EXECUTIVE SUMMARY

The purpose of this document is to summarize key practices that are relevant for Summer Preparedness for Emergency Operations as well as the regulatory and contractual requirements that provide guidance for this subject. The discussion includes related NERC Standards, Contracts, ISO Operating Procedures, and business processes.

Background

Joint Agency Aliso Canyon Risk Assessment Technical Report Executive Summary

“This technical report assesses the risks to energy reliability in the Greater Los Angeles area during the coming summer months without the use of the Aliso Canyon Natural Gas Storage Facility. This assessment was developed by the Aliso Canyon Technical Assessment Group, which is comprised of technical experts from several state and local energy entities. This technical assessment finds that if no gas can be withdrawn from Aliso Canyon during the coming summer months, a significant risk exists of natural gas curtailments during up to 16 days this summer. The magnitude of such gas curtailments could be large enough to result in service interruptions that could affect millions of electric customers during as many as 14 summer days. Several factors contribute to this risk including mismatches between scheduled gas on the pipeline system and actual daily gas demand, planned and unplanned outages to non-Aliso storage that reduce supply, and planned and unplanned pipeline outages that reduce delivery capacity. Additionally, prolonged periods of high electrical demand—for example during extreme heat waves when air conditioning use spikes and all natural gas fired electricity generation is required—increases the risk of gas curtailments and electrical service interruption.

Aliso Canyon currently has a limited supply of 15 billion cubic feet of working gas in storage. Utilizing this gas stored in Aliso Canyon as needed is very important to reduce the risk of gas curtailments and electrical service interruption this summer. Additionally, implementing several other actions detailed in the Draft Aliso Canyon Action Plan to Preserve Gas and Electric Reliability for the Los Angeles Basin further reduce—but do not eliminate—risks of gas curtailments and electrical service interruptions.

- The following bullet points summarize this report: The study addresses summer 2016 only. A winter study may be needed in the future
- Aliso Canyon gas injections will not resume until all wells have been inspected; the time frame for completion of that process is as yet uncertain
- The Analysis assessed risk if Aliso Canyon was unavailable
- The electric analysis assumes optimal conditions with minimum gas fired generation in the LA Basin and fully available transmission capacity and energy supply
- Analysis finds that gas curtailment events could interrupt electric supply 22 – 32 day. 14 days this summer
- Transfer of gas supply to electric resources outside the LA Basin is minimal.
- Gas supply is necessary for electric generators to supply the public with electricity. Commercial and residential customers as well as, hospitals and refineries are at risk
- A separate Action Plan report provides additional discusses mitigation measure.”

Gas Constraint and Curtailment Mitigation Methodology

Gas Supply Mitigation Action Plan

Based on the results of the Aliso Canyon Risk Assessment Technical Report an Aliso Canyon Action Plan to Preserve Gas and Electric Reliability for the Los Angeles Basin was developed by CPUC, CEC, LADWP and the ISO. In response the action plan joint meetings with SoCalGas and LADWP, the ISO Operations departments to develop specific operational coordination actions to be taken including development of a gas constraint / curtailment mitigation action plan. The operational coordination action plan includes daily analysis of forecasted gas usage, volume and location of ancillary services, risk of gas curtailment and electric generation mitigation plan. In addition, scenarios were developed based on seven separate timeframes and included drafting market participant communication messages. The mitigation action plan was tested as part of a joint agency walkthrough held on May 16, 2016. Representatives from SoCalGas, LADWP, Peak Reliability and the ISO participated. Each scenario was tested against a mitigation decision tree and communication protocols for each agency. The ISO mitigation steps are outlined in operating procedure 4120C.

CAISO Daily Gas / Electric Analysis

In coordination with LADWP, SoCalGas and Peak Reliability, the ISO conducts daily analysis of the next day gas burn and reliability outlook for the Southern California region. The daily analysis may include, but is not limited to:

- Review of the next day gas burn report
- Review of the next day forecast and latest weather updates
- Power flow studies to determine minimum generation requirements and possible contingencies
- Review of Most Severe Single Contingency (MSSC) and potential impact during gas constraint or curtailment
- Review of the ancillary service procurement and location
- Gas / Electric curtailment analysis based on forecasted conditions and minimum generation
- Development of a mitigation plan in the event of a real-time gas curtailment

Joint Agency Daily Reliability Communication –conference call 1600 (Mon –Fri), 1430 (Sun)

Starting June 1, 2016, the ISO will conduct a daily conference call with LADWP, SoCalGas and Peak Reliability to discuss the forecasted gas burn for the next day(s) with the following objectives

- Validate gas burn forecast with SoCalGas
- Communicate significant changes to the forecasted electric demand from the previous day(s)
- Communicate any electric reliability concerns based on next day studies and gas conditions

To the extent information discussed warrants a broader discussion with Transmission Operators and Merchant entities the ISO will initiate a Peak Day Call for the next day.

2 http://www.caiso.com/Documents/4120.pdf. Procedure 4120C is currently being updated to reflect the gas/electric coordination changes recently approved by FERC
Gas Constraint / Curtailment Scenarios

Table 1 identifies the five possible scenarios where a gas constraint or curtailment may occur and expected communication by SoCalGas to the ISO and LADWP. Each scenario is time based starting with pre Day Ahead concerns of tight gas supply for the next day through a Real Time immediate gas curtailment.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Gas Constraint / Curtailment Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Potential Use of Gas Nomogram:</td>
</tr>
<tr>
<td></td>
<td>In the day ahead or real time timeframe, limitation which causes SoCalGas to declare a Curtailment Watch</td>
</tr>
<tr>
<td>2</td>
<td>Path 26 Transmission Constraint:</td>
</tr>
<tr>
<td></td>
<td>CAISO implements a Transmission Constraint for the purpose of reserving internal transfer capability in the Day-Ahead Market for Path 26</td>
</tr>
<tr>
<td>3</td>
<td>Potential Gas Curtailment – Greater Than > 2 Hours Notice</td>
</tr>
<tr>
<td>4</td>
<td>Immediate Gas Curtailment – Less Than < 2 Hours Notice</td>
</tr>
<tr>
<td>5</td>
<td>Gas Curtailment – Emergency Due to Gas Limitation</td>
</tr>
</tbody>
</table>

SoCalGas - Gas Curtailment Methodology

The SoCalGas pipeline system provides natural gas service to multiple electric Balancing Authorities in the LA Basin. These include the CAISO, LADWP, City of Glendale, and the City of Burbank. During a curtailment event, SoCalGas will use each Balancing Authority’s day-ahead hourly forecast to calculate how much each of their forecasted demand is, as a percentage of total Electric Generation (EG) demand for the specific gas day. That percentage will then be used to calculate the total volume each Balancing Authority will need to reduce to achieve SoCalGas’s total curtailment volume needed.
Chart 1 shows the Mitigation Decision Tree that was used to test each scenario against the ISO mitigation measures.

Chart 1: Mitigation Decision Tree

SoCalGas notifies ISO re: gas curtailment

Curtailment Watch or Curtailment?

Curtailment

Curtailment Watch

Zonal or resource specific?

Zonal

Resource Specific

> 2 hours?

> 2 hours

< 2 hours

ISO analysis of electric system conditions

Use Gas Nomogram to constrain gas burn for the applicable market run

ISO analysis of electric system conditions

Use Gas Curtailment Tool

ISO analysis of electric system conditions

Use Gas Curtailment Tool

Scheduling Coordinators submit outage cards for impacted resources

ISO Exceptionally Dispatch impacted resources for impacted time frame

Scheduling Coordinators submit outage cards for impacted resources
As outlined in the Aliso Canyon Risk Assessment Technical Report, four scenarios of gas curtailments were studied with varying curtailment volumes based on the gas system conditions. Table 2 also shows the # of days of curtailment risk for electric generation.

Table 2: Curtailment Volumes and # of Days at Risk

<table>
<thead>
<tr>
<th>Curtailment Scenarios</th>
<th>Days of Curtailment Risk for Electric Generators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1: 150 MMCF supply shortfall between scheduled receipts and actual gas flows</td>
<td>11 Days (2 summer, 9 non-summer)</td>
</tr>
<tr>
<td>(Potential Gas Curtailment: 180MMCF/Day - 84MMCF/8 peak hours)</td>
<td></td>
</tr>
<tr>
<td>Scenario 2: Scenario 1 in addition to a non-Aliso storage outage, reducing 400 MMCFD</td>
<td>2-3 Days (2 summer, 1 non-summer)</td>
</tr>
<tr>
<td>of system capacity (Potential Gas Curtailment: 480MMCF/Day - 224MMCF/8 peak hours)</td>
<td></td>
</tr>
<tr>
<td>Scenario 3: Scenario 1 in addition to a pipeline outage reducing 500 MMCFD of system</td>
<td>4-11 days (9 summer, 2 non-summer)</td>
</tr>
<tr>
<td>capacity (Potential Gas Curtailment: 600MMCF/Day – 280MMCF/8 peak hours)</td>
<td></td>
</tr>
<tr>
<td>Scenario 4: Combination of Scenarios 1,2, and 3 resulting in an overall reduction</td>
<td>6-7 days (3 summer, 4 non-summer)</td>
</tr>
<tr>
<td>of 900 MMCFD in system capacity (Potential Gas Curtailment 1100MMCF/Day -513MMCF/8</td>
<td></td>
</tr>
<tr>
<td>peak hours)</td>
<td></td>
</tr>
</tbody>
</table>

Based on the volume of curtailments likely to occur during the summer, without Aliso Canyon underground storage to support a gas shortfall, the ISO developed the following curtailment decision tree as shown in Chart 2.
Communication

Market Notifications

The ISO Operations will utilize its Market Notification System (MNS) and Automated Dispatch System (ADS) to notify the market of action(s) taken to mitigate gas constraints and curtailments that have been communicated or issued by SoCalGas. Market messages will be sent after SoCalGas has notified gas participants via their Envoy system. CAISO messages for gas related conditions are drafted for the following actions and timelines:

- Prior to Day Ahead Market – Use of Market Constraint to manage constrained gas supply
- Prior to Day Ahead Market – Gas curtailment has been issued
- Day Ahead or Real Time resource specific curtailments – curtailments on a specific set of resources for future hours
• Day Ahead or Real Time gas zone curtailments – curtailments that impact a SoCalGas zone for future hours
• Real Time immediate curtailment – curtailments issued for current hour
• Reservation of capacity on Path 26, or any other internal transmission lines,
• Re-dispatch of ancillary services
• Emergency notifications – will also be communicated via Peak Reliability Coordinator’s Reliability Messaging Tool (RMT)

Peak Day Calls

During times of significant system stress, high system demand and concerns about gas shortage or curtailments the ISO will initiate a “Peak Day Call” for both the Transmission Operators and the Merchant entities. Participants on the Peak Day calls also include Peak Reliability, Adjacent Balancing Authorities, and agencies such as WECC, FERC, CPUC and US DOE. Remote Generation only Balancing Authorities are welcome to join the Merchant call.

The ISO has established an email address\(^3\) for entities to inform the ISO their desire to participate on the Peak Day call and provide representative(s). Information needed is Name, phone number, email address, company name and Transmission provider or Merchant entity.

Due to the FERC Standards of Conduct it is important that entities are represented on the appropriate call.

External Communication Plan

The ISO has established an external communication plan\(^4\) that outlines operations processes, and communication protocols as well as an overview of software application changes implemented as part of the Aliso Canyon Mitigation initiative, and details regarding the Flex Alert campaign.

ISO App

The ISO phone application “Today’s Outlook”\(^5\) is available to subscribers and provides information on current and forecasted demand, renewable production, Alerts, Warnings, and Emergency notices, and Flex Alert notifications.

System Operations through Market and Exceptional Dispatch

ISO System Operators hold authority, as delegated by the Executive Officers of the ISO, to take or direct timely and appropriate Real-Time (RT) actions necessary to ensure reliable operation of the ISO controlled grid, up to and including shedding of Firm Load to prevent or alleviate System Operating Limit or Interconnection Reliability Operating Limit violations and comply with NERC and WECC Control Performance and Disturbance Control Standards. These actions may be performed without obtaining approval from higher-level personnel within the ISO.

\(^3\) Peakdaycall@caiso.com
\(^5\) Today’s Outlook can be downloaded on the App Store
The ISO will make every effort to utilize market solutions to manage and mitigate gas constraints.

Market Changes Approved by FERC on June 1, 2016

Use of Market Constraint

On June 1, 2016 FERC approved ISO Tariff changes that included the use of a new constraint in the ISO market that can be used by the ISO operators to manage gas system limitations and avoid additional stress on the gas system which could lead to gas curtailment and adversely impact electric generation in the Southern California region effective June 2, 2016. The market constraint will have the ability to limit the maximum amount of generation dispatched within the ISO controlled grid and within a given gas area if burning more gas could jeopardize gas and electric reliability. The constraint also ensures a minimum amount of generation is dispatched to assure electric reliability. In addition, the constraint will allow the ISO operators to minimize the gas usage variations between the Day Ahead forecasted gas burn and the Real Time actual gas burn if these variations could jeopardize gas / electric reliability. The ISO Operators will utilize the market constraint to the extent economic bids are available to manage the gas usage. To the extent economic bids become unavailable, the ISO Operators will then manage the usage using exceptional dispatch.

Zone Nomogram Name Nomogram ID Notes RT/DA
Total MAXBURN_ALISO_TOTAL 2547 Absolute MaxBurn for all of SCG resources RT/DA
Coastal MAXBURN_ALISO_COSTAL 2542 Absolute MaxBurn for all of SCG resources in Coastal Gas Forecast zone RT/DA
EOM MAXBURN_ALISO_EMO 2543 Absolute MaxBurn for all of SCG resources in EMO Gas Forecast zone RT/DA
Inland MAXBURN_ALISO_INLAND 2541 Absolute MaxBurn for all of SCG resources in Inland Gas Forecast zone RT/DA
LA Basin MAXBURN_ALISO_LABASIN 2544 Absolute MaxBurn for all of SCG resources in LA Basin Gas Forecast zone RT/DA
SDG&E MAXBURN_ALISO_SDGE 2545 Absolute MaxBurn for all of SCG resources in SDGE Gas Forecast zone RT/DA
SJV MAXBURN_ALISO_SJV 2546 Absolute MaxBurn for all of SCG resources in SJV Gas Forecast zone RT/DA
Total GE_ALISO_CANYON 2539 Nomogram created for the 150 mmcf tolerance Band – Deviations allowed over the DA gas burn - RHS RT/DA
Total LE_ALISO_CANYON 2540 Nomogram created for the 150 mmcf tolerance Band – Deviations allowed over the DA gas burn - LHS RT/DA

Reservation of Internal Transfer Capability on Path 26 or any Internal Transmission

In the June 1, 2016 order, FERC also approved the expansion of the ISO’s authority to reserve transfer capability on internal paths by adjusting transmission constraints on the system effective June 2, 2016. Adjusting the transmission constraints will allow the ISO operators to ensure that Southern California resources are deployed in a manner that recognizes gas limitations and will be dispatched or committed from other areas of the ISO system to serve the Southern California demand.

Other Changes

SIBR:

- Allow MP to rebid commitment costs for hours without a day-ahead schedule or for RTM commitment periods until the minimum run time expires. SIBR rule change needed. Effective July 6, 2016. The CAISO will monitor for bids submitted inconsistent with limitations.
- No longer generate RT bids for non-resource adequacy resources or RA resources without a Must Offer Obligation (MOO). Short Term Unit Commitment (STUC) bidding rule change. Bid Replication (stop creating bids that do not have a MOO for STUC). Current rule: create STUC bids if DAM clean bid exists for resource. New rule: create STUC bids if 1) DA schedule or RUC schedule exists; or 2) Resource is MOO. Effective July 6, 2016.

Settlements:

- Approved proposal to permit after-the-fact cost recovery for scheduling coordinators that cannot recover their fuel costs through the bid cost recovery process, effective June 2, 2016.
- If after the cost recovery approved by FERC in a subsequent proceeding, will use charge codes related to settlement of Good Faith Negotiation (GFN) to pay for and allocate additional fuel costs (No system Changes)

CMRI:

- New report to show the D+2 RUC Schedule. Will use standard CMRI report and IFM web services as part of Peak RC requirements, but will monitor as part of Aliso Canyon due to dependency.

Integration:

- Integration between ECIC, ICE, and market system will be needed depending on payload impacts

Use of Manual Gas Curtailment Tool

System Operations Gas Curtailment Tool is an internal manual tool used by the ISO system operators to ensure system reliability by calculating gas curtailments issued to the ISO by SoCalGas by gas zone on a plant specific pro-rata basis. Minimum generation requirements are maintained to the extent possible. The ISO will provide SoCalGas with the resource specific values, in which SoCalGas will inform each generator of their share of the curtailment.

Use of Outage Management Cards

In the event an electric generation resource is contacted by SoCalGas and issues a gas limitation for future hours, the ISO is requiring all impacted units to update their generation availability using an Outage Management System “Ambient Not Due To Temperature” derate type card. Utilizing outage cards will allow the ISO software to re-optimize the generation fleet in the most efficient manner possible.
Re-dispatch of Ancillary Services

The ISO will review on a daily basis, the location of Ancillary Services procured in the Southern California system and in particular the LA Basin. After the Day Ahead market, the ISO will consider system conditions, review the gas conditions and load forecast confidence to make an informed decision to re-dispatch Ancillary Services out of potential risk areas. To the extent that the ISO and SoCalGas have concerns about gas supplies prior to the Day Ahead market, the ISO will make an informed decision to remove specific resources from the Ancillary Service Market and procure Ancillary Services outside impacted areas.

Use of Exceptional Dispatch

In accordance with the ISO Tariff and Operating Procedure 2330 Real-Time Exceptional Dispatch\(^7\), the ISO will utilize Exceptional Dispatch as necessary to adjust commitments and/or dispatch instructions to start-up, shut-down, and increment or decrement resources. This is especially true when the timing of the Real Time Market optimization is either too slow or incapable of maintaining or bringing the ISO controlled grid back to reliable operations within an appropriate time-frame.

To the extent Exceptional Dispatch is necessary to mitigate an immediate gas shortage, the Exceptional Dispatch will be issued as an emergency assistance Exceptional Dispatch. The ISO will settle Instructed Imbalance Energy and Excess Cost Payments for these Exceptional Dispatches pursuant to ISO Tariff section 11.5.6.1.

Operations during Emergency Conditions

During a transmission emergency or when the ISO is unable to maintain System Reliability, the ISO will follow its Emergency Operating procedure 4420\(^8\). The Emergency Operating procedure provides for but is not limited to the following key actions:

- Issue Restricted Maintenance Operation (RMO)
- Postpone, cancel outages or return equipment to service
- Exhaust available (non-reserve) resources
- Utilize demand response resources
- Request emergency assistance from adjacent BAs
- Utilize spinning and non-spinning reserves
- Shed firm load

In addition, the ISO is authorized by the CAISO Tariff to arrange Exceptional Dispatch transactions for Energy with Scheduling Coordinators and non-Scheduling Coordinators. This may include, but is not limited to, forced shut-downs or forced Start-Ups of Generation, Dynamic System Resources, Condition 2 RMR Generating Units, and Participating Load. The ISO may also enter into agreed upon transactions with Interchange Resources (Imports and Exports).

Modifications to Peak Reliability SOL Methodology

Peak RC has revised its SOL methodology and has published a new revision Ver. 7.1. The new updated Item #29 was clarified with the added footnote as shown below:

Anticipated emergency conditions may warrant operating to an SOL that is higher than the WECC Path Rating. Planning for such anticipated emergency conditions must be coordinated with the RC and impacted TOPs prior to day-ahead operations to ensure reliability issues are addressed and related Operating Plans are developed.

This modification will allow the ISO and Peak RC to utilize real time contingency analysis and RAS armed load to determine if the SOL on Path 26 can be increased from 4000 MW rating to 4300 MW rating by allowing more energy flow.

Alerts, Warnings and Emergency (AWE) Procedure

The ISO will maintain or in the case of deployment, restore operating reserves to the levels specified by WECC Standard BAL-002-WECC-2 through the use of Alert, Warning and Emergency Stage (1-3) notices and actions. Table 3 shows the AWE levels. Table 4 shows the system level requirement for each level and staged emergency.

Table 3: Alert, Warning and Emergency Levels

<table>
<thead>
<tr>
<th>AWE</th>
<th>Purpose</th>
<th>Day Ahead</th>
<th>Real Time</th>
<th>Emergency?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flex Alert</td>
<td>Public awareness – conserve if possible</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Restricted Maintenance Operations (RMO)</td>
<td>May cancel or postpone scheduled outages for any or all or work to preserve overall or local System Reliability</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Transmission Emergency</td>
<td>Any event that threatens, harms, or limits the capabilities of any element of the transmission grid or overall grid reliability. (i.e. transmission overloads/losses, instability, mother nature, civil unrest, cyber, sabotage, civil unrest, etc.) If needed, Firm Load Shedding can be initiated on a local or System-wide basis using pro-rata allocations.</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 4: Operating Reserve Deficiency (BA system level requirements)

AWE	Purpose	Day Ahead	Real Time	Emergency?
Alert	By 1500 hrs the day before anticipated operating reserve deficiencies	Yes	No	No
Warning	Indications that Operating Reserves are anticipated to be less than requirements and further actions are necessary to maintain reserves. Can trigger Emergency DR, and then evaluate need for Emergency Assistance.	No	Yes	Yes
Stage 1	Operating Reserve shortfalls exist or are forecast to occur, and available market and non-market resources are insufficient to maintain Operating Reserve requirements. Actions being taken as needed to restore or maintain required Operating Reserves.	No	Yes	Yes
Stage 2	Cannot maintain Non-Spinning Reserve requirement. Actions being taken to restore the required Operating Reserves. Can procure Emergency Assistance.	No	Yes	Yes
Stage 3	Spinning Reserve portion of the Operating Reserve depletes, or is anticipated to deplete below requirements and cannot be restored. Firm Load Shedding initiated on a System-wide basis using pro-rata allocations.	No	Yes	Yes

Emergency Assistance Coordination

NERC Standards EOP-001-2.1b and EOP-002-3.1 provide guidance for Balancing Authorities to take action to mitigate emergencies and coordinate with adjacent Balancing Authorities. The guiding provisions include the establishment of operating and interchange agreements that contain provisions for emergency assistance.

Adjacent Balancing Authorities

The ISO has formed contractual agreements with 11 adjacent Balancing Authorities. A guide to these agreements[^10] is posted on the public website.

Schedule 13 of these agreements generally includes requirements for the ISO and the adjacent Balancing Authority to provide emergency assistance to each other if possible. It also provides guidance for the operating procedures in real time and for settlements:

“To the extent possible, the Parties will assist each other in an emergency by scheduling energy and/or capacity. This emergency assistance includes power to re-start facilities (Black-start). Such emergency assistance will be available at the sole discretion of the Party supplying it and will be recallable without advance notice as required to meet reliability requirements. The ISO and [applicable entity] operators will agree upon and log MW values, start and end times, ramp rates and times, and integrated MWH values for any emergency assistance provided.

The price paid for ISO emergency assistance will be at the ISO market price for energy and/or capacity, plus all applicable charges, as specified in the ISO Tariff and Protocols. Such price may be estimated prior to delivery and finalized in the settlement process. The ISO will establish a Scheduling Coordinator account for [applicable entity] the sole purpose of facilitating the settlement of such emergency assistance. Payment to the ISO for such emergency assistance will be made in accordance with the settlement process, billing cycle, and payment timeline set forth in the ISO Tariff and Protocols.

The price paid for [applicable entity] emergency assistance will be at a price agreed upon by the Parties or a price established by [applicable entity] for such emergency assistance in advance, as may be applicable. Payment by the ISO for such emergency assistance will be made in accordance with the settlement process, billing cycle, and payment timeline set forth in the ISO Tariff and Protocols.”

The primary ISO Operating Procedure 442011 provides guidance for dispatch priority order during Emergencies prior to requesting Emergency Assistance. Steps for requesting Emergency Assistance are established in ISO Operating Procedure 441012.

Remote Balancing Authorities

The ISO does not currently have agreements with remote Balancing Authorities. However should the need arise, there are two options for administratively setting up the accounts necessary to provide or receive Emergency Assistance:

1. Use an SC Agent – a list of Scheduling Coordinators and their contact info is posted on the ISO public website13. Other customers have made arrangements through one of these companies to set up resource IDs for special circumstances such as stranded load. As Emergency Assistance should technically only be used during the current hour and maybe into the next hour, it would be useful to also set up a normal Resource ID for normal scheduling in future hours – if that service can be provided. The listed Scheduling Coordinators should be very familiar with scheduling and settlements with the ISO.

Or

11 http://www.caiso.com/Documents/4420.pdf
12 http://www.caiso.com/Documents/4410.pdf
13 http://www.caiso.com/participate/Pages/SchedulingCoordinator/Default.aspx
2. Form an agreement with the ISO – such as a Remote Adjacent BA Operating Agreement (currently the ISO only has Adjacent BA Operating Agreements, but a Remote BA agreement would be very similar.) With this agreement, the remote Balancing Authority could have an SC ID and could submit a request for an Emergency Assistance ID.

Remote Balancing Authorities could decide to pursue one option now and then change the arrangements in the future. Regardless of the option used, the selected SC would need to submit an Intertie Resource Data Template (IRDT) to the ISO to request an Emergency Assistance ID to import at the applicable intertie points.

For more information on Remote Balancing Authority options please contact an ISO Client Representative.

CPUC Guidance

Use of Demand Response Resources

The CPUC provided a Final Decision with regard to the Settlement Agreement on Phase 3 Issues Pertaining to Emergency Triggered Demand Response Programs. Although this decision does not directly impact the Reliability Coordinator and adjacent Balancing Authorities, it has influenced the dispatch priority order implemented in the ISO’s Operating Procedures under Emergency conditions, especially in coordination with the Investor Owned Utilities such as Pacific Gas & Electric, San Diego Gas & Electric and Southern California Edison. As such, the ISO’s Operating Procedures require triggering IOU emergency demand response programs (also referred to as Reliability Demand Response Programs or RDRP) prior to requesting emergency assistance from adjacent Balancing Authorities.

Reliability Withdrawal from Aliso Canyon

On June 2, the CPUC issued a letter to SoCalGas regarding Aliso Canyon withdrawals for the remaining gas stored in Aliso Canyon. The letter can be found on the CPUC website.

15 http://www.caiso.com/Pages/ContactUs.aspx
16 CPUC Final Decision: http://docs.cpuc.ca.gov/PublishedDocs/WORD_PDF/FINAL_DECISION/119815.DOC