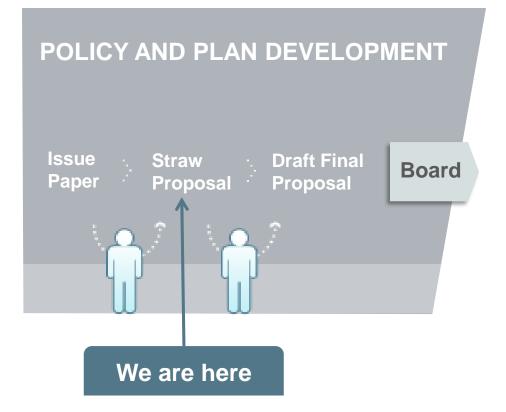


Contingency Modeling Enhancements

Third Revised Straw Proposal Discussion December 10, 2015

Perry Servedio Senior Market Design & Regulatory Policy Developer


Agenda

Time	Торіс	Presenter					
10:00 – 10:05	Introduction	Tom Cuccia					
10:05 – 11:00	Background & Proposal	Perry Servedio					
Updates from second revised straw proposal							
11:00 – 12:00	Congestion revenue & corrective capacity	Perry Servedio					
1:00 – 2:00	CRR allocation enhancements for simultaneous feasibility	Perry Servedio					
2:00 - 3:00	Settlement & no pay rules	Perry Servedio					
3:00 – 3:15	Next Steps	Perry Servedio					

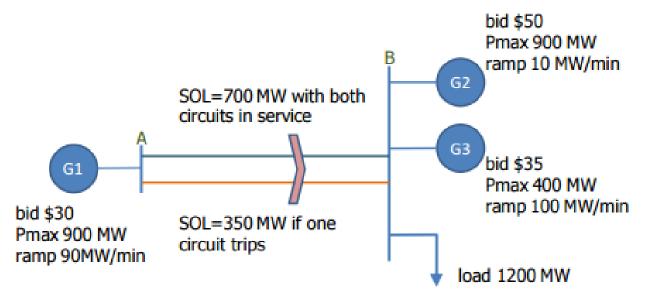
The meeting is scheduled to 4 p.m. in case any of the discussion items require more time

ISO Policy Initiative Stakeholder Process

Background

- Initiative started in early 2013
- Positions available resources so that the ISO has sufficient capability to respond to contingency events impacting critical transmission facilities and return the system to a secure state within 30 minutes.
- Enhances the LMP formulation
- Creates a Locational Marginal Capacity Price (LMCP)
- Resources are paid for reserving the capacity at the LMCP
- Stakeholders requested we build a prototype to evaluate the market impact

Background


Transmission feasibility

- Meet N-1 criteria
- Meet N-1-1 criteria within 30 minutes

Today (weak preventive)						
Goal	Achieve transmission feasible dispatch.					
Description	 Market dispatches for N-1 security. ISO relies on out-of-market dispatch to achieve transmission feasibility. 					

Background Today (weak preventive model)

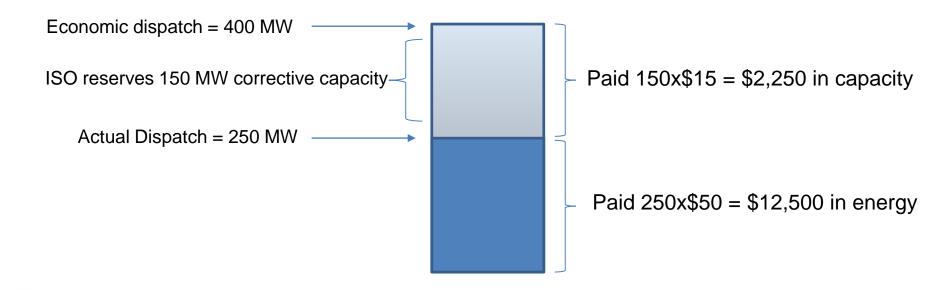
Weak-preventive model energy in base case									
Generator	P ⁰	λ ⁰	$\mathrm{SF}^{0}_{\mathrm{AB}}$	μ^0_{AB}	LMP	Bid Cost	Revenue	Profit	
G1	700	\$50	1	-\$20	\$30	\$21,000	\$21,000	\$0	
G2	100	\$50	0	-\$20	\$50	\$5,000	\$5,000	\$0	
G3	400	\$50	0	-\$20	\$50	\$14,000	\$20,000	\$6,000	

Background

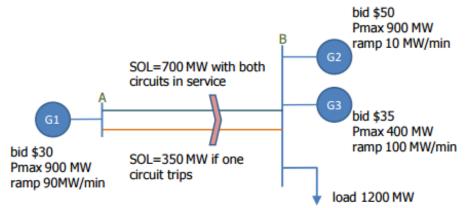
Tomorrow	
Goal	Achieve transmission feasible dispatch without relying on exceptional dispatch/MOC.

Option (strong preventive)	Option (preventive-corrective)
Enforce N-1-1 contingency as N-1.	Preventive-corrective model with procurement of corrective capacity.
 Transmission feasible. No longer relies on ED/MOC. Very restrictive. 	 Transmission feasible. No longer relies on ED/MOC. Maximizes use of transmission.

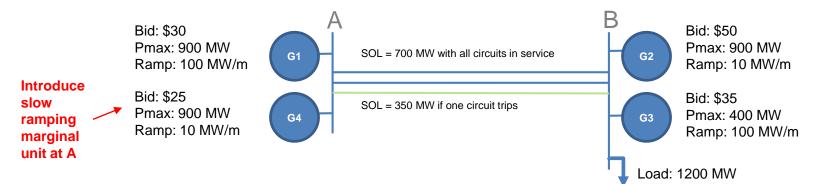
Preventive-corrective LMP for energy dispatch at location i:


$$LMP_{i} = \lambda^{0} + \sum_{k=0}^{K} \sum_{l=1}^{m} SF_{l,i}^{k} \cdot \mu_{l}^{k} + \sum_{kc=K+1}^{K+KC} \sum_{l=1}^{m} SF_{l,i}^{kc} \cdot \mu_{l}^{kc}$$

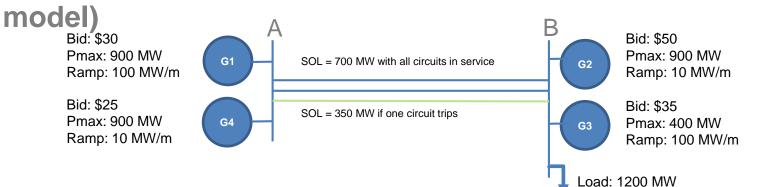
$$LMCP_{i}^{kc} = \lambda^{kc} + \sum_{l=1}^{m} SF_{l,i}^{kc} \cdot \mu_{l}^{kc}$$


Resource paid for out-of-merit dispatch to reserve corrective capacity:

LMP = \$50 Bid = 400 MW for \$35


Tomorrow (preventive-corrective model)

Weak-preventive model energy in base case									
Generator	P ⁰	λ ⁰	SF^{0}_{AB}	μ^0_{AB}	LMP	Bid Cost	Revenue	Profit	
G1	700	\$50	1	-\$5	\$30	\$21,000	\$21,000	\$0	
G2	250	\$50	0	-\$5	\$50	\$12,500	\$12,500	\$0	
G3	250	\$50	0	-\$5	\$50	\$8,750	\$12,500	\$3,750	
		Correc	ctive capa	icity in o	contingency	kc=1			
Generator	ΔP^1	λ^1	SF ¹ _{AB}	$\mu^{1}{}_{AB}$	LMCP ¹	Bid Cost	Revenue	Profit	
G1	-350	\$15	1	\$-15	\$0	\$0	\$0	\$0	
G2	200	\$15	0	\$-15	\$15	\$0	\$3,000	\$3,000	
G3	150	\$15	0	\$-15	\$15	\$0	\$2,250	\$2,250	


What is CME? Down capacity example: Today (weak preventive model)

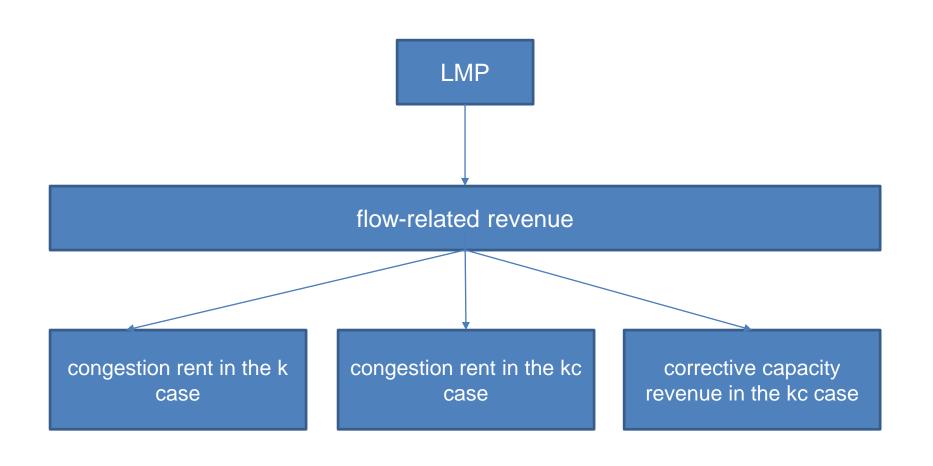
Weak-preventive model energy in base case										
Generator	P^0	λ ⁰	$\mathrm{SF}^{0}_{\mathrm{AB}}$	$\mu^0{}_{AB}$	LMP	Bid Cost	Revenue	Profit		
G1	0	\$50	1	-\$25	\$25	\$0	\$0	\$0		
G4	700	\$50	1	-\$25	\$25	\$17,500	\$17,500	\$0		
G2	100	\$50	0	-\$25	\$50	\$5,000	\$5,000	\$0		
G3	400	\$50	0	-\$25	\$50	\$14,000	\$20,000	\$6,000		

Down capacity example: Tomorrow (preventive-corrective

Preventive-corrective model energy in base case									
Generator	P ⁰	λ ⁰	$\mathrm{SF}^{0}_{\mathrm{AB}}$	$\mu^0{}_{AB}$	LMP	Bid Cost	Revenue	Profit	
G1	150	\$50	1	\$-5	\$25	\$4,500	\$3,750	-\$750	
G4	550	\$50	1	\$-5	\$25	\$13,750	\$13,750	\$0	
G2	250	\$50	0	\$-5	\$50	\$12,500	\$12,500	\$0	
G3	250	\$50	0	\$-5	\$50	\$8,750	\$12,500	\$3,750	

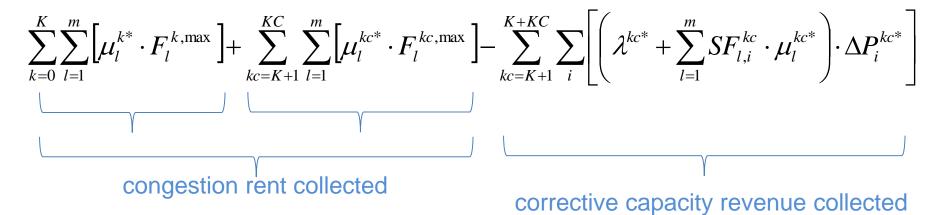
Corrective capacity in contingency kc=1

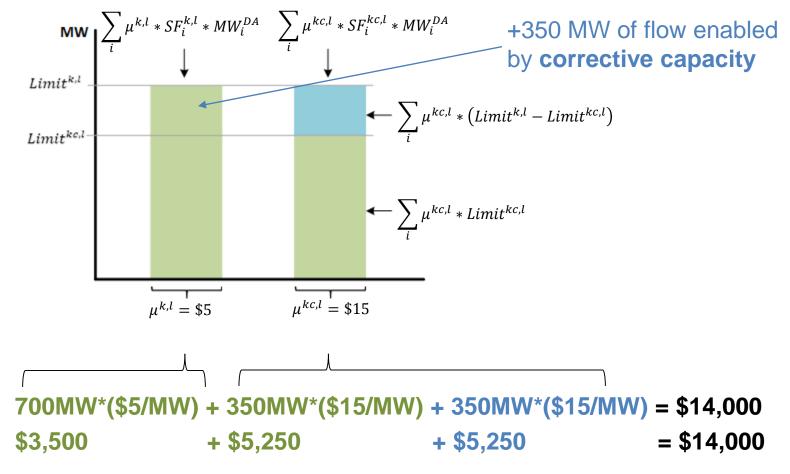
			-				-	
Generator	ΔP^1	λ1	$\mathrm{SF}^{1}_{\mathrm{AB}}$	μ^{1}_{AB}	LMCP ¹	Bid Cost	Revenue	Profit
G1	-150	\$15	1	\$-20	-\$5	\$0	\$750	\$750
G4	-200	\$15	1	\$-20	-\$5	\$0	\$1,000	\$1,000
G2	200	\$15	0	\$-20	\$15	\$0	\$3,000	\$3,000
G3	150	\$15	0	\$-20	\$15	\$0	\$2,250	\$2,250


- Congestion costs on transmission paths are represented in the LMP when energy schedules cause transmission constraints to bind.
- Today, market creates a transmission infeasible dispatch
 Any congestion shown due to N-1 constraint binding
- Operators take corrective action (ED) to restore transmission feasibility
 - Costs of ED are uplifted
- All CRRs are simultaneously feasible in the base case.
- All congestion revenues paid to CRR holders

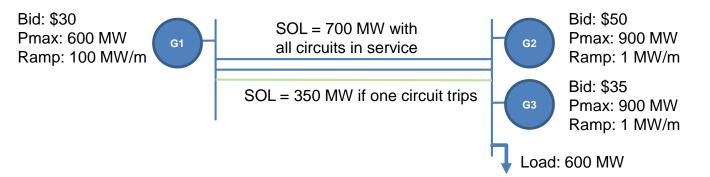
Tomorrow	
Goal	Achieve transmission feasible dispatch without relying on exceptional dispatch/MOC.

Option (strong preventive)	Option (preventive-corrective)
Enforce N-1-1 contingency as N-1.	Preventive-corrective model with procurement of corrective capacity.
 Limit: 350 All flow-related revenue collected = congestion rent 	 Limit: 700 CME Limit: 350 Flow-related revenue collected = congestion rent + corrective capacity revenue
Transmission feasible.No longer relies on ED.Very restrictive.	 Transmission feasible. No longer relies on ED. Maximizes use of transmission.




LMP's resulting revenue breaks into 3 components.

LMP_i flow related revenue =


Congestion Revenue & Corrective Capacity Congestion Rent from Energy Schedules

No ED cost

Congestion Revenue & Corrective Capacity Example: isolate congestion to kc case

Weak-preventive model energy in base case									
Generator	P ⁰	λ ⁰	SF^0_{AB}	$\mu^0{}_{AB}$	LMP				
G1	390	\$35	1	\$0	\$30				
G2	0	\$35	0	\$0	\$35				
G3	210	\$35	0	\$0	\$35				
	Corrective ca	apacity in co	ntingency	v kc=1					
Generator	ΔP ¹	λ1	SF ¹ _{AB}	$\mu^{1}{}_{AB}$	LMCP ¹				
G1	-40	\$5	1	-\$5	\$0				
G2	20	\$5	0	-\$5	\$5				
G3	20	\$5	0	-\$5	\$5				

Congestion Revenue & Corrective Capacity Example: settlement

	Energy	LMP	Energy Revenue	Capacity	LMCP ¹	Capacity Revenues	Total Revenues
G1	390	\$30	\$11,700	-40	0	\$0	\$11,700
G2	0	\$35	\$0	20	\$5	\$100	\$100
G3	210	\$35	\$7,350	20	\$5	\$100	\$7,450
Total							\$19,250
Load	600	\$35					-\$21,000

ISO collects \$21,000 ISO pays \$19,250

Revenue adequate w/ \$1,750 in congestion

Congestion Revenue & Corrective Capacity Congestion Rent from Energy Schedules

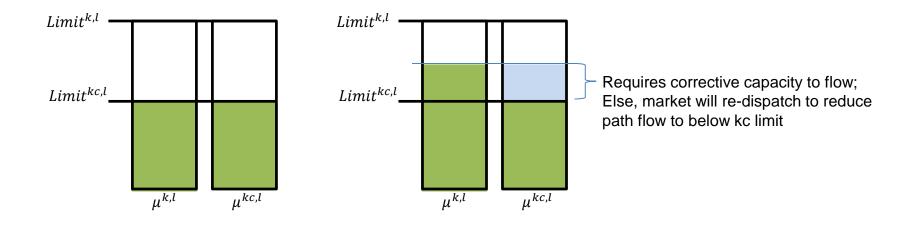
Congestion Revenue & Corrective Capacity Example: settlement w/ CRR

	DAM Market Settlement						
	Energy	LMP	Energy Revenue	Capacity	LMCP ¹	Capacity Revenues	Total Revenues
G1	390	\$30	\$11,700	-40	0	\$0	\$11,700
G2	0	\$35	\$0	20	\$5	\$100	\$100
G3	210	\$35	\$7,350	20	\$5	\$100	\$7,450
Total							\$19,250
Load	600	\$35					-\$21,000
			CRR	Settlement			
	MW Allocated	$MCC_{B}-MCC_{A}$					Total Revenues
CRR _{AB}	600	\$5					\$3,000

CRR allocation enhancements for simultaneous feasibility

CRR Allocation Enhancements Background

- Congestion rents collected in IFM
- Congestion rents from the corrective constraint fund the corrective capacity.
- CRR revenue inadequate because not feasible in the contingency case
- Must enhance CRR allocation to maintain revenue adequacy


CRR Allocation Enhancements Considerations

- Considered allocating CRRs up to the k limit (status quo)
 - Does not maintain revenue adequacy
 - Over allocates CRRs
- Considered only allocating CRRs up to the kc limit
 - Would maintain revenue adequacy
 - Overly restrictive

CRR Allocation Enhancements Background

Flows over 350 MW on the path are enabled by corrective capacity.

CRR Allocation Enhancements Proposal

- CRR allocation/auction performed same as today
- Define new type of CRR that mimics the effects on transmission flows of procuring corrective capacity for each corrective contingency that is only used in the contingency case (CCRRs).
- After each allocation/auction, ISO proposes to automatically allocate Contingency CRRs (CCRRs) to CRR holders

CRR Allocation Enhancements CCRR Allocation

 Allocate CRRs that settle against the congestion components of the LMPs

CRRs allocated as today

 Allocate CCRRs for each corrective contingency that settle against the congestion components of the LMCPs for the given corrective contingency.

CCRRs allocated based on corrective contingency cases

CRR Allocation Enhancements CCRR Allocation

The SFT evaluates whether:

- the transmission flows caused by scheduling injections and withdrawals corresponding to the CRRs result in transmission flows that are feasible for the base case as well as for the N-1 contingency cases, and
- for each corrective contingency, as a post-processing step, the CRR flow will be evaluated in the postcontingency case and any overload will result in pro-rata allocation of CCRRs

CRR Allocation Enhancements CCRR Allocation

If total CRR flow is over the post-contingency limit in the post-contingency case, we allocate CCRRs which represent the corrective capacity flow, enabling the feasibility of the base case CRR.

$$\alpha = \max\left\{0, \frac{\sum_{p} \left(SF_{l,src(p)}^{kc} - SF_{l,snk(p)}^{kc}\right) \cdot CRR_{p} - F_{l}^{kc,\max}}{\sum_{p} \left(SF_{l,src(p)}^{kc} - SF_{l,snk(p)}^{kc}\right) \cdot CRR_{p}}\right\}$$

CRR Allocation Enhancements CCRR Allocation Example

 $Limit^{k,l} = 700 \\ Limit^{kc,l} = 350$

Allocation	1				
Holder	Flow k (A->B)	CRR MW Allocation	Flow kc (A->B)	α	CCRR MW Allocation
SC1	800	800 A->B	800	0.50	400 B->A
SC2	200	200 A->B	200	0.50	100 B->A
SC3	-300	300 B->A	-300	0.50	150 A->B
Total	700	700	700		350

CRR Allocation Enhancements CCRR Settlement

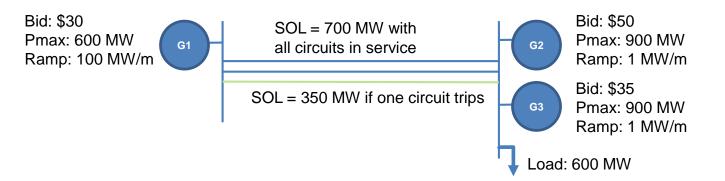
 CRRs are settled against the congestion components of the LMPs

 $CRR Payment = CRR MW_{AB} \times \left(MCC_{B}^{k} - MCC_{A}^{k} + MCC_{B}^{kc} - MCC_{A}^{kc}\right)$

• CCRRs are settled against the congestion components of the LMCPs for the corrective contingencies

 $CCRR Payment_{BA} = CCRR MW_{BA} \times (MCC_A^{kc} - MCC_B^{kc})$

CRR Allocation Enhancements CCRR Settlement Example


Allocation					
Holder	Flow k (A->B)	CRR MW Allocation	Flow kc (A->B)	α	CCRR MW Allocation
SC1	800	800 A->B	800	0.50	400 B->A
SC2	200	200 A->B	200	0.50	100 B->A
SC3	-300	300 B->A	-300	0.50	150 A->B
Total	700	700	700		350

Settl	ement

Holder	CRR Payment	CCRR Payment	Total Payment
SC1	(800)(\$20)=\$16,000	(-400)(\$15)=-\$6,000	\$10,000
SC2	(200)(\$20)=\$4,000	(-100)(\$15)=-\$1,500	\$2,500
SC3	(-300)(\$20)=-\$6,000	(150)(\$15)=\$2,250	(\$3,750)
Total	\$14,000	(\$5,250)	\$8,750

CRR Allocation Enhancements Example: isolate congestion to kc case

Weak-preventive model energy in base case							
Generator	P ⁰	λ ⁰	SF^0_{AB}	$\mu^{0}{}_{AB}$	LMP		
G1	390	\$35	1	\$0	\$30		
G2	0	\$35	0	\$0	\$35		
G3	210	\$35	0	\$0	\$35		
	Corrective ca	apacity in co	ntingency	v kc=1			
Generator	ΔP ¹	λ1	SF ¹ _{AB}	$\mu^{1}{}_{AB}$	LMCP ¹		
G1	-40	\$5	1	-\$5	\$0		
G2	20	\$5	0	-\$5	\$5		
G3	20	\$5	0	-\$5	\$5		

CRR Allocation Enhancements Example: settlement w/ CRR & CCRR

	DAM Market Settlement						
	Energy	LMP	Energy Revenue	Capacity	LMCP ¹	Capacity Revenues	Total Revenues
G1	390	\$30	\$11,700	-40	0	\$0	\$11,700
G2	0	\$35	\$0	20	\$5	\$100	\$100
G3	210	\$35	\$7,350	20	\$5	\$100	\$7,450
Total							\$19,250
Load	600	\$35					-\$21,000
			CRR Se	ttlement			
	MW Allocated	$MCC_B^k - MCC_A^k$	$+ MCC_B^{kc} - MCC_A^{kc}$	MCC_A^{kc} –	MCC_B^{kc}		Total Revenues
CRR _{AB}	600		\$5				\$3,000
CCRR _{BA}	250				-\$5		-\$1,250

CRR Allocation Enhancements Extend example showing ownership interests

What if you owned G1 and the load at node B?

BigCorp

- Owns 600 MW G1 at node A.
- Owns 600 MW of load at node B.
- Is allocated 600 MW of CRR from A to B.

How does this settle?

Does BigCorp pay for corrective capacity more than once?

CRR Allocation Enhancements Extend example showing ownership interests

	DAM Market Settlement						
	Energy	LMP	Energy Revenue	Capacity	LMCP ¹	Capacity Revenues	Total Revenues
G1	390	\$30	\$11,700	-40	0	\$0	\$11,700
G2	0	\$35	\$0	20	\$5	\$100	\$100
G3	210	\$35	\$7,350	20	\$5	\$100	\$7,450
Load	600	\$35					-\$21,000
			CRR Se	ttlement			
	MW Allocated	$MCC_B^k - MCC_A^k$	$+ MCC_B^{kc} - MCC_A^{kc}$	MCC_A^{kc} –	MCC_B^{kc}		Total Revenues
CRR _{AB}	600	\$5					\$3,000
CCRR _{BA}	250			-\$5			-\$1,250

BigCorp outflows = \$21,000 for load BigCorp in-flows = \$11,700 for G1 -\$9,300 CRR adjustments (in-flows) = \$1,750

-\$7,550 \leftarrow net outflows; who receives this money?

CRR Allocation Enhancements Extend example showing ownership interests

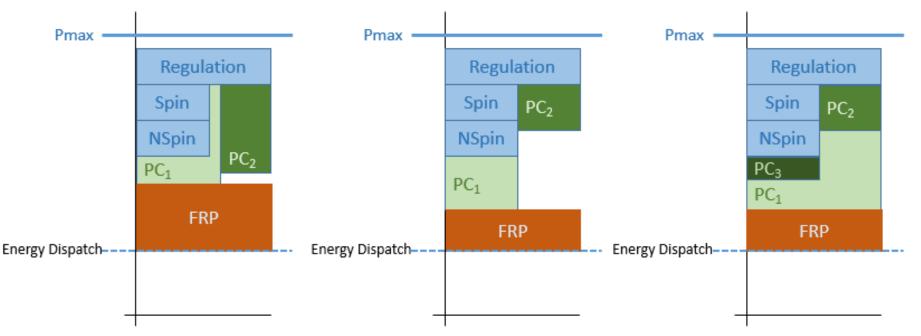
BigCorp pays out net \$7,550

G2 receives \$100 for corrective capacity G3 receives \$7,350 for energy G3 receives \$100 for corrective capacity Total = \$7,550

BigCorp pays for energy at the node and corrective capacity at the node.

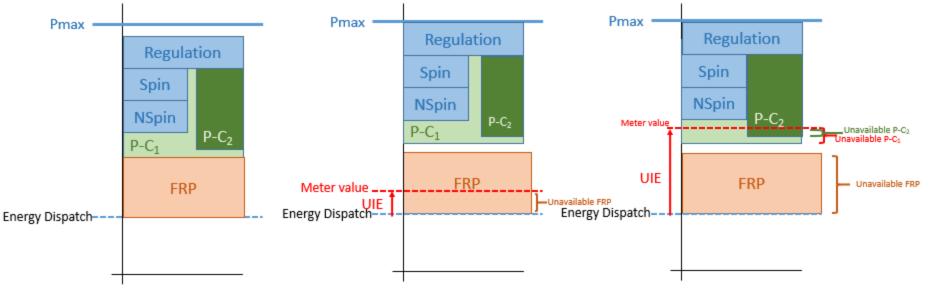
Corrective Capacity Settlement & No Pay Rules

Corrective Capacity Settlement & No Pay Rules Settlement

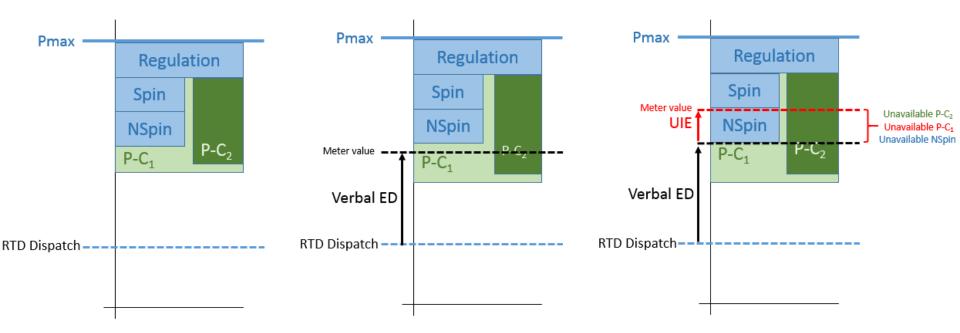

- Day-ahead market settled
- Fifteen minute market re-optimized (buy backs or more procurement)
- Five minute market re-optimized (buy backs or more procurement)

Awarded corrective capacity MW x LMCP

Corrective Capacity Settlement & No Pay Rules Services procured


- Corrective capacity can overlap A/S
- Corrective capacity can be independent from A/S
- Corrective capacity does not overlap FRP

Corrective Capacity Settlement & No Pay Rules No Pay


- If corrective capacity is unavailable because it is converted to Energy without Dispatch Instructions from CAISO, the Scheduling Coordinator shall pay back the unavailable capacity at the RTD LMCP.
- Uninstructed Deviations in real-time may cause corrective capacity to be unavailable.

Corrective Capacity Settlement & No Pay Rules Corrective capacity deployment

- Automatically dispatched for real-time needs per re-optimization
- · Operator can exceptionally dispatch for any reason
- If corrective capacity overlaps A/S, will be dispatched via RTCD

Next Steps

Next Steps

Item	Date		
Third revised straw proposal	11/20/2015		
Stakeholder Meeting	12/10/2015		
Stakeholder comments due	12/22/2015		
Prototype results	TBD		
Draft final proposal	1/13/2016		
Stakeholder call	1/20/2016		
Stakeholder comments due	2/3/2016		
Board meeting	3/24/2016-3/26/2016		

Please submit comments to initiativecomments@caiso.com

Questions

