency limit binds, accurate prices


- Emergency limit binds
- RAS generator does not contribute to binding constraint, receives higher LMP

Examples

Generator Contingency, emergency limit binds, accurate prices

- Emergency limit binds
- Generator contributes to binding constraint, receives lower LMP

Next Steps

Next Steps

Date	Event
Wed 4/19/2016	Issue paper
Mon 4/25/2016	Stakeholder conference call
Fri 5/13/2016	Stakeholder comments due on issue paper
Mon 11/07/2016	Revised Issue Paper & Straw proposal posted
Tue 11/15/2016	Stakeholder conference call
Fri 12/02/2016	Stakeholder comments due on revised issue paper & straw proposal
January 2017	Revised straw proposal posted
February 2017	Second revised straw proposal posted
April 2017	Draft final proposal posted
July 2017	Board of Governors

Please submit comments to initiativecomments@caiso.com

Questions

