# APPENDIX D: 2026 Local Capacity Technical Analysis

## **Intentionally left blank**



## 2026 LOCAL CAPACITY TECHNICAL ANALYSIS

# FINAL REPORT AND STUDY RESULTS

January 31, 2017

## Local Capacity Technical Analysis Overview and Study Results

#### I. Executive Summary

This report documents the results and recommendations of the 2026 Long-Term Local Capacity Technical (LCT) Study. The LCT Study objectives, inputs, methodologies and assumptions are the same as those discussed in the 2017 LCT Study to be adopted by the CAISO and CPUC in their 2017 Local Resource Adequacy needs.

Overall, the LCR trend compared with 2021, is up by about 1200 MW mainly due to load forecast. It is worth mentioning the following areas: (1) North Coast/North Bay, Stockton, Bay Area, Fresno, Big Creek/Ventura and San Diego, where LCR has increased mostly due to load forecast; (2) Humboldt where LCR is steady; (3) Sierra where LCR has decreased due to implementation of new transmission projects; (4) Kern where LCR has increased due to new transmission projects and resulting area redefinition; (5) LA Basin where LCR has increased mainly due to transmission and resource configuration change in the CFE system.

This Valley Electric Association (VEA) area was eliminated last year due to new transmission projects, the incorporation of the VEA UVLS model into the contingency analysis, and the availability of ISO operating procedure 7910 that addresses some category C issues.

The load forecast used in this study is based on the final adopted California Energy Demand Updated Forecast, 2016-2026 developed by the CEC; namely the middemand baseline with low-mid additional achievable energy efficiency (AAEE), posted: <a href="http://www.energy.ca.gov/2015">http://www.energy.ca.gov/2015</a> energypolicy/documents/2016-01-27 load serving entity and Balencing authority.php.

For comparison below you will find the 2021 and 2026 total LCR needs.

## 2021 Local Capacity Needs

|                               | Qualifying Capacity |                |               | 2021 LCR Need Based<br>on Category B |                            |       | 2021 LCR Need Based<br>on Category C with<br>operating procedure |                |               |
|-------------------------------|---------------------|----------------|---------------|--------------------------------------|----------------------------|-------|------------------------------------------------------------------|----------------|---------------|
| Local Area Name               | QF/<br>Muni<br>(MW) | Market<br>(MW) | Total<br>(MW) | Existing<br>Capacity<br>Needed       | Capacity Defici Total (MW) |       | Existing<br>Capacity<br>Needed**                                 | Defici<br>ency | Total<br>(MW) |
| Humboldt                      | 20                  | 198            | 218           | 121                                  | 0                          | 121   | 169                                                              | 0              | 169           |
| North Coast/<br>North Bay     | 128                 | 722            | 850           | 205                                  | 0                          | 205   | 480                                                              | 0              | 480           |
| Sierra                        | 1176                | 890            | 2066          | 1094                                 | 0                          | 1094  | 1475                                                             | 211*           | 1686          |
| Stockton                      | 197                 | 532            | 729           | 146                                  | 0                          | 146   | 364                                                              | 40*            | 404           |
| Greater Bay                   | 933                 | 5970           | 6903          | 2448                                 | 0                          | 2448  | 5194                                                             | 0              | 5194          |
| Greater Fresno                | 231                 | 3295           | 3526          | 731                                  | 0                          | 731   | 1160                                                             | 0              | 1160          |
| Kern                          | 15                  | 106            | 121           | 91                                   | 0                          | 91    | 105                                                              | 0              | 105           |
| LA Basin                      | 1615                | 6180           | 7795          | 6697                                 | 0                          | 6697  | 6898                                                             | 0              | 6898          |
| Big Creek/Ventura             | 517                 | 3160           | 3677          | 2325                                 | 0                          | 2325  | 2398                                                             | 0              | 2398          |
| San Diego/ Imperial<br>Valley | 263                 | 4577           | 4840          | 4357                                 | 0                          | 4357  | 4357                                                             | 0              | 4357          |
| Total                         | 5095                | 25630          | 30725         | 18215                                | 0                          | 18215 | 22793                                                            | 251            | 23044         |

### 2026 Local Capacity Needs

|                               | Qualif              | Qualifying Capacity 2026 LCR Need Base on Category B |               |                                |                | 2026 LCR Need Based<br>on Category C with<br>operating procedure |                                  |                |               |
|-------------------------------|---------------------|------------------------------------------------------|---------------|--------------------------------|----------------|------------------------------------------------------------------|----------------------------------|----------------|---------------|
| Local Area Name               | QF/<br>Muni<br>(MW) | Market<br>(MW)                                       | Total<br>(MW) | Existing<br>Capacity<br>Needed | Defici<br>ency | Total<br>(MW)                                                    | Existing<br>Capacity<br>Needed** | Defici<br>ency | Total<br>(MW) |
| Humboldt                      | 20                  | 198                                                  | 218           | 123                            | 0              | 123                                                              | 171                              | 0              | 171           |
| North Coast/<br>North Bay     | 128                 | 722                                                  | 850           | 201                            | 0              | 201                                                              | 547                              | 0              | 547           |
| Sierra                        | 1176                | 890                                                  | 2066          | 472                            | 0              | 472                                                              | 1004                             | 0              | 1004          |
| Stockton                      | 172                 | 532                                                  | 704           | 183                            | 0              | 183                                                              | 516                              | 0              | 516           |
| Greater Bay                   | 933                 | 5970                                                 | 6903          | 3226                           | 0              | 3226                                                             | 5544                             | 188            | 5732          |
| Greater Fresno                | 231                 | 3295                                                 | 3526          | 1474                           | 0              | 1474                                                             | 1474                             | 0              | 1474          |
| Kern                          | 15                  | 566                                                  | 581           | 391                            | 0              | 391                                                              | 392                              | 0              | 392           |
| LA Basin                      | 1615                | 6180                                                 | 7795          | 7234                           | 0              | 7234                                                             | 7234                             | 0              | 7234          |
| Big Creek/Ventura             | 517                 | 3160                                                 | 3677          | 2310                           | 0              | 2310                                                             | 2528                             | 0              | 2528          |
| San Diego/<br>Imperial Valley | 263                 | 4577                                                 | 4840          | 4649                           | 0              | 4649                                                             | 4649                             | 0              | 4649          |
| Total                         | 5070                | 26090                                                | 31160         | 20263                          | 0              | 20263                                                            | 24059                            | 188            | 24247         |

The 2026 Fresno LCR base cases has been built with Path 15 at 1275 MW N-S due to historically seen overloads on Warnerville-Wilson 230 kV line. The overloads on the Panoche to Wilson 115 kV corridor are the worst at Path 15 high S-N flows; therefore the LCR requirement herein is understated. For future years, after the installation of the Wilson reactor, the ISO will develop LCR base cases with a stressed Path 15 in the S-N direction in order to correctly quantify local requirement needs.

The write-up for each Local Capacity Area lists important new projects included in the base cases as well as a description of reason for changes between the 2021 Long-Term LCR study and this 2026 Long-Term LCR study.

<sup>\*</sup> No local area is "overall deficient". Resource deficiency values result from a few deficient sub-areas; and since there are no resources that can mitigate this deficiency the numbers are carried forward into the total area needs. Resource deficient sub-area implies that in order to comply with the criteria, at summer peak, load may be shed immediately after the first contingency.

<sup>\*\*</sup> Since "deficiency" cannot be mitigated by any available resource, the "Existing Capacity Needed" will be split among LSEs on a load share ratio during the assignment of local area resource responsibility.

## Table of Contents

| I.          | Executive Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| II.         | Overview of the Study: Inputs, Outputs and Options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5  |
| A           | . Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5  |
| B           | R. Key Study Assumptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5  |
| D           | Inputs and Methodology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| C           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|             | , and the second |    |
| D           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| $E_{\cdot}$ | E. Performance Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8  |
| F           | The Two Options Presented In This LCT Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15 |
|             | 1. Option 1- Meet Performance Criteria Category B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|             | 2. Option 2- Meet Performance Criteria Category C and Incorporate Suitable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _  |
|             | Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16 |
| III.        | Assumption Details: How the Study was Conducted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17 |
| A           | System Planning Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17 |
|             | 1. Power Flow Assessment:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|             | 2. Post Transient Load Flow Assessment:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19 |
|             | 3. Stability Assessment:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19 |
| B           | 8. Load Forecast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19 |
|             | 1. System Forecast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19 |
|             | 2. Base Case Load Development Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20 |
| C           | C. Power Flow Program Used in the LCR analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21 |
| IV.         | Locational Capacity Requirement Study Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22 |
| A           | Summary of Study Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22 |
| B           | 8. Summary of Results by Local Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24 |
|             | 1. Humboldt Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|             | 2. North Coast / North Bay Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27 |
|             | 3. Sierra Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|             | 4. Stockton Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|             | 5. Greater Bay Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|             | 6. Greater Fresno Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|             | 7. Kern Area<br>8. LA Basin Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|             | <ul><li>8. LA Basin Area</li><li>9. Big Creek/Ventura Area</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|             | 10. San Diego-Imperial Valley Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|             | 11. Valley Electric Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |

#### II. Overview of the Study: Inputs, Outputs and Options

#### A. Objectives

As was the objective of all previous LCT Studies, the intent of the 2026 Long-Term LCT Study is to identify specific areas within the CAISO Balancing Authority Area that have limited import capability and determine the minimum generation capacity (MW) necessary to mitigate the local reliability problems in those areas.

#### B. Key Study Assumptions

#### **Inputs and Methodology**

The CAISO used the same Inputs and Methodology as does agreed upon by interested parties previously incorporated into the 2017 LCR Study. The following table sets forth a summary of the approved inputs and methodology that have been used in the previous 2017 LCR Study as well as this 2026 LCR Study:

### **Summary Table of Inputs and Methodology Used in this LCR Study:**

| Issue:                                                                                  | HOW INCORPORATED INTO THIS LCR STUDY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input Assumptions:                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Transmission System     Configuration                                                   | The existing transmission system has been modeled, including all projects operational on or before June 1, of the study year and all other feasible operational solutions brought forth by the PTOs and as agreed to by the CAISO.                                                                                                                                                                                                                                                                            |
| Generation Modeled                                                                      | The existing generation resources has been modeled and also includes all projects that will be on-line and commercial on or before June 1, of the study year                                                                                                                                                                                                                                                                                                                                                  |
| Load Forecast                                                                           | Uses a 1-in-10 year summer peak load forecast                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Methodology:                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Maximize Import Capability                                                              | Import capability into the load pocket has been maximized, thus minimizing the generation required in the load pocket to meet applicable reliability requirements.                                                                                                                                                                                                                                                                                                                                            |
| QF/Nuclear/State/Federal     Units                                                      | Regulatory Must-take and similarly situated units like QF/Nuclear/State/Federal resources have been modeled on-line at qualifying capacity output values for purposes of this LCR Study.                                                                                                                                                                                                                                                                                                                      |
| Maintaining Path Flows                                                                  | Path flows have been maintained below all established path ratings into the load pockets, including the 500 kV. For clarification, given the existing transmission system configuration, the only 500 kV path that flows directly into a load pocket and will, therefore, be considered in this LCR Study is the South of Lugo transfer path flowing into the LA Basin.                                                                                                                                       |
| Performance Criteria:                                                                   | Ç î Ç                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Performance Level B & C,<br>including incorporation of<br>PTO operational solutions     | This LCR Study is being published based on Performance Level B and Performance Level C criterion, yielding the low and high range LCR scenarios. In addition, the CAISO will incorporate all new projects and other feasible and CAISO-approved operational solutions brought forth by the PTOs that can be operational on or before June 1, of the study year. Any such solutions that can reduce the need for procurement to meet the Performance Level C criteria will be incorporated into the LCR Study. |
| Load Pocket:                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Fixed Boundary, including<br>limited reference to<br>published effectiveness<br>factors | This LCR Study has been produced based on load pockets defined by a fixed boundary. The CAISO only publishes effectiveness factors where they are useful in facilitating procurement where excess capacity exists within a load pocket.                                                                                                                                                                                                                                                                       |

Further details regarding the 2017 as well as 2026 LCR Study methodology and assumptions are provided in Section III, below.

#### C. Grid Reliability

Service reliability builds from grid reliability because grid reliability is reflected in the planning standards of the Western Electricity Coordinating Council ("WECC") that incorporate standards set by the North American Electric Reliability Council ("NERC") (collectively "NERC Planning Standards"). The NERC Planning Standards apply to the interconnected electric system in the United States and are intended to address the reality that within an integrated network, whatever one Balancing Authority Area does can affect the reliability of other Balancing Authority Areas. Consistent with the mandatory nature of the NERC Planning Standards, the CAISO is under a statutory obligation to ensure efficient use and reliable operation of the transmission grid consistent with achievement of the NERC Planning Standards. The CAISO is further under an obligation, pursuant to its FERC-approved Transmission Control Agreement, to secure compliance with all "Applicable Reliability Criteria." Applicable Reliability Criteria consists of the NERC Planning Standards as well as reliability criteria adopted by the CAISO, in consultation with the CAISO's Participating Transmission Owners ("PTOs"), which affect a PTO's individual system.

The NERC Planning Standards define reliability on interconnected electric systems using the terms "adequacy" and "security." "Adequacy" is the ability of the electric systems to supply the aggregate electrical demand and energy requirements of their customers at all times, taking into account physical characteristics of the transmission system such as transmission ratings and scheduled and reasonably expected unscheduled outages of system elements. "Security" is the ability of the electric systems to withstand sudden disturbances such as electric short circuits or unanticipated loss of system elements. The NERC Planning Standards are organized by Performance Categories. Certain categories require that the grid operator not only ensure that grid integrity is maintained under certain adverse system conditions (e.g.,

7

<sup>&</sup>lt;sup>1</sup> Pub. Utilities Code § 345

security), but also that all customers continue to receive electric supply to meet demand (e.g., adequacy). In that case, grid reliability and service reliability would overlap. But there are other levels of performance where security can be maintained without ensuring adequacy.

#### D. Application of N-1, N-1-1, and N-2 Criteria

The CAISO will maintain the system in a safe operating mode at all times. This obligation translates into respecting the Reliability Criteria at all times, for example during normal operating conditions (N-0) the CAISO must protect for all single contingencies (N-1) and common mode (N-2) double line outages. Also, after a single contingency, the CAISO must re-adjust the system to support the loss of the next most stringent contingency. This is referred to as the N-1-1 condition.

The N-1-1 vs N-2 terminology was introduced only as a mere temporal differentiation between two existing NERC Category C events. N-1-1 represents NERC Category C3 ("category B contingency, manual system adjustment, followed by another category B contingency"). The N-2 represents NERC Category C5 ("any two circuits of a multiple circuit tower line") as well as WECC-S2 (for 500 kV only) ("any two circuits in the same right-of-way") with no manual system adjustment between the two contingencies.

#### E. Performance Criteria

As set forth on the Summary Table of Inputs and Methodology, this LCR Report is based on NERC Performance Level B and Performance Level C criterion. The NERC Standards refer mainly to thermal overloads. However, the CAISO also tests the electric system in regards to the dynamic and reactive margin compliance with the existing WECC standards for the same NERC performance levels. These Performance Levels can be described as follows:

#### a. Performance Criteria- Category B

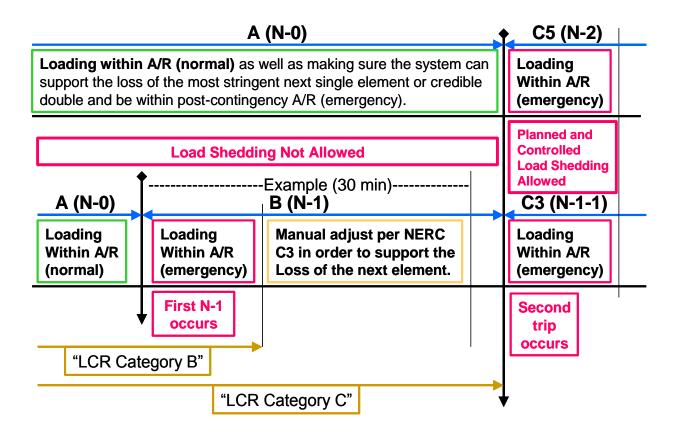
Category B describes the system performance that is expected immediately following the loss of a single transmission element, such as a transmission circuit, a generator, or a transformer.

Category B system performance requires that all thermal and voltage limits must be within their "Applicable Rating," which, in this case, are the emergency ratings as generally determined by the PTO or facility owner. Applicable Rating includes a temporal element such that emergency ratings can only be maintained for certain duration. Under this category, load cannot be shed in order to assure the Applicable Ratings are met however there is no guarantee that facilities are returned to within normal ratings or to a state where it is safe to continue to operate the system in a reliable manner such that the next element out will not cause a violation of the Applicable Ratings.

#### b. <u>Performance Criteria- Category C</u>

The NERC Planning Standards require system operators to "look forward" to make sure they safely prepare for the "next" N-1 following the loss of the "first" N-1 (stay within Applicable Ratings after the "next" N-1). This is commonly referred to as N-1-1. Because it is assumed that some time exists between the "first" and "next" element losses, operating personnel may make any reasonable and feasible adjustments to the system to prepare for the loss of the second element, including, operating procedures, dispatching generation, moving load from one substation to another to reduce equipment loading, dispatching operating personnel to specific station locations to manually adjust load from the substation site, or installing a "Special Protection Scheme" that would remove pre-identified load from service upon the loss of the "next"

element.<sup>2</sup> All Category C requirements in this report refer to situations when in real time (N-0) or after the first contingency (N-1) the system requires additional readjustment in order to prepare for the next worst contingency. In this time frame, load drop is not allowed per existing planning criteria.


Generally, Category C describes system performance that is expected following the loss of two or more system elements. This loss of two elements is generally expected to happen simultaneously, referred to as N-2. It should be noted that once the "next" element is lost after the first contingency, as discussed above under the Performance Criteria B, N-1-1 scenario, the event is effectively a Category C. As noted above, depending on system design and expected system impacts, the **planned and controlled** interruption of supply to customers (load shedding), the removal from service of certain generators and curtailment of exports may be utilized to maintain grid "security."

#### c. CAISO Statutory Obligation Regarding Safe Operation

The CAISO will maintain the system in a safe operating mode at all times. This obligation translates into respecting the Reliability Criteria at all times, for example during normal operating conditions **A** (**N-0**) the CAISO must protect for all single contingencies **B** (**N-1**) and common mode **C5** (**N-2**) double line outages. As a further example, after a single contingency the CAISO must readjust the system in order to be able to support the loss of the next most stringent contingency **C3** (**N-1-1**).

\_

<sup>&</sup>lt;sup>2</sup> A Special Protection Scheme is typically proposed as an operational solution that does not require additional generation and permits operators to effectively prepare for the next event as well as ensure security should the next event occur. However, these systems have their own risks, which limit the extent to which they could be deployed as a solution for grid reliability augmentation. While they provide the value of protecting against the next event without the need for pre-contingency load shedding, they add points of potential failure to the transmission network. This increases the potential for load interruptions because sometimes these systems will operate when not required and other times they will not operate when needed.



The following definitions guide the CAISO's interpretation of the Reliability Criteria governing safe mode operation and are used in this LCT Study:

#### **Applicable Rating:**

This represents the equipment rating that will be used under certain contingency conditions.

*Normal rating* is to be used under normal conditions.

<u>Long-term emergency ratings</u>, if available, will be used in all emergency conditions as long as "system readjustment" is provided in the amount of time given (specific to each element) to reduce the flow to within the normal ratings. If not available normal rating is to be used.

<u>Short-term emergency ratings</u>, if available, can be used as long as "system readjustment" is provided in the "short-time" available in order to reduce the flow to within the long-term emergency ratings where the element can be kept for another

length of time (specific to each element) before the flow needs to be reduced the below the normal ratings. If not available long-term emergency rating should be used.

<u>Temperature-adjusted ratings</u> shall not be used because this is a year-ahead study not a real-time tool, as such the worst-case scenario must be covered. In case temperature-adjusted ratings are the only ratings available then the minimum rating (highest temperature) given the study conditions shall be used.

<u>CAISO Transmission Register</u> is the only official keeper of all existing ratings mentioned above.

<u>Ratings for future projects</u> provided by PTO and agree upon by the CAISO shall be used.

<u>Other short-term ratings</u> not included in the CAISO Transmission Register may be used as long as they are engineered, studied and enforced through clear operating procedures that can be followed by real-time operators.

<u>Path Ratings</u> need to be maintained in order for these studies to comply with the Minimum Operating Reliability Criteria and assure that proper capacity is available in order to operate the system in real-time.

#### **Controlled load drop:**

This is achieved with the use of a Special Protection Scheme.

#### Planned load drop:

This is achieved when the most limiting equipment has short-term emergency ratings AND the operators have an operating procedure that clearly describes the actions that need to be taken in order to shed load.

#### **Special Protection Scheme:**

All known SPS shall be assumed. New SPS must be verified and approved by the CAISO and must comply with the new SPS guideline described in the CAISO Planning Standards.

#### **System Readjustment:**

This represents the actions taken by operators in order to bring the system within a safe operating zone after any given contingency in the system.

## Actions that can be taken as system readjustment after a single contingency (Category B):

- System configuration change based on validated and approved operating procedures
- 2. Generation re-dispatch
  - Decrease generation (up to 1150 MW) limit given by single contingency
     SPS as part of the CAISO Grid Planning standards (ISO G4)
  - b. Increase generation this generation will become part of the LCR need

## Actions, which shall not be taken as system readjustment after a single contingency (Category B):

 Load drop – based on the intent of the CAISO/WECC and NERC criteria for category B contingencies.

The NERC Transmission Planning Standards footnote mentions that load shedding can be done after a category B event in certain local areas in order to maintain compliance with performance criteria. However, the main body of the criteria spells out that no dropping of load should be done following a single contingency. All stakeholders and the CAISO agree that no involuntary interruption of load should be done immediately after a single contingency. Further, the CAISO and stakeholders now agree on the viability of dropping load as part of the system readjustment period – in order to protect for the next most limiting contingency. After a single contingency, it is understood that the system is in a Category B condition and the system should be planned based on the body of the criteria with no shedding of load regardless of whether it is done immediately or in 15-30 minute after the original contingency. Category C conditions only arrive after the second contingency has happened; at that point in time, shedding load is allowed in a planned and controlled manner.

A robust California transmission system should be, and under the LCT Study is being, planned based on the main body of the criteria, not the footnote regarding Category B contingencies. Therefore, if there are available resources in the area, they are looked to meet reliability needs (and included in the LCR requirement) before resorting to involuntary load curtailment. The footnote may be applied for criteria compliance issues only where there are no resources available in the area.

Time allowed for manual readjustment:

Tariff Section 40.3.1.1, requires the CAISO, in performing the Local Capacity Technical Study, to apply the following reliability criterion:

Time Allowed for Manual Adjustment: This is the amount of time required for the Operator to take all actions necessary to prepare the system for the next Contingency. The time should not be more than thirty (30) minutes.

The CAISO Planning Standards also impose this manual readjustment requirement. As a parameter of the Local Capacity Technical Study, the CAISO must assume that as the system operator the CAISO will have sufficient time to:

- (1) make an informed assessment of system conditions after a contingency has occurred;
- (2) identify available resources and make prudent decisions about the most effective system redispatch;
- (3) manually readjust the system within safe operating limits after a first contingency to be prepared for the next contingency; and
- (4) allow sufficient time for resources to ramp and respond according to the operator's redispatch instructions. This all must be accomplished within 30 minutes.

Local capacity resources can meet this requirement by either (1) responding with sufficient speed, allowing the operator the necessary time to assess and redispatch resources to effectively reposition the system within 30 minutes after the first contingency, or (2) have sufficient energy available for frequent dispatch on a precontingency basis to ensure the operator can meet minimum online commitment

constraints or reposition the system within 30 minutes after the first contingency occurs. Accordingly, when evaluating resources that satisfy the requirements of the CAISO Local Capacity Technical Study, the CAISO assumes that local capacity resources need to be available in no longer than 20 minutes so the CAISO and demand response providers have a reasonable opportunity to perform their respective and necessary tasks and enable the CAISO to reposition the system within the 30 minutes in accordance with applicable reliability criteria.

#### F. The Two Options Presented In This LCT Report

This LCT Study sets forth different solution "options" with varying ranges of potential service reliability consistent with CAISO's Reliability Criteria. The CAISO applies Option 2 for its purposes of identifying necessary local capacity needs and the corresponding potential scope of its backstop authority. Nevertheless, the CAISO continues to provide Option 1 as a point of reference for the CPUC and Local Regulatory Authorities in considering procurement targets for their jurisdictional LSEs.

#### 1. Option 1- Meet Performance Criteria Category B

Option 1 is a service reliability level that reflects generation capacity that must be available to comply with reliability standards immediately after a NERC Category B given that load cannot be removed to meet this performance standard under Reliability Criteria. However, this capacity amount implicitly relies on load interruption as the **only means** of meeting any Reliability Criteria that is beyond the loss of a single transmission element (N-1). These situations will likely require substantial load interruptions in order to maintain system continuity and alleviate equipment overloads prior to the actual occurrence of the second contingency.<sup>3</sup>

15

\_

<sup>&</sup>lt;sup>3</sup> This potential for pre-contingency load shedding also occurs because real time operators must prepare for the loss of a common mode N-2 at all times.

## Option 2- Meet Performance Criteria Category C and Incorporate Suitable Operational Solutions

Option 2 is a service reliability level that reflects generation capacity that is needed to readjust the system to prepare for the loss of a second transmission element (N-1-1) using generation capacity *after* considering all reasonable and feasible operating solutions (including those involving customer load interruption) developed and approved by the CAISO, in consultation with the PTOs. Under this option, there is no expected load interruption to end-use customers under normal or single contingency conditions as the CAISO operators prepare for the second contingency. However, the customer load may be interrupted in the event the second contingency occurs.

As noted, Option 2 is the local capacity level that the CAISO requires to reliably operate the grid per NERC, WECC and CAISO standards. As such, the CAISO recommends adoption of this Option to guide resource adequacy procurement.

#### III. Assumption Details: How the Study was Conducted

#### A. System Planning Criteria

The following table provides a comparison of system planning criteria, based on the NERC performance standards, used in the study:

**Table 4: Criteria Comparison** 

| Contingency Component(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ISO Grid<br>Planning<br>Criteria                              | Old<br>RMR<br>Criteria        | Local<br>Capacity<br>Criteria |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------|-------------------------------|
| A - No Contingencies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X                                                             | Х                             | X                             |
| B – Loss of a single element  1. Generator (G-1)  2. Transmission Circuit (L-1)  3. Transformer (T-1)  4. Single Pole (dc) Line  5. G-1 system readjusted L-1                                                                                                                                                                                                                                                                                                                                                                                                                                            | X<br>X<br>X<br>X                                              | X<br>X<br>X <sup>2</sup><br>X | X1<br>X1<br>X1,2<br>X1<br>X   |
| C – Loss of two or more elements  1. Bus Section  2. Breaker (failure or internal fault)  3. L-1 system readjusted G-1  3. G-1 system readjusted T-1 or T-1 system readjusted G-1  3. L-1 system readjusted G-1  3. L-1 system readjusted G-1  3. L-1 system readjusted L-1  3. T-1 system readjusted L-1  4. Bipolar (dc) Line  5. Two circuits (Common Mode) L-2  6. SLG fault (stuck breaker or protection failure) for G-1  7. SLG fault (stuck breaker or protection failure) for T-1  8. SLG fault (stuck breaker or protection failure) for Bus section WECC-S3. Two generators (Common Mode) G-2 | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X |                               | x<br>x<br>x<br>x<br>x         |
| D – Extreme event – loss of two or more elements  Any B1-4 system readjusted (Common Mode) L-2  All other extreme combinations D1-14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | χ4<br>χ4                                                      |                               | χ3                            |

<sup>1</sup> System must be able to readjust to a safe operating zone in order to be able to support the loss of the next contingency.

<sup>2</sup> A thermal or voltage criterion violation resulting from a transformer outage may not be cause for a local area reliability requirement if the violation is considered marginal (e.g. acceptable loss of facility life or low voltage), otherwise, such a violation will necessitate creation of a requirement.

<sup>&</sup>lt;sup>3</sup> Evaluate for risks and consequence, per NERC standards. No voltage collapse or dynamic instability allowed.

<sup>&</sup>lt;sup>4</sup> Evaluate for risks and consequence, per NERC standards.

A significant number of simulations were run to determine the most critical contingencies within each Local Capacity Area. Using power flow, post-transient load flow, and stability assessment tools, the system performance results of all the contingencies that were studied were measured against the system performance requirements defined by the criteria shown in Table 4. Where the specific system performance requirements were not met, generation was adjusted such that the minimum amount of generation required to meet the criteria was determined in the Local Capacity Area. The following describes how the criteria were tested for the specific type of analysis performed.

#### 1. Power Flow Assessment:

| Contingencies              | Thermal Criteria <sup>3</sup>  | Voltage Criteria <sup>4</sup>  |
|----------------------------|--------------------------------|--------------------------------|
| Generating unit 1,6        | Applicable Rating              | Applicable Rating              |
| Transmission line 1,6      | Applicable Rating              | Applicable Rating              |
| Transformer 1,6            | Applicable Rating <sup>5</sup> | Applicable Rating <sup>5</sup> |
| (G-1)(L-1) <sup>2, 6</sup> | Applicable Rating              | Applicable Rating              |
| Overlapping 6, 7           | Applicable Rating              | Applicable Rating              |

- All single contingency outages (i.e. generating unit, transmission line or transformer) will be simulated on Participating Transmission Owners' local area systems.
- Key generating unit out, system readjusted, followed by a line outage. This over-lapping outage is considered a single contingency within the ISO Grid Planning Criteria. Therefore, load dropping for an overlapping G-1, L-1 scenario is not permitted.
- <sup>3</sup> Applicable Rating Based on CAISO Transmission Register or facility upgrade plans including established Path ratings.
- <sup>4</sup> Applicable Rating CAISO Grid Planning Criteria or facility owner criteria as appropriate including established Path ratings.
- A thermal or voltage criterion violation resulting from a transformer outage may not be cause for a local area reliability requirement if the violation is considered marginal (e.g. acceptable loss of facility life or low voltage), otherwise, such a violation will necessitate creation of a requirement.
- Following the first contingency (N-1), the generation must be sufficient to allow the operators to bring the system back to within acceptable (normal) operating range (voltage and loading) and/or appropriate OTC following the studied outage conditions.
- During normal operation or following the first contingency (N-1), the generation must be sufficient to allow the operators to prepare for the next worst N-1 or

common mode N-2 without pre-contingency interruptible or firm load shedding. SPS/RAS/Safety Nets may be utilized to satisfy the criteria after the second N-1 or common mode N-2 except if the problem is of a thermal nature such that short-term ratings could be utilized to provide the operators time to shed either interruptible or firm load. T-2s (two transformer bank outages) would be excluded from the criteria.

#### **Post Transient Load Flow Assessment:**

Contingencies
Selected 1

Reactive Margin Criteria <sup>2</sup>
Applicable Rating

- If power flow results indicate significant low voltages for a given power flow contingency, simulate that outage using the post transient load flow program. The post-transient assessment will develop appropriate Q/V and/or P/V curves.
- <sup>2</sup> Applicable Rating positive margin based on the higher of imports or load increase by 5% for N-1 contingencies, and 2.5% for N-2 contingencies.

#### **Stability Assessment:**

Contingencies
Selected 1

Stability Criteria <sup>2</sup>
Applicable Rating

- Base on historical information, engineering judgment and/or if power flow or post transient study results indicate significant low voltages or marginal reactive margin for a given contingency.
- Applicable Rating CAISO Grid Planning Criteria or facility owner criteria as appropriate.

#### B. Load Forecast

#### 1. System Forecast

The California Energy Commission (CEC) derives the load forecast at the system and Participating Transmission Owner (PTO) levels. This relevant CEC forecast is then distributed across the entire system, down to the local area, division and substation level. The PTOs use an econometric equation to forecast the system load. The predominant parameters affecting the system load are (1) number of households, (2)

economic activity (gross metropolitan products, GMP), (3) temperature and (4) increased energy efficiency and distributed generation programs.

#### **Base Case Load Development Method**

The method used to develop the load in the base case is a melding process that extracts, adjusts and modifies the information from the system, distribution and municipal utility forecasts. The melding process consists of two parts: Part 1 deals with the PTO load and Part 2 deals with the municipal utility load. There may be small differences between the methodologies used by each PTO to disaggregate the CEC load forecast to their level of local area as well as bar-bus model.

#### a. PTO Loads in Base Case

The methods used to determine the PTO loads are, for the most part, similar.

One part of the method deals with the determination of the division<sup>4</sup> loads that would meet the requirements of 1-in-5 or 1-in-10 system or area base cases and the other part deals with the allocation of the division load to the transmission buses.

#### i. Determination of division loads

The annual division load is determined by summing the previous year division load and the current division load growth. Thus, the key steps are the determination of the initial year division load and the annual load growth. The initial year for the base case development method is based heavily on recorded data. The division load growth in the system base case is determined in two steps. First, the total PTO load growth for the year is determined, as the product of the PTO load and the load growth rate from the system load forecast. Then this total PTO load growth is allocated to the division, based on the relative magnitude of the load growth projected for the divisions by the distribution planners. For example, for the 1-in-10 area base case, the division load growth determined for the system base case is adjusted to the 1-in-10 temperature

20

<sup>&</sup>lt;sup>4</sup> Each PTO divides its territory in a number of smaller area named divisions. These are usually smaller and compact areas that have the same temperature profile.

using the load temperature relation determined from the latest peak load and temperature data of the division.

#### ii. Allocation of division load to transmission bus level

Since the loads in the base case are modeled at the various transmission buses, the division loads developed must be allocated to those buses. The allocation process is different depending on the load types. For the most part, each PTO classifies its loads into four types: conforming, non-conforming, self-generation and generation-plant loads. Since the non-conforming and self-generation loads are assumed to not vary with temperature, their magnitude would be the same in the system or area base cases of the same year. The remaining load (the total division load developed above, less the quantity of non-conforming and self-generation load) is the conforming load. The remaining load is allocated to the transmission buses based on the relative magnitude of the distribution forecast. The summation of all base case loads is generally higher than the load forecast because some load, i.e., self-generation and generation-plant, are behind the meter and must be modeled in the base cases. However, for the most part, metered or aggregated data with telemetry is used to come up with the load forecast.

#### b. Municipal Loads in Base Case

The municipal utility forecasts that have been provided to the CEC and PTOs for the purposes of their base cases were also used for this study.

#### C. Power Flow Program Used in the LCR analysis

The technical studies were conducted using General Electric's Power System Load Flow (GE PSLF) program version 19.0. This GE PSLF program is available directly from GE or through the Western System Electricity Council (WECC) to any member.

To evaluate Local Capacity Areas, the starting base case was adjusted to reflect the latest generation and transmission projects as well as the one-in-ten-year peak load forecast for each Local Capacity Area as provided to the CAISO by the PTOs. Electronic contingency files provided by the PTOs were utilized to perform the numerous contingencies required to identify the LCR. These contingency files include remedial action and special protection schemes that are expected to be in operation during the year of study. An CAISO created EPCL (a GE programming language contained within the GE PSLF package) routine was used to run the combination of contingencies; however, other routines are available from WECC with the GE PSFL package or can be developed by third parties to identify the most limiting combination of contingencies requiring the highest amount of generation within the local area to maintain power flows within applicable ratings.

#### IV. Locational Capacity Requirement Study Results

#### A. Summary of Study Results

LCR is defined as the amount of resource capacity that is needed within a Local Capacity Area to reliably serve the load located within this area. The results of the CAISO's analysis are summarized in the Executive Summary Tables.

Table 5: 2021 Local Capacity Needs vs. Peak Load and Local Area Resources

|                              | 2021Total<br>LCR (MW) | l /1 in10\ | 2021 LCR<br>as % of<br>Peak Load | Total Dependable<br>Local Area<br>Resources (MW) | 2021 LCR as % of Total Area Resources |
|------------------------------|-----------------------|------------|----------------------------------|--------------------------------------------------|---------------------------------------|
| Humboldt                     | 169                   | 195        | 87%                              | 218                                              | 78%                                   |
| North Coast/North Bay        | 480                   | 1318       | 36%                              | 850                                              | 56%                                   |
| Sierra                       | 1686                  | 1822       | 93%                              | 2066                                             | 82%**                                 |
| Stockton                     | 404                   | 1186       | 34%                              | 729                                              | 55%**                                 |
| Greater Bay                  | 5194                  | 9644       | 54%                              | 6903                                             | 75%                                   |
| Greater Fresno               | 1160                  | 3240       | 36%                              | 3526                                             | 33%                                   |
| Kern                         | 105                   | 216        | 49%                              | 121                                              | 87%                                   |
| LA Basin                     | 6898                  | 19506      | 35%                              | 7795                                             | 88%                                   |
| Big Creek/Ventura            | 2398                  | 3849       | 62%                              | 3677                                             | 65%                                   |
| San Diego/Imperial<br>Valley | 4357                  | 4980       | 87%                              | 4840                                             | 90%                                   |
| Total                        | 23044                 | 45956*     | 50%*                             | 30725                                            | 75%                                   |

Table 6: 2026 Local Capacity Needs vs. Peak Load and Local Area Resources

|                              | 2026<br>Total LCR<br>(MW) | Peak Load<br>(1 in10)<br>(MW) | 2026 LCR<br>as % of<br>Peak Load | Total Dependable<br>Local Area<br>Resources (MW) | 2026 LCR as %<br>of Total Area<br>Resources |
|------------------------------|---------------------------|-------------------------------|----------------------------------|--------------------------------------------------|---------------------------------------------|
| Humboldt                     | 171                       | 193                           | 89%                              | 218                                              | 78%                                         |
| North Coast/North Bay        | 547                       | 1491                          | 37%                              | 850                                              | 64%                                         |
| Sierra                       | 1004                      | 2108                          | 48%                              | 2066                                             | 49%                                         |
| Stockton                     | 516                       | 1269                          | 41%                              | 704                                              | 73%                                         |
| Greater Bay                  | 5732                      | 10190                         | 56%                              | 6903                                             | 83%**                                       |
| Greater Fresno               | 1474                      | 3653                          | 40%                              | 3526                                             | 42%                                         |
| Kern                         | 392                       | 1084                          | 36%                              | 581                                              | 67%                                         |
| LA Basin                     | 7234                      | 19243                         | 38%                              | 7795                                             | 93%                                         |
| Big Creek/Ventura            | 2528                      | 3973                          | 64%                              | 3677                                             | 69%                                         |
| San Diego/Imperial<br>Valley | 4649                      | 5307                          | 88%                              | 4840                                             | 96%                                         |
| Total                        | 24247                     | 48511*                        | 50%*                             | 31160                                            | 78%                                         |

<sup>\*</sup> Value shown only illustrative, since each local area peaks at a different time.

Tables 5 and 6 shows how much of the Local Capacity Area load is dependent on local resources and how many local resources must be available in order to serve the load in those Local Capacity Areas in a manner consistent with the Reliability Criteria. These tables also indicate where new transmission projects, new resource additions or demand side management programs would be most useful in order to reduce the dependency on existing, generally older and less efficient local area resources.

The term "Qualifying Capacity" used in this report is the "Net Qualifying Capacity" ("NQC") posted on the CAISO web site at:

http://www.caiso.com/planning/Pages/ReliabilityRequirements/Default.aspx

The NQC list includes the area (if applicable) where each resource is located for units already operational. Neither the NQC list nor this report incorporates Demand Side Management programs and their related NQC. Units scheduled to become

<sup>\*\*</sup> Resource deficient LCA (or with sub-area that are deficient) – deficiency included in LCR. Resource deficient area implies that in order to comply with the criteria, at summer peak, load must be shed immediately after the first contingency.

operational before June 1 of 2026 have been included in this 2026 Long-Term LCR Report and added to the total NQC values for those respective areas (see detail write-up for each area).

Regarding the main tables up front (page 2), the first column, "Qualifying Capacity," reflects two sets of resources. The first set is comprised of resources that would normally be expected to be on-line such as Municipal and Regulatory Must-take resources (state, federal, QFs, wind and nuclear units). The second set is "market" resources. The second column, "YEAR LCR Requirement Based on Category B" identifies the local capacity requirements, and deficiencies that must be addressed, in order to achieve a service reliability level based on Performance Criteria- Category B. The third column, "YEAR LCR Requirement Based on Category C with Operating Procedure", sets forth the local capacity requirements, and deficiencies that must be addressed, necessary to attain a service reliability level based on Performance Criteria-Category C with operational solutions.

#### B. Summary of Results by Local Area

Each Local Capacity Area's overall requirement is determined by also achieving each sub-area requirement. Because these areas are a part of the interconnected electric system, the total for each Local Capacity Area is not simply a summation of the sub-area needs. For example, some sub-areas may overlap and therefore the same units may count for meeting the needs in both sub-areas.

#### 1. Humboldt Area

#### **Area Definition**

The transmission tie lines into the area include:

- 1) Bridgeville-Cottonwood 115 kV line #1
- 2) Humboldt-Trinity 115 kV line #1

- 3) Willits-Garberville 60 kV line #1
- 4) Trinity-Maple Creek 60 kV line #1

The substations that delineate the Humboldt Area are:

- 1) Bridgeville and Low Gap are in, Cottonwood is out
- 2) Humboldt is in Trinity is out
- 3) Willits is out, Kekawaka and Garberville are in
- 4) Trinity is out, Ridge Cabin and Maple Creek are in

Total 2026 busload within the defined area: 214 MW with -27 MW of AAEE and 6 MW of losses resulting in total load + losses of 193 MW.

Total units and qualifying capacity available in this area:

| MKT/SCHED<br>RESOURCE ID | BUS#  | BUS NAME | kV   | NQC   |    | LCR SUB-<br>AREA NAME | NQC Comments        | CAISO Tag  |
|--------------------------|-------|----------|------|-------|----|-----------------------|---------------------|------------|
| FAIRHV_6_UNIT            | 31150 | FAIRHAVN | 13.8 | 14.52 | 1  | None                  | Aug NQC             | Net Seller |
| FTSWRD_6_TRFORK          |       |          |      | 0.16  |    | None                  | Not modeled Aug NQC | Market     |
| FTSWRD_7_QFUNTS          |       |          |      | 0.00  |    | None                  | Not modeled Aug NQC | QF/Selfgen |
| GRSCRK_6_BGCKWW          |       |          |      | 0.00  |    | None                  | Energy Only         | QF/Selfgen |
| HUMBPP_1_UNITS3          | 31180 | HUMB_G1  | 13.8 | 16.25 | 1  | None                  |                     | Market     |
| HUMBPP_1_UNITS3          | 31180 | HUMB_G1  | 13.8 | 16.25 | 2  | None                  |                     | Market     |
| HUMBPP_1_UNITS3          | 31180 | HUMB_G1  | 13.8 | 16.25 | 3  | None                  |                     | Market     |
| HUMBPP_1_UNITS3          | 31180 | HUMB_G1  | 13.8 | 16.25 | 4  | None                  |                     | Market     |
| HUMBPP_6_UNITS           | 31181 | HUMB_G2  | 13.8 | 16.27 | 5  | None                  |                     | Market     |
| HUMBPP_6_UNITS           |       | HUMB_G2  | 13.8 | 16.27 | 6  | None                  |                     | Market     |
| HUMBPP_6_UNITS           | 31181 | HUMB_G2  | 13.8 | 16.27 | 7  | None                  |                     | Market     |
| HUMBPP_6_UNITS           | 31182 | HUMB_G3  | 13.8 | 16.27 | 8  | None                  |                     | Market     |
| HUMBPP_6_UNITS           | 31182 | HUMB_G3  | 13.8 | 16.27 | 9  | None                  |                     | Market     |
| HUMBPP_6_UNITS           | 31182 | HUMB_G3  | 13.8 | 16.27 | 10 | None                  |                     | Market     |
| HUMBSB_1_QF              |       |          |      | 0.00  |    | None                  | Not modeled Aug NQC | QF/Selfgen |
| KEKAWK_6_UNIT            | 31166 | KEKAWAK  | 9.1  | 0.00  | 1  | None                  | Aug NQC             | Net Seller |
| LAPAC_6_UNIT             | 31158 | LP SAMOA | 12.5 | 20.00 | 1  | None                  |                     | Market     |
| LOWGAP_1_SUPHR           |       |          |      | 0.52  |    | None                  | Not modeled Aug NQC | Market     |
| PACLUM_6_UNIT            | 31152 | PAC.LUMB | 13.8 | 7.62  | 1  | None                  | Aug NQC             | QF/Selfgen |
| PACLUM_6_UNIT            | 31152 | PAC.LUMB | 13.8 | 7.62  | 2  | None                  | Aug NQC             | QF/Selfgen |
| PACLUM_6_UNIT            | 31153 | PAC.LUMB | 2.4  | 4.59  | 3  | None                  | Aug NQC             | QF/Selfgen |
| WLLWCR_6_CEDRFL          |       |          |      | 0.00  |    | None                  | Not modeled Aug NQC | QF/Selfgen |
| BLULKE_6_BLUELK          | 31156 | BLUELKPP | 12.5 | 0.00  | 1  | None                  | Retired             | Market     |

#### Major new projects modeled:

- 1. Maple Creek Reactive Support
- 2. Garberville Reactive Support
- 3. Bridgeville 115/60 kV #1 transformer replacement

4. Bridgeville-Garberville 115 kV transmission line

#### Critical Contingency Analysis Summary

#### **Humboldt Overall:**

The most critical contingency for the Humboldt area is the outage of the Cottonwood-Bridgeville 115 kV line overlapping with an outage of the gen-tie from Humboldt Bay Power Plant to units 1-4. The local area limitation is potential overload on the Humboldt -Trinity 115 kV Line. This contingency establishes a local capacity need of 171 MW in 2026 (includes 20 MW of QF/Selfgen generation) as the minimum capacity necessary for reliable load serving capability within this area.

The single most critical contingency for the Humboldt area is the outage of the Cottonwood-Bridgeville 115 kV line with one of the Humboldt Bay Power Plant units already out of service, which could potentially overload the Humboldt -Trinity 115 kV line. This contingency establishes a local capacity need of 123 MW in 2026 (includes 20 MW of QF/Selfgen generation).

#### Effectiveness factors:

The following table has units at least 5% effective to the above-mentioned constraint:

| Gen Bus | Gen Name | Gen ID | Eff Fctr (%) |
|---------|----------|--------|--------------|
| 31156   | BLUELKPP | 1      | 65           |
| 31180   | HUMB_G1  | 4      | 64           |
| 31180   | HUMB_G1  | 3      | 64           |
| 31180   | HUMB_G1  | 2      | 64           |
| 31180   | HUMB_G1  | 1      | 64           |
| 31150   | FAIRHAVN | 1      | 61           |
| 31158   | LP SAMOA | 1      | 61           |
| 31182   | HUMB_G3  | 10     | 61           |
| 31182   | HUMB_G3  | 9      | 61           |
| 31182   | HUMB_G3  | 8      | 61           |
| 31181   | HUMB_G2  | 7      | 61           |
| 31181   | HUMB_G2  | 6      | 61           |
| 31181   | HUMB_G2  | 5      | 61           |
| 31152   | PAC.LUMB | 1      | 57           |
| 31152   | PAC.LUMB | 2      | 57           |
| 31153   | PAC.LUMB | 3      | 57           |

#### Changes compared to last year's results:

The load and losses have decreased by 2 MW from 2021 to 2026 and the total LCR has increased by 2 MW.

#### **Humboldt Overall Requirements:**

|                      | QF/Selfgen<br>(MW) | Market<br>(MW) | Max. Qualifying Capacity (MW) |
|----------------------|--------------------|----------------|-------------------------------|
| Available generation | 20                 | 198            | 218                           |

| 2026                               | Existing Generation Capacity Needed (MW) | Deficiency<br>(MW) | Total MW<br>Requirement |
|------------------------------------|------------------------------------------|--------------------|-------------------------|
| Category B (Single) <sup>5</sup>   | 123                                      | 0                  | 123                     |
| Category C (Multiple) <sup>6</sup> | 171                                      | 0                  | 171                     |

#### 2. North Coast / North Bay Area

#### **Area Definition**

The transmission tie facilities coming into the North Coast/North Bay area are:

- 1) Cortina-Mendocino 115 kV Line
- 2) Cortina-Eagle Rock 115 kV Line
- 3) Willits-Garberville 60 kV line #1
- 4) Vaca Dixon-Lakeville 230 kV line #1
- 5) Tulucay-Vaca Dixon 230 kV line #1
- 6) Lakeville-Sobrante 230 kV line #1
- 7) Ignacio-Sobrante 230 kV line #1

The substations that delineate the North Coast/North Bay area are:

- 1) Cortina is out, Mendocino and Indian Valley are in
- 2) Cortina is out, Eagle Rock, Highlands and Homestake are in

<sup>5</sup> LCR requirement for a single contingency means that there wouldn't be any criteria violations following the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

<sup>&</sup>lt;sup>6</sup> LCR requirement for multiple contingencies means that not only there wouldn't be any criteria violations following the loss of a single element, but also the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

- 3) Willits and Lytonville are in, Kekawaka and Garberville are out
- 4) Vaca Dixon is out, Lakeville is in
- 5) Tulucay is in, Vaca Dixon is out
- 6) Lakeville is in, Sobrante is out
- 7) Ignacio is in, Sobrante and Crocket are out

Total 2026 busload within the defined area: 1546 MW with -88 MW of AAEE and 33 MW of losses resulting in total load + losses of 1491 MW.

Total units and qualifying capacity available in this area:

| MKT/SCHED<br>RESOURCE ID | BUS#  | BUS NAME | kV   | NQC   |   | LCR SUB-AREA<br>NAME             | NQC Comments               | CAISO Tag  |
|--------------------------|-------|----------|------|-------|---|----------------------------------|----------------------------|------------|
| ADLIN_1_UNITS            | 31435 | GEO.ENGY | 9.1  | 8.00  | 1 | Eagle Rock,<br>Fulton, Lakeville |                            | Market     |
| ADLIN_1_UNITS            | 31435 | GEO.ENGY | 9.1  | 8.00  | 2 | Eagle Rock,<br>Fulton, Lakeville |                            | Market     |
| CLOVDL_1_SOLAR           |       |          |      | 1.03  |   | Eagle Rock,<br>Fulton, Lakeville | Not modeled Aug NQC        | Market     |
| CSTOGA_6_LNDFIL          |       |          |      | 0.00  |   | Fulton, Lakeville                | Not modeled Energy<br>Only | Market     |
| FULTON_1_QF              |       |          |      | 0.03  |   | Fulton, Lakeville                | Not modeled Aug NQC        | QF/Selfgen |
| GEYS11_7_UNIT11          | 31412 | GEYSER11 | 13.8 | 68.00 | 1 | Eagle Rock,<br>Fulton, Lakeville |                            | Market     |
| GEYS12_7_UNIT12          |       | GEYSER12 |      | 50.00 | 1 | Fulton, Lakeville                |                            | Market     |
| GEYS13_7_UNIT13          |       | GEYSER13 |      | 56.00 |   | Lakeville                        |                            | Market     |
| GEYS14_7_UNIT14          | 31418 | GEYSER14 | 13.8 | 50.00 | 1 | Fulton, Lakeville                |                            | Market     |
| GEYS16_7_UNIT16          | 31420 | GEYSER16 | 13.8 | 49.00 | 1 | Fulton, Lakeville                |                            | Market     |
| GEYS17_7_UNIT17          | 31422 | GEYSER17 | 13.8 | 53.00 | 1 | Fulton, Lakeville                |                            | Market     |
| GEYS18_7_UNIT18          | 31424 | GEYSER18 | 13.8 | 45.00 | 1 | Lakeville                        |                            | Market     |
| GEYS20_7_UNIT20          | 31426 | GEYSER20 | 13.8 | 40.00 | 1 | Lakeville                        |                            | Market     |
| GYS5X6_7_UNITS           | 31406 | GEYSR5-6 | 13.8 | 42.50 | 1 | Eagle Rock,<br>Fulton, Lakeville |                            | Market     |
| GYS5X6_7_UNITS           | 31406 | GEYSR5-6 | 13.8 | 42.50 | 2 | Eagle Rock,<br>Fulton, Lakeville |                            | Market     |
| GYS7X8_7_UNITS           | 31408 | GEYSER78 | 13.8 | 38.00 | 1 | Eagle Rock,<br>Fulton, Lakeville |                            | Market     |
| GYS7X8_7_UNITS           | 31408 | GEYSER78 | 13.8 | 38.00 | 2 | Eagle Rock,<br>Fulton, Lakeville |                            | Market     |
| GYSRVL_7_WSPRNG          |       |          |      | 1.48  |   | Fulton, Lakeville                | Not modeled Aug NQC        | QF/Selfgen |
| HILAND_7_YOLOWD          |       |          |      | 0.00  |   | Eagle Rock,<br>Fulton, Lakeville | Energy Only                | Market     |
| HIWAY_7_ACANYN           |       |          |      | 0.18  |   | Lakeville                        | Not modeled Aug NQC        | QF/Selfgen |
| IGNACO_1_QF              |       |          |      | 0.00  |   | Lakeville                        | Not modeled Aug NQC        | QF/Selfgen |
| INDVLY_1_UNITS           | 31436 | INDIAN V | 9.1  | 1.11  | 1 | Eagle Rock,<br>Fulton, Lakeville | Aug NQC                    | Net Seller |
| MONTPH_7_UNITS           | 32700 | MONTICLO | 9.1  | 3.96  | 1 | Fulton, Lakeville                | Aug NQC                    | QF/Selfgen |
| MONTPH_7_UNITS           | 32700 | MONTICLO | 9.1  | 3.95  | 2 | Fulton, Lakeville                | Aug NQC                    | QF/Selfgen |
| MONTPH_7_UNITS           | 32700 | MONTICLO | 9.1  | 0.94  | 3 | Fulton, Lakeville                | Aug NQC                    | QF/Selfgen |
| NCPA_7_GP1UN1            | 38106 | NCPA1GY1 | 13.8 | 31.00 | 1 | Lakeville                        | Aug NQC                    | MUNI       |

| NCPA_7_GP1UN2   | 38108 | NCPA1GY2 | 13.8 | 28.00 | 1 | Lakeville                        | Aug NQC             | MUNI       |
|-----------------|-------|----------|------|-------|---|----------------------------------|---------------------|------------|
| NCPA_7_GP2UN3   | 38110 | NCPA2GY1 | 13.8 | 0.77  | 1 | Fulton, Lakeville                | Aug NQC             | MUNI       |
| NCPA_7_GP2UN4   | 38112 | NCPA2GY2 | 13.8 | 52.73 | 1 | Fulton, Lakeville                | Aug NQC             | MUNI       |
| POTTER_6_UNITS  | 31433 | POTTRVLY | 2.4  | 4.70  | 1 | Eagle Rock,<br>Fulton, Lakeville | Aug NQC             | Market     |
| POTTER_6_UNITS  | 31433 | POTTRVLY | 2.4  | 2.25  | 3 | Eagle Rock,<br>Fulton, Lakeville | Aug NQC             | Market     |
| POTTER_6_UNITS  | 31433 | POTTRVLY | 2.4  | 2.25  | 4 | Eagle Rock,<br>Fulton, Lakeville | Aug NQC             | Market     |
| POTTER_7_VECINO |       |          |      | 0.01  |   | Eagle Rock,<br>Fulton, Lakeville | Not modeled Aug NQC | QF/Selfgen |
| SANTFG_7_UNITS  | 31400 | SANTA FE | 13.8 | 30.00 | 1 | Lakeville                        |                     | Market     |
| SANTFG_7_UNITS  | 31400 | SANTA FE | 13.8 | 30.00 | 2 | Lakeville                        |                     | Market     |
| SMUDGO_7_UNIT 1 | 31430 | SMUDGEO1 | 13.8 | 37.00 | 1 | Lakeville                        |                     | Market     |
| SNMALF_6_UNITS  | 31446 | SONMA LF | 9.1  | 3.56  | 1 | Fulton, Lakeville                | Aug NQC             | QF/Selfgen |
| UKIAH_7_LAKEMN  | 38020 | CITY UKH | 115  | 0.49  | 1 | Eagle Rock,<br>Fulton, Lakeville | Aug NQC             | MUNI       |
| UKIAH_7_LAKEMN  | 38020 | CITY UKH | 115  | 1.21  | 2 | Eagle Rock,<br>Fulton, Lakeville | Aug NQC             | MUNI       |
| WDFRDF_2_UNITS  | 31404 | WEST FOR | 13.8 | 12.51 | 1 | Fulton, Lakeville                |                     | Market     |
| WDFRDF_2_UNITS  | 31404 | WEST FOR | 13.8 | 12.49 | 2 | Fulton, Lakeville                |                     | Market     |
| BEARCN_2_UNITS  | 31402 | BEAR CAN | 13.8 | 0.00  | 1 | Fulton, Lakeville                | Retired             | Market     |
| BEARCN_2_UNITS  | 31402 | BEAR CAN | 13.8 | 0.00  | 2 | Fulton, Lakeville                | Retired             | Market     |
| GEYS17_2_BOTRCK | 31421 | BOTTLERK | 13.8 | 0.00  | 1 | Fulton, Lakeville                | Retired             | Market     |

#### Major new projects modeled:

- 1. Fulton 230/115 kV transformer
- 2. Vaca Dixon-Lakeville 230 kV reconductoring
- 3. Napa Tulucay No. 1 60 kV Line Upgrades
- 4. Clear Lake 60 kV system reinforcement (Middle Town 115 kV project)
- 5. Ignacio Alto 60 kV Line Voltage Conversion
- 6. Ignacio 230 kV Substation Shunt Reactor

#### **Critical Contingency Analysis Summary**

#### Eagle Rock Sub-area

The most critical overlapping contingency is an outage of the Geysers #3 - Geyser #5 115 kV line and the Cortina-Mendocino 115 kV line. The sub-area area limitation is thermal overloading of the Eagle Rock-Cortina 115 kV line. This limiting contingency establishes a local capacity need of 217 MW in 2026 (includes 0 MW of QF/MUNI generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

The most critical single contingency is an outage of the Cortina-Mendocino 115 kV transmission line with Geysers 11 unit out of service. The sub-area limitation is thermal overloading of the parallel Eagle Rock-Cortina 115 kV line. This limiting contingency establishes a local capacity need of 201 MW in 2026 (includes 0 MW of QF/Muni generation).

#### **Effectiveness factors:**

The following units have at least 5% effectiveness to the above-mentioned constraint:

| Gen Bus | Gen Name | Gen ID | Eff Fctr (%) |
|---------|----------|--------|--------------|
| 31406   | GEYSR5-6 | 1      | 36           |
| 31406   | GEYSR5-6 | 2      | 36           |
| 31408   | GEYSER78 | 1      | 36           |
| 31408   | GEYSER78 | 2      | 36           |
| 31412   | GEYSER11 | 1      | 37           |
| 31435   | GEO.ENGY | 1      | 35           |
| 31435   | GEO.ENGY | 2      | 35           |
| 31433   | POTTRVLY | 1      | 34           |
| 31433   | POTTRVLY | 3      | 34           |
| 31433   | POTTRVLY | 4      | 34           |
| 38020   | CITY UKH | 1      | 32           |
| 38020   | CITY UKH | 2      | 32           |

#### Fulton Sub-area

The most critical overlapping contingency is the outage of the Fulton-Ignacio 230 kV line #1 and the Fulton-Lakeville 230 kV line #1. The sub-area area limitation is thermal overloading of Lakeville # 2 60 kV line (Lakeville-Petaluma A – Cotati). This limiting contingency establishes a local capacity need of 363 MW in 2026 (includes 14 MW of QF and 55 MW of Muni generation) as the minimum capacity necessary for reliable load serving capability within this sub-area. All of the units required to meet the Eagle Rock pocket count towards the Fulton total requirement.

#### **Effectiveness factors:**

The following table has units within the Fulton pocket as well as units outside the pocket that are at least 5% effective to the above-mentioned constraint.

| Gen Bus | Gen Name | Gen ID | Eff Fctr (%) |
|---------|----------|--------|--------------|
| 31466   | SONMA LF | 1      | 52           |
| 31422   | GEYSER17 | 1      | 12           |
| 31404   | WEST FOR | 1      | 12           |
| 31404   | WEST FOR | 2      | 12           |
| 31414   | GEYSER12 | 1      | 12           |
| 31418   | GEYSER14 | 1      | 12           |
| 31420   | GEYSER16 | 1      | 12           |
| 31402   | BEAR CAN | 1      | 12           |
| 31402   | BEAR CAN | 2      | 12           |
| 38110   | NCPA2GY1 | 1      | 12           |
| 38112   | NCPA2GY2 | 1      | 12           |
| 32700   | MONTICLO | 1      | 10           |
| 32700   | MONTICLO | 2      | 10           |
| 32700   | MONTICLO | 3      | 10           |
| 31435   | GEO.ENGY | 1      | 6            |
| 31435   | GEO.ENGY | 2      | 6            |
| 31408   | GEYSER78 | 1      | 6            |
| 31408   | GEYSER78 | 2      | 6            |
| 31412   | GEYSER11 | 1      | 6            |
| 31406   | GEYSR5-6 | 1      | 6            |
| 31406   | GEYSR5-6 | 2      | 6            |
|         |          |        |              |

#### Lakeville Sub-area (North Coast/North Bay Overall)

The most limiting contingency for the North Coast/North Bay Area is a common mode outage of the Vaca Dixon-Lakeville and Vaca Dixon-Tulucay 230 kV lines. The area limitation is thermal overloading of the Eagle Rock-Cortina 115 kV line, the Bridgeville-Garberville 60 kV line and the Sobrante-Moraga 115 kV line. This limiting contingency establishes a local capacity need of 547 MW in 2026 (includes 14 MW of QF and 114 MW of Muni generation) as the minimum capacity necessary for reliable load serving capability within this area.

Local capacity requirement in the North Coast/North Bay area substantially depend on the generation in the Bay Area, especially Pittsburg sub-area.

The study assumed that the Vaca Dixon- Lakeville 230 kV line is reconductored. If it is not reconductored, than the limiting contingency will be single outage of the Vaca Dixon-Tulucay 230 kV line. This contingency may overload the Vaca Dixon- Lakeville

230 kV line. In this case, local capacity requirement will be 575 MW. If this line is not reconductored, but re-rated, local capacity requirement will be 547 MW as described above.

#### **Effectiveness factors:**

The following units have at least 5% effectiveness to the Eagle Rock-Cortina constraint:

| Gen Bus | Gen Name | Gen ID | Eff Fctr (%) |
|---------|----------|--------|--------------|
| 31406   | GEYSR5-6 | 1      | 33           |
| 31406   | GEYSR5-6 | 2      | 33           |
| 31408   | GEYSER78 | 1      | 34           |
| 31408   | GEYSER78 | 2      | 34           |
| 31412   | GEYSER11 | 1      | 34           |
| 31435   | GEO.ENGY | 1      | 33           |
| 31435   | GEO.ENGY | 2      | 33           |
| 31433   | POTTRVLY | 1      | 23           |
| 31433   | POTTRVLY | 3      | 23           |
| 31433   | POTTRVLY | 4      | 23           |
| 32700   | MONTICLO | 1      | 15           |
| 32700   | MONTICLO | 2      | 15           |
| 32700   | MONTICLO | 3      | 15           |
| 31446   | SONMA LF | 1      | 11           |
| 31402   | BEAR CAN | 1      | 10           |
| 31402   | BEAR CAN | 1      | 10           |
| 31404   | WEST FOR | 1      | 10           |
| 31404   | WEST FOR | 2      | 10           |
| 31414   | GEYSER12 | 1      | 10           |
| 31418   | GEYSER14 | 1      | 10           |
| 31421   | BOTTLERK | 1      | 10           |
| 31420   | GEYSER16 | 1      | 10           |
| 31422   | GEYSER17 | 1      | 10           |
| 38110   | NCPA2GY1 | 1      | 10           |
| 38112   | NCPA2GY2 | 1      | 10           |
| 31400   | SANTA FE | 2      | 8            |
| 31400   | SANTA FE | 1      | 8            |
| 31430   | SMUDGEO1 | 1      | 8            |
| 31416   | GEYSER13 | 1      | 8            |
| 31424   | GEYSER18 | 1      | 8            |
| 31426   | GEYSER20 | 1      | 8            |
| 38106   | NCPA1GY1 | 1      | 8            |
| 38108   | NCPA1GY2 | 1      | 8            |
|         |          |        |              |

#### Changes compared to last year's results:

Overall the load and losses forecast went up by 173 MW compared to 2021 and the overall LCR requirement went up by 67 MW.

#### North Coast/North Bay Overall Requirements:

| 2026                 | QF/Selfgen<br>(MW) | Muni<br>(MW) | Market<br>(MW) | Max. Qualifying Capacity (MW) |
|----------------------|--------------------|--------------|----------------|-------------------------------|
| Available generation | 14                 | 114          | 722            | 850                           |

| 2026                               | Existing Generation Capacity Needed (MW) | Deficiency<br>(MW) | Total MW<br>Requirement |
|------------------------------------|------------------------------------------|--------------------|-------------------------|
| Category B (Single) <sup>7</sup>   | 201                                      | 0                  | 201                     |
| Category C (Multiple) <sup>8</sup> | 547                                      | 0                  | 547                     |

#### 3. Sierra Area

#### **Area Definition**

The transmission tie lines into the Sierra Area are:

- 1) Table Mountain-Rio Oso 230 kV line
- 2) Table Mountain-Palermo 230 kV line
- 3) Table Mt-Pease 60 kV line
- 4) Caribou-Palermo 115 kV line
- 5) Drum-Summit 115 kV line #1
- 6) Drum-Summit 115 kV line #2
- 7) Spaulding-Summit 60 kV line
- 8) Brighton-Bellota 230 kV line
- 9) Rio Oso-Lockeford 230 kV line
- 10) Gold Hill-Eight Mile Road 230 kV line
- 11) Lodi-Eight Mile Road 230 kV line
- 12) Gold Hill-Lake 230 kV line
- 13) Vaca Dixon-Davis #1 115kV line

<sup>7</sup> LCR requirement for a single contingency means that there wouldn't be any criteria violations following the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

<sup>&</sup>lt;sup>8</sup> LCR requirement for multiple contingencies means that not only there wouldn't be any criteria violations following the loss of a single element, but also the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

# 14) Vaca Dixon-Davis #2 115kV line

The substations that delineate the Sierra Area are:

- 1) Table Mountain is out Rio Oso is in
- 2) Table Mountain is out Palermo is in
- 3) Table Mt is out Pease is in
- 4) Caribou is out Palermo is in
- 5) Drum is in Summit is out
- 6) Drum is in Summit is out
- 7) Spaulding is in Summit is out
- 8) Brighton is in Bellota is out
- 9) Rio Oso is in Lockeford is out
- 10) Gold Hill is in Eight Mile is out
- 11) Lodi is in Eight Mile is out
- 12) Gold Hill is in Lake is out
- 13) Vaca Dixon is out Vaca Dixon Junction 1 is in
- 14) Vaca Dixon is out Vaca Dixon Junction 2 is in

Total 2026 busload within the defined area: 2133 MW with -102 MW of AAEE and 77 MW of losses resulting in total load + losses of 2108 MW.

Total units and qualifying capacity available in this area:

| MKT/SCHED<br>RESOURCE ID | BUS#  | BUS NAME | kV   | NQC    | UNIT<br>ID | LCR SUB-AREA NAME                                                                                  | NQC<br>Comments            | CAISO Tag  |
|--------------------------|-------|----------|------|--------|------------|----------------------------------------------------------------------------------------------------|----------------------------|------------|
| ALLGNY_6_HYDRO1          |       |          |      | 0.26   |            | South of Table Mountain                                                                            | Not modeled<br>Aug NQC     | Market     |
| APLHIL_1_SLABCK          |       |          |      | 0.00   | 1          | Placerville, South of Rio<br>Oso, South of Palermo,<br>South of Table Mountain                     | Not modeled<br>Energy Only | Market     |
| BANGOR_6_HYDRO           |       |          |      | 0.54   |            | South of Table Mountain                                                                            | Not modeled<br>Aug NQC     | Market     |
| BELDEN_7_UNIT 1          | 31784 | BELDEN   | 13.8 | 115.00 | 1          | South of Palermo, South of Table Mountain                                                          | Aug NQC                    | Market     |
| BIOMAS_1_UNIT 1          | 32156 | WOODLAND | 9.11 | 23.92  | 1          | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain                                      | Aug NQC                    | Net Seller |
| BNNIEN_7_ALTAPH          | 32376 | BONNIE N | 60   | 0.72   |            | Weimer, Placer, Drum-Rio<br>Oso, South of Rio Oso,<br>South of Palermo, South of<br>Table Mountain | Not modeled<br>Aug NQC     | Market     |
| BOGUE_1_UNITA1           | 32451 | FREC     | 13.8 | 45.00  | 1          | Bogue, Drum-Rio Oso,<br>South of Table Mountain                                                    | Aug NQC                    | Market     |
| BOWMN_6_HYDRO            | 32480 | BOWMAN   | 9.11 | 2.19   | 1          | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain                                      | Aug NQC                    | MUNI       |
| BUCKCK_7_OAKFLT          |       |          |      | 0.84   |            | South of Palermo, South of Table Mountain                                                          | Not modeled<br>Aug NQC     | Market     |
| BUCKCK_7_PL1X2           | 31820 | BCKS CRK | 11   | 29.00  | 1          | South of Palermo, South of Table Mountain                                                          | Aug NQC                    | Market     |
| BUCKCK_7_PL1X2           | 31820 | BCKS CRK | 11   | 29.00  | 2          | South of Palermo, South of Table Mountain                                                          | Aug NQC                    | Market     |

| CAMPFW_7_FARWS1 | 32470 | CMP.FARW | 9.11 | 2.90   | 1 | South of Table Mountain                                                                    | Aug NQC                | MUNI   |
|-----------------|-------|----------|------|--------|---|--------------------------------------------------------------------------------------------|------------------------|--------|
| CHICPK_7_UNIT 1 | 32462 | CHI.PARK | 11.5 | 38.00  | 1 | Placer, Drum-Rio Oso,<br>South of Rio Oso, South of<br>Palermo, South of Table<br>Mountain | Aug NQC                | MUNI   |
| COLGAT_7_UNIT 1 | 32450 | COLGATE1 | 13.8 | 161.65 | 1 | South of Table Mountain                                                                    | Aug NQC                | MUNI   |
| COLGAT_7_UNIT 2 |       | COLGATE2 |      | 161.68 | 1 | South of Table Mountain                                                                    | Aug NQC                | MUNI   |
| CRESTA_7_PL1X2  |       | CRESTA   | 11.5 | 35.00  | 1 | South of Palermo, South of Table Mountain                                                  | Aug NQC                | Market |
| CRESTA_7_PL1X2  | 31812 | CRESTA   | 11.5 | 35.00  | 2 | South of Palermo, South of Table Mountain                                                  | Aug NQC                | Market |
| DAVIS_1_SOLAR1  |       |          |      | 0.82   |   | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain                              | Not modeled<br>Aug NQC | Market |
| DAVIS_1_SOLAR2  |       |          |      | 0.88   |   | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain                              | Not modeled<br>Aug NQC | Market |
| DAVIS_7_MNMETH  |       |          |      | 2.06   |   | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain                              | Not modeled<br>Aug NQC | Market |
| DEADCK_1_UNIT   | 31862 | DEADWOOD | 9.11 | 0.00   | 1 | Drum-Rio Oso, South of<br>Table Mountain                                                   | Aug NQC                | MUNI   |
| DEERCR_6_UNIT 1 | 32474 | DEER CRK | 9.11 | 3.74   | 1 | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain                              | Aug NQC                | Market |
| DRUM_7_PL1X2    | 32504 | DRUM 1-2 | 6.6  | 13.00  | 1 | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain                              | Aug NQC                | Market |
| DRUM_7_PL1X2    | 32504 | DRUM 1-2 | 6.6  | 13.00  | 2 | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain                              | Aug NQC                | Market |
| DRUM_7_PL3X4    | 32506 | DRUM 3-4 | 6.6  | 13.70  | 1 | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain                              | Aug NQC                | Market |
| DRUM_7_PL3X4    | 32506 | DRUM 3-4 | 6.6  | 13.70  | 2 | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain                              | Aug NQC                | Market |
| DRUM_7_UNIT 5   | 32454 | DRUM 5   | 13.8 | 49.50  | 1 | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain                              | Aug NQC                | Market |
| DUTCH1_7_UNIT 1 | 32464 | DTCHFLT1 | 11   | 22.00  | 1 | Placer, Drum-Rio Oso,<br>South of Rio Oso, South of<br>Palermo, South of Table<br>Mountain | Aug NQC                | Market |
| DUTCH2_7_UNIT 1 | 32502 | DTCHFLT2 | 6.9  | 26.00  | 1 | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain                              | Aug NQC                | MUNI   |
| ELDORO_7_UNIT 1 | 32513 | ELDRADO1 | 21.6 | 11.00  | 1 | Placerville, South of Rio<br>Oso, South of Palermo,<br>South of Table Mountain             |                        | Market |
| ELDORO_7_UNIT 2 | 32514 | ELDRADO2 | 21.6 | 11.00  | 1 | Placerville, South of Rio<br>Oso, South of Palermo,<br>South of Table Mountain             |                        | Market |
| FMEADO_6_HELLHL | 32486 | HELLHOLE | 9.11 | 0.26   | 1 | South of Rio Oso, South of<br>Palermo, South of Table<br>Mountain                          | Aug NQC                | MUNI   |
| FMEADO_7_UNIT   | 32508 | FRNCH MD | 4.2  | 16.01  | 1 | South of Rio Oso, South of<br>Palermo, South of Table<br>Mountain                          | Aug NQC                | MUNI   |
| FORBST_7_UNIT 1 | 31814 | FORBSTWN | 11.5 | 37.50  | 1 | Drum-Rio Oso, South of<br>Table Mountain                                                   | Aug NQC                | MUNI   |

| GOLDHL_1_QF     |       |          |      | 0.00   |   | Placerville, South of Rio<br>Oso, South of Palermo,<br>South of Table Mountain             | Not modeled                | QF/Selfgen |
|-----------------|-------|----------|------|--------|---|--------------------------------------------------------------------------------------------|----------------------------|------------|
| GRIDLY_6_SOLAR  | 38054 | GRIDLEY  | 60   | 0.00   | 1 | Pease, South of Palermo,<br>South of Table Mountain                                        | Energy Only                | Market     |
| GRNLF1_1_UNITS  | 32490 | GRNLEAF1 | 13.8 | 7.69   | 1 | Bogue, Drum-Rio Oso,<br>South of Table Mountain                                            | Aug NQC                    | Market     |
| GRNLF1_1_UNITS  | 32491 | GRNLEAF1 | 13.8 | 39.27  | 2 | Bogue, Drum-Rio Oso,<br>South of Table Mountain                                            | Aug NQC                    | Market     |
| GRNLF2_1_UNIT   | 32492 | GRNLEAF2 | 13.8 | 35.01  | 1 | Pease, South of Palermo,<br>Drum-Rio Oso, South of<br>Table Mountain                       | Aug NQC                    | QF/Selfgen |
| HALSEY_6_UNIT   | 32478 | HALSEY F | 9.11 | 6.44   | 1 | Placer, Drum-Rio Oso,<br>South of Rio Oso, South of<br>Palermo, South of Table<br>Mountain | Aug NQC                    | Market     |
| HAYPRS_6_QFUNTS | 32488 | HAYPRES+ | 9.11 | 0.00   | 1 | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain                              | Aug NQC                    | QF/Selfgen |
| HAYPRS_6_QFUNTS | 32488 | HAYPRES+ | 9.11 | 0.00   | 2 | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain                              | Aug NQC                    | QF/Selfgen |
| HIGGNS_1_COMBIE |       |          |      | 0.00   |   | Drum-Rio Oso, South of Rio<br>Oso, South of Palermo,<br>South of Table Mountain            | Not modeled<br>Energy Only | Market     |
| HIGGNS_7_QFUNTS |       |          |      | 0.24   |   | Drum-Rio Oso, South of Rio<br>Oso, South of Palermo,<br>South of Table Mountain            | Not modeled<br>Aug NQC     | QF/Selfgen |
| KANAKA_1_UNIT   |       |          |      | 0.00   |   | Drum-Rio Oso, South of Table Mountain                                                      | Not modeled<br>Aug NQC     | MUNI       |
| KELYRG_6_UNIT   | 31834 | KELLYRDG | 9.11 | 10.00  | 1 | Drum-Rio Oso, South of<br>Table Mountain                                                   | Aug NQC                    | MUNI       |
| LIVEOK_6_SOLAR  |       |          |      | 0.87   |   | Pease, South of Palermo,<br>South of Table Mountain                                        | Not modeled<br>Aug NQC     | Market     |
| LODIEC_2_PL1X2  | 38123 | LODI CT1 | 18   | 166.00 | 1 | South of Rio Oso, South of<br>Palermo, South of Table<br>Mountain                          |                            | MUNI       |
| LODIEC_2_PL1X2  | 38124 | LODI ST1 | 18   | 114.00 | 1 | South of Rio Oso, South of<br>Palermo, South of Table<br>Mountain                          |                            | MUNI       |
| MDFKRL_2_PROJCT | 32456 | MIDLFORK | 13.8 | 62.18  | 1 | South of Rio Oso, South of<br>Palermo, South of Table<br>Mountain                          | Aug NQC                    | MUNI       |
| MDFKRL_2_PROJCT | 32456 | MIDLFORK | 13.8 | 62.18  | 2 | South of Rio Oso, South of<br>Palermo, South of Table<br>Mountain                          | Aug NQC                    | MUNI       |
| MDFKRL_2_PROJCT |       | RALSTON  |      | 84.32  | 1 | South of Rio Oso, South of<br>Palermo, South of Table<br>Mountain                          | Aug NQC                    | MUNI       |
| NAROW1_2_UNIT   | 1     | NARROWS1 |      | 9.59   | 1 | South of Table Mountain                                                                    | Aug NQC                    | Market     |
| NAROW2_2_UNIT   | 32468 | NARROWS2 | 9.1  | 28.51  | 1 | South of Table Mountain                                                                    | Aug NQC                    | MUNI       |
| NWCSTL_7_UNIT 1 | 32460 | NEWCSTLE | 13.2 | 0.00   | 1 | Placer, Drum-Rio Oso,<br>South of Rio Oso, South of<br>Palermo, South of Table<br>Mountain | Aug NQC                    | Market     |
| OROVIL_6_UNIT   | 31888 | OROVLLE  | 9.11 | 7.50   | 1 | Drum-Rio Oso, South of<br>Table Mountain                                                   | Aug NQC                    | Market     |
| OXBOW_6_DRUM    | 32484 | OXBOW F  | 9.11 | 6.00   | 1 | Weimer, Drum-Rio Oso,<br>South of Palermo, South of<br>Table Mountain                      | Aug NQC                    | MUNI       |

| PACORO_6_UNIT   | 31890 | PO POWER | 9.11 | 2.58  | 1 | Drum-Rio Oso, South of Table Mountain                                                      | Aug NQC                | QF/Selfgen |
|-----------------|-------|----------|------|-------|---|--------------------------------------------------------------------------------------------|------------------------|------------|
| PACORO_6_UNIT   | 31890 | PO POWER | 9.11 | 2.59  | 2 | Drum-Rio Oso, South of Table Mountain                                                      | Aug NQC                | QF/Selfgen |
| PLACVL_1_CHILIB | 32510 | CHILIBAR | 4.2  | 3.88  | 1 | Placerville, South of Rio<br>Oso, South of Palermo,<br>South of Table Mountain             | Aug NQC                | Market     |
| PLACVL_1_RCKCRE |       |          |      | 0.00  |   | Placerville, South of Rio<br>Oso, South of Palermo,<br>South of Table Mountain             | Not modeled<br>Aug NQC | Market     |
| PLSNTG_7_LNCLND | 32408 | PLSNT GR | 60   | 2.79  |   | Drum-Rio Oso, South of Rio<br>Oso, South of Palermo,<br>South of Table Mountain            | Not modeled<br>Aug NQC | Market     |
| POEPH_7_UNIT 1  | 31790 | POE 1    | 13.8 | 60.00 | 1 | South of Palermo, South of Table Mountain                                                  | Aug NQC                | Market     |
| POEPH_7_UNIT 2  | 31792 | POE 2    | 13.8 | 60.00 | 1 | South of Palermo, South of Table Mountain                                                  | Aug NQC                | Market     |
| RCKCRK_7_UNIT 1 | 31786 | ROCK CK1 | 13.8 | 57.00 | 1 | South of Palermo, South of Table Mountain                                                  | Aug NQC                | Market     |
| RCKCRK_7_UNIT 2 | 31788 | ROCK CK2 | 13.8 | 56.90 | 1 | South of Palermo, South of Table Mountain                                                  | Aug NQC                | Market     |
| RIOOSO_1_QF     |       |          |      | 1.14  |   | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain                              | Not modeled<br>Aug NQC | QF/Selfgen |
| ROLLIN_6_UNIT   | 32476 | ROLLINSF | 9.11 | 11.09 | 1 | Weimer, Drum-Rio Oso,<br>South of Palermo, South of<br>Table Mountain                      | Aug NQC                | MUNI       |
| SLYCRK_1_UNIT 1 | 31832 | SLY.CR.  | 9.11 | 10.36 | 1 | Drum-Rio Oso, South of Table Mountain                                                      | Aug NQC                | MUNI       |
| SPAULD_6_UNIT 3 | 32472 | SPAULDG  | 9.11 | 5.74  | 3 | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain                              | Aug NQC                | Market     |
| SPAULD_6_UNIT12 | 32472 | SPAULDG  | 9.11 | 4.96  | 1 | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain                              | Aug NQC                | Market     |
| SPAULD_6_UNIT12 | 32472 | SPAULDG  | 9.11 | 4.96  | 2 | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain                              | Aug NQC                | Market     |
| SPI LI_2_UNIT 1 | 32498 | SPILINCF | 12.5 | 9.73  | 1 | Drum-Rio Oso, South of Rio<br>Oso, South of Palermo,<br>South of Table Mountain            | Aug NQC                | Net Seller |
| STIGCT_2_LODI   | 38114 | Stig CC  | 13.8 | 49.50 | 1 | South of Rio Oso, South of Palermo, South of Table Mountain                                |                        | MUNI       |
| ULTRCK_2_UNIT   | 32500 | ULTR RCK | 9.11 | 20.89 | 1 | Drum-Rio Oso, South of Rio<br>Oso, South of Palermo,<br>South of Table Mountain            | Aug NQC                | QF/Selfgen |
| WDLEAF_7_UNIT 1 | 31794 | WOODLEAF | 13.8 | 60.00 | 1 | Drum-Rio Oso, South of Table Mountain                                                      | Aug NQC                | MUNI       |
| WHEATL_6_LNDFIL | 32350 | WHEATLND | 60   | 3.00  |   | South of Table Mountain                                                                    | Not modeled<br>Aug NQC | Market     |
| WISE_1_UNIT 1   | 32512 | WISE     | 12   | 10.68 | 1 | Placer, Drum-Rio Oso,<br>South of Rio Oso, South of<br>Palermo, South of Table<br>Mountain | Aug NQC                | Market     |
| WISE_1_UNIT 2   | 32512 | WISE     | 12   | 0.00  | 1 | Placer, Drum-Rio Oso,<br>South of Rio Oso, South of<br>Palermo, South of Table<br>Mountain | Aug NQC                | Market     |
| YUBACT_1_SUNSWT | 32494 | YUBA CTY | 9.11 | 23.98 | 1 | Pease, South of Palermo,<br>Drum-Rio Oso, South of                                         | Aug NQC                | Net Seller |

|                 |       |          |      |       |    | Table Mountain                                                       |                        |            |
|-----------------|-------|----------|------|-------|----|----------------------------------------------------------------------|------------------------|------------|
| YUBACT_6_UNITA1 | 32496 | YCEC     | 13.8 | 46.00 |    | Pease, South of Palermo,<br>Drum-Rio Oso, South of<br>Table Mountain |                        | Market     |
| NA              | 32162 | RIV.DLTA | 9.11 | 0.00  | 1  | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain        | No NQC - hist.<br>data | QF/Selfgen |
| UCDAVS_1_UNIT   | 32166 | UC DAVIS | 9.11 | 3.50  | RN | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain        | No NQC - hist.<br>data | QF/Selfgen |

### Major new projects modeled:

- 1. Gold Hill-Missouri Flat #1 and #2 115 kV line reconductoring
- 2. Rio Oso #1 and #2 230/115 kV transformer replacement
- 3. New Rio Oso-Atlantic 230 kV line
- 4. South of Palermo 115 kV reinforcement
- 5. New Atlantic-Placer 115 kV line
- 6. Pease 115/60 kV transformer addition
- 7. Pease-Marysville #2 60 kV line
- 8. Rio Oso Area 230 kV Voltage Support
- 9. Vaca Dixon-Davis Voltage Conversion

# Critical Contingency Analysis Summary

#### Placerville Sub-area

No requirements due to the Missouri Flat-Gold Hill 115 kV lines reconductoring project.

#### Placer Sub-area

No requirements due to New Atlantic-Placer 115 kV line project.

### Pease Sub-area

The most critical contingency is the loss of the Palermo-Pease 115 kV line followed by Pease-Rio Oso 115 kV line. The area limitation is thermal overloading of the Table Mountain-Pease 60 kV line. This limiting contingency establishes a LCR of 82 MW (includes 35 MW of QF generation) in 2026 as the minimum capacity necessary for reliable load serving capability within this sub-area.

### **Effectiveness factors:**

All units within this sub-area have the same effectiveness factor.

### **Bogue Sub-area**

No requirements due to the Palermo-Rio Oso 115 kV reconductoring project.

### Drum-Rio Oso Sub-area

No requirement due to Rio Oso 230/115 kV Transformer Upgrade and lower load forecast.

### South of Rio Oso Sub-area

The most critical contingency is the loss of the Rio Oso-Gold Hill 230 kV line followed by loss of the Rio Oso-Atlantic #1 or #2 230 kV line or vice versa. The area limitation is thermal overloading of the remaining Rio Oso-Atlantic 230 kV line. This limiting contingency establishes a LCR of 282 MW (includes 21 MW of QF and 593 MW of MUNI generation) in 2026 as the minimum capacity necessary for reliable load serving capability within this sub-area.

#### **Effectiveness factors:**

The following table has all units in South of Rio Oso sub-area and their effectiveness factor to the above-mentioned constraint.

| Gen Bus | Gen Name | Gen ID | Eff Fctr. (%) |
|---------|----------|--------|---------------|
| 32456   | MIDLFORK | 1      | 30            |
| 32456   | MIDLFORK | 2      | 30            |
| 32458   | RALSTON  | 1      | 30            |
| 32486   | HELLHOLE | 1      | 30            |
| 32508   | FRNCH MD | 1      | 30            |
| 32510   | CHILIBAR | 1      | 30            |
| 32513   | ELDRADO1 | 1      | 30            |
| 32514   | ELDRADO2 | 1      | 30            |
| 32460   | NEWCSTLE | 1      | 29            |
| 32478   | HALSEY F | 1      | 28            |
| 32512   | WISE     | 1      | 28            |
| 32500   | ULTR RCK | 1      | 26            |
| 38114   | STIG CC  | 1      | 13            |
|         |          |        |               |

| 38123 | LODI CT1 | 1 | 13 |
|-------|----------|---|----|
| 38124 | LODI ST1 | 1 | 13 |
| 32462 | CHI.PARK | 1 | 13 |
| 32498 | SPILINCF | 1 | 10 |
| 32464 | DTCHFLT1 | 1 | 9  |

#### South of Palermo Sub-area

No requirements due to the South of Palermo reinforcement project.

### South of Table Mountain Sub-area

The most critical contingency is the loss of the Table Mountain-Rio Oso and Table Mountain-Palermo 230 kV double circuit tower line outage. The area limitation is thermal overloading of the Table Mountain-Pease 60 kV line. This limitation establishes a local capacity need of 1004 MW in 2026 (includes 66 MW of QF and 1110 MW of MUNI generation) as the minimum capacity necessary for reliable load serving capability within this area.

The most critical single contingency is the loss of the Table Mountain-Rio Oso 230 kV line with Belden unit out of service. The area limitation is thermal overloading of the Table Mountain-Palermo 230 kV line. This limiting contingency establishes a local capacity need of 472 MW (includes 66 MW of QF and 1110 MW of MUNI generation) in 2026.

### **Effectiveness factors:**

The following table has effectiveness factor to the most critical contingency.

| Gen Bus # | Gen Name | Gen ID | Eff Fctr (%) |
|-----------|----------|--------|--------------|
| 31814     | FORBSTWN | 1      | 7            |
| 31794     | WOODLEAF | 1      | 7            |
| 31832     | SLY.CR.  | 1      | 7            |
| 31862     | DEADWOOD | 1      | 7            |
| 31890     | PO POWER | 1      | 6            |
| 31890     | PO POWER | 2      | 6            |
| 31888     | OROVLLE  | 1      | 6            |
| 31834     | KELLYRDG | 1      | 6            |
| 32450     | COLGATE1 | 1      | 4            |
| 32466     | NARROWS1 | 1      | 4            |

| 32468 | NARROWS2 | 1 | 4 |
|-------|----------|---|---|
| 32452 | COLGATE2 | 1 | 4 |
| 32470 | CMP.FARW | 1 | 4 |
| 32451 | FREC     | 1 | 4 |
| 32490 | GRNLEAF1 | 1 | 4 |
| 32490 | GRNLEAF1 | 2 | 4 |
| 32496 | YCEC     | 1 | 4 |
| 32494 | YUBA CTY | 1 | 4 |
| 32492 | GRNLEAF2 | 1 | 4 |
| 32498 | SPILINCF | 1 | 2 |
| 31788 | ROCK CK2 | 1 | 2 |
| 31812 | CRESTA   | 1 | 2 |
| 31812 | CRESTA   | 2 | 2 |
| 31820 | BCKS CRK | 1 | 2 |
| 31820 | BCKS CRK | 2 | 2 |
| 31786 | ROCK CK1 | 1 | 2 |
| 31790 | POE 1    | 1 | 2 |
| 31792 | POE 2    | 1 | 2 |
| 31784 | BELDEN   | 1 | 2 |
| 32500 | ULTR RCK | 1 | 2 |
| 32156 | WOODLAND | 1 | 2 |
| 32510 | CHILIBAR | 1 | 2 |
| 32513 | ELDRADO1 | 1 | 2 |
| 32514 | ELDRADO2 | 1 | 2 |
| 32478 | HALSEY F | 1 | 2 |
| 32460 | NEWCSTLE | 1 | 1 |
| 32458 | RALSTON  | 1 | 1 |
| 32512 | WISE     | 1 | 1 |
| 32456 | MIDLFORK | 1 | 1 |
| 32456 | MIDLFORK | 2 | 1 |
| 32486 | HELLHOLE | 1 | 1 |
| 32508 | FRNCH MD | 1 | 1 |
| 32162 | RIV.DLTA | 1 | 1 |
| 32502 | DTCHFLT2 | 1 | 1 |
| 32462 | CHI.PARK | 1 | 1 |
| 32464 | DTCHFLT1 | 1 | 1 |
| 32454 | DRUM 5   | 1 | 1 |
| 32476 | ROLLINSF | 1 | 1 |
| 32484 | OXBOW F  | 1 | 1 |
| 32474 | DEER CRK | 1 | 1 |
| 32504 | DRUM 1-2 | 1 | 1 |
| 32504 | DRUM 1-2 | 2 | 1 |
| 32506 | DRUM 3-4 | 1 | 1 |

| 32506 | DRUM 3-4 | 2 | 1 |
|-------|----------|---|---|
| 32166 | UC DAVIS | 1 | 1 |
| 32472 | SPAULDG  | 1 | 1 |
| 32472 | SPAULDG  | 2 | 1 |
| 32472 | SPAULDG  | 3 | 1 |
| 32480 | BOWMAN   | 1 | 1 |
| 32488 | HAYPRES+ | 1 | 1 |
| 32488 | HAYPRES+ | 2 | 1 |
| 38124 | LODI ST1 | 1 | 1 |
| 38123 | LODI CT1 | 1 | 1 |
| 38114 | STIG CC  | 1 | 1 |

### Changes compared to last year's results:

The load forecast went up by 286 MW as compared to 2021. Overall the total LCR for 2026 for the Sierra area has decreased by 682 MW mainly due to implementation of transmission projects.

### Sierra Overall Requirements:

| 2026                 | QF<br>(MW) | Muni<br>(MW) | Market<br>(MW) | Max. Qualifying Capacity (MW) |
|----------------------|------------|--------------|----------------|-------------------------------|
| Available generation | 66         | 1110         | 890            | 2066                          |

| 2026                                | Existing Generation Capacity Needed (MW) | Deficiency<br>(MW) | Total MW<br>Requirement |
|-------------------------------------|------------------------------------------|--------------------|-------------------------|
| Category B (Single)9                | 472                                      | 0                  | 472                     |
| Category C (Multiple) <sup>10</sup> | 1004                                     | 0                  | 1004                    |

\_

<sup>&</sup>lt;sup>9</sup> LCR requirement for a single contingency means that there wouldn't be any criteria violations following the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

<sup>&</sup>lt;sup>10</sup> LCR requirement for multiple contingencies means that not only there wouldn't be any criteria violations following the loss of a single element, but also the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

#### 4. Stockton Area

### **Area Definition**

### Tesla-Bellota Sub-Area Definition

The transmission facilities that establish the boundary of the Tesla-Bellota sub-area are:

- 1) Bellota 230/115 kV Transformer #1
- 2) Bellota 230/115 kV Transformer #2
- 3) Tesla-Tracy 115 kV Line
- 4) Tesla-Salado 115 kV Line
- 5) Tesla-Salado-Manteca 115 kV line
- 6) Tesla-Schulte #1 115 kV Line
- 7) Tesla-Schulte #2 115kV line
- Tesla-Vierra 115 kV Line

The substations that delineate the Tesla-Bellota Sub-area are:

- 1) Bellota 230 kV is out Bellota 115 kV is in
- 2) Bellota 230 kV is out Bellota 115 kV is in
- 3) Tesla is out Tracy is in
- 4) Tesla is out Salado is in
- 5) Tesla is out Salado and Manteca are in
- 6) Tesla is out Schulte is in
- 7) Tesla is out Schulte is in
- 8) Tesla is out Thermal Energy is in

### Lockeford Sub-Area Definition

The transmission facilities that establish the boundary of the Lockeford sub-area are:

- 1) Lockeford-Industrial 60 kV line
- 2) Lockeford-Lodi #1 60 kV line
- 3) Lockeford-Lodi #2 60 kV line
- 4) Lockeford-Lodi #3 60 kV line

The substations that delineate the Lockeford Sub-area are:

- 1) Lockeford is out Industrial is in
- 2) Lockeford is out Lodi is in
- 3) Lockeford is out Lodi is in
- Lockeford is out Lodi is in

#### Weber Sub-Area Definition

The transmission facilities that establish the boundary of the Weber Sub-area are:

- 1) Weber 230/60 kV Transformer #1
- 2) Weber 230/60 kV Transformer #2

The substations that delineate the Weber Sub-area are:

- 1) Weber 230 kV is out Weber 60 kV is in
- 2) Weber 230 kV is out Weber 60 kV is in

Total 2026 busload within the defined area: 1346 MW with -95 MW of AAEE and 18 MW of losses resulting in total load + losses of 1269 MW.

Total units and qualifying capacity available in this area:

| MKT/SCHED<br>RESOURCE ID | BUS#  | BUS NAME | kV   | NQC    |   | LCR SUB-AREA<br>NAME         | NQC Comments            | CAISO Tag  |
|--------------------------|-------|----------|------|--------|---|------------------------------|-------------------------|------------|
| BEARDS_7_UNIT 1          | 34074 | BEARDSLY | 6.9  | 8.36   | 1 | Tesla-Bellota,<br>Stanislaus | Aug NQC                 | MUNI       |
| CAMCHE_1_PL1X3           | 33850 | CAMANCHE | 4.2  | 0.41   | 1 | Tesla-Bellota                | Aug NQC                 | MUNI       |
| CAMCHE_1_PL1X3           | 33850 | CAMANCHE | 4.2  | 0.41   | 2 | Tesla-Bellota                | Aug NQC                 | MUNI       |
| CAMCHE_1_PL1X3           | 33850 | CAMANCHE | 4.2  | 0.42   | 3 | Tesla-Bellota                | Aug NQC                 | MUNI       |
| COGNAT_1_UNIT            | 33818 | COG.NTNL | 12   | 38.42  | 1 | Weber                        | Aug NQC                 | Net Seller |
| CURIS_1_QF               |       |          |      | 0.33   |   | Tesla-Bellota                | Not modeled Aug NQC     | QF/Selfgen |
| DONNLS_7_UNIT            | 34058 | DONNELLS | 13.8 | 72.00  | 1 | Tesla-Bellota,<br>Stanislaus | Aug NQC                 | MUNI       |
| FROGTN_7_UTICA           |       |          |      | 0.00   |   | Tesla-Bellota,<br>Stanislaus | Energy Only             | Market     |
| LOCKFD_1_BEARCK          |       |          |      | 0.00   |   | Tesla-Bellota                | Not modeled Energy Only | Market     |
| LOCKFD_1_KSOLAR          |       |          |      | 0.00   |   | Tesla-Bellota                | Not modeled Energy Only | Market     |
| PEORIA_1_SOLAR           |       |          |      | 0.97   |   | Tesla-Bellota,<br>Stanislaus | Not modeled Aug NQC     | Market     |
| PHOENX_1_UNIT            |       |          |      | 1.35   |   | Tesla-Bellota,<br>Stanislaus | Not modeled Aug NQC     | Market     |
| RIVRBK_1_LNDFIL          |       |          |      | 0.00   |   | Tesla-Bellota,<br>Stanislaus | Not modeled Energy Only | Market     |
| SCHLTE_1_PL1X3           | 33805 | GWFTRCY1 | 13.8 | 83.56  | 1 | Tesla-Bellota                |                         | Market     |
| SCHLTE_1_PL1X3           | 33807 | GWFTRCY2 | 13.8 | 82.88  | 1 | Tesla-Bellota                |                         | Market     |
| SCHLTE_1_PL1X3           | 33811 | GWFTRCY3 | 13.8 | 132.96 | 1 | Tesla-Bellota                |                         | Market     |
| SNDBAR_7_UNIT 1          | 34060 | SANDBAR  | 13.8 | 6.29   | 1 | Tesla-Bellota,<br>Stanislaus | Aug NQC                 | MUNI       |
| SPIFBD_1_PL1X2           | 33917 | FBERBORD | 115  | 1.57   | 1 | Tesla-Bellota,<br>Stanislaus | Aug NQC                 | Market     |
| SPRGAP_1_UNIT 1          | 34078 | SPRNG GP | 6    | 0.00   | 1 | Tesla-Bellota,<br>Stanislaus | Aug NQC                 | Market     |
| STANIS_7_UNIT 1          | 34062 | STANISLS | 13.8 | 91.00  | 1 | Tesla-Bellota,<br>Stanislaus | Aug NQC                 | Market     |
| STNRES_1_UNIT            | 34056 | STNSLSRP | 13.8 | 12.19  | 1 | Tesla-Bellota                | Aug NQC                 | Net Seller |
| TULLCK_7_UNITS           | 34076 | TULLOCH  | 6.9  | 6.16   | 1 | Tesla-Bellota                | Aug NQC                 | MUNI       |
| TULLCK_7_UNITS           | 34076 | TULLOCH  | 6.9  | 6.16   | 2 | Tesla-Bellota                | Aug NQC                 | MUNI       |
| TULLCK_7_UNITS           | 34076 | TULLOCH  | 6.9  | 4.54   | 3 | Tesla-Bellota                | Aug NQC                 | MUNI       |
| ULTPCH_1_UNIT 1          | 34050 | CH.STN.  | 13.8 | 15.89  | 1 | Tesla-Bellota,<br>Stanislaus | Aug NQC                 | QF/Selfgen |
| VLYHOM_7_SSJID           |       |          |      | 1.09   |   | Tesla-Bellota,<br>Stanislaus | Not modeled Aug NQC     | MUNI       |

| WEBER_6_FORWRD  |       |          |      | 4.20  |   | Weber         | Not modeled Aug NQC | Market     |
|-----------------|-------|----------|------|-------|---|---------------|---------------------|------------|
| NA              | 33687 | STKTN WW | 60   | 1.50  | 1 | Weber         | No NQC - hist. data | QF/Selfgen |
| New Unit        | 34051 | Q539     | 34.5 | 20.00 | 1 | Tesla-Bellota | No NQC - Pmax       | Market     |
| SANJOA_1_UNIT 1 | 33808 | SJ COGEN | 13.8 | 48    | 1 | Tesla-Bellota |                     | QF/Selfgen |
| SMPRIP_1_SMPSON | 33810 | SP CMPNY | 13.8 | 45.6  | 1 | Tesla-Bellota | Aug NQC             | Market     |
| THMENG_1_UNIT 1 | 33806 | TH.E.DV. | 13.8 | 17.32 | 1 | Tesla-Bellota | Aug NQC             | Net Seller |
| STOKCG_1_UNIT 1 | 33814 | CPC STCN | 12.5 | 0.00  |   | Tesla-Bellota | Retired             | QF/Selfgen |

# Major new projects modeled:

- 1. Ripon 115 kV New Line Reconfiguration
- Stockton 'A' Weber 60 kV Line Nos. 1 and 2 Reconductor
- 3. Mosher Transmission Project
- 4. West Point Valley Springs 60 kV Line (Reconductor)
- 5. Vierra 115 kV Looping
- 6. Lockeford Lodi Area 230 kV Development

### <u>Critical Contingency Analysis Summary</u>

#### Stanislaus Sub-area

The critical contingency for the Stanislaus sub-area is the loss of Bellota-Riverbank-Melones 115 kV circuit and the River Bank Jct.-Manteca 115 kV line. The area limitation is thermal overloading of the Melones Jct to Avena tap 115 kV line. This limiting contingency establishes a local capacity need of 70 MW (including 16 MW of QF and 88 MW of MUNI generation) in 2026 as the minimum capacity necessary for reliable load serving capability within this sub-area.

#### **Effectiveness factors:**

All units within this sub-area have the same effectiveness factor.

### Tesla-Bellota Sub-area

The most critical contingency for the Tesla-Bellota pocket is the loss of Tesla-Vierra 115 kV and the Tesla-Schulte #2 115 kV lines. The area limitation is thermal overload of the Tesla-Schulte #1 115 kV line above its emergency rating. This limiting contingency establishes a local capacity need of 484 MW (includes 64 MW of QF and 106 MW of MUNI generation) in 2026 as the minimum capacity necessary for reliable load serving

capability within this sub-area. All of the resources needed to meet the Stanislaus sub-area count towards the Tesla-Bellota sub-area LCR need.

The most critical single contingency for the Tesla-Bellota pocket is the loss of the Tesla-Schulte #2 115 kV line and the loss of the GWF Tracy unit #3. The area limitation is the thermal overload of the Tesla-Schulte #1 115 kV line. This single contingency establishes a local capacity need of 183 MW (includes 64 MW of QF and 106 MW of MUNI generation) in 2026.

### Effectiveness factors:

The effectiveness factors for the most critical contingency are listed below:

| Gen Bus# | Gen Name | Gen ID | Eff Fctr (%) |
|----------|----------|--------|--------------|
| 33805    | GWFTRCY1 | 1      | 71           |
| 33807    | GWFTRCY2 | 1      | 71           |
| 33811    | Q268ST1  | 1      | 71           |
| 33808    | SJ COGEN | 1      | 35           |
| 33810    | SP CMPNY | 1      | 31           |
| 34062    | STANISLS | 1      | 28           |
| 34050    | CH.STN.  | 1      | 23           |
| 33917    | FBERBORD | 1      | 22           |
| 34078    | SPRNG GP | 1      | 20           |
| 34060    | SANDBAR  | 1      | 20           |
| 34074    | BEARDSLY | 1      | 20           |
| 34058    | DONNELLS | 1      | 20           |
| 34076    | TULLOCH  | 1      | 18           |
| 34076    | TULLOCH  | 2      | 18           |
| 33806    | TH.E.DV. | 1      | 9            |
| 34056    | STNSLSRP | 1      | 8            |
| 33814    | CPC STCN | 1      | 3            |
| 33850    | CAMANCHE | 1      | 3            |
| 33850    | CAMANCHE | 2      | 3            |
| 33850    | CAMANCHE | 3      | 3            |
|          |          |        |              |

### Lockeford Sub-area

No requirements due to the Lockeford-Lodi area 230 kV development project.

# Weber Sub-area

The critical contingency for the Weber area is the loss of Stockton A-Weber #1 & #2 60 kV lines. The area limitation is thermal overloading of the Stockton A-Weber #3 60 kV line. This limiting contingency establishes a local capacity need of 32 MW (including 2 MW of QF generation) in 2026 as the minimum capacity necessary for reliable load serving capability within this sub-area.

#### Effectiveness factors:

All units within this sub-area have the same effectiveness factor.

#### Stockton Overall

The requirement for this area is driven by the sum of requirements for the Tesla-Bellota, Lockeford and Weber sub-areas.

### Changes compared to last year's results:

The 2026 load forecast went up by 83 MW and the overall LCR has increased by 112 MW as compared to the 2021. Lockeford sub-area has been eliminated due to Lockeford-Lodi area 230 kV development transmission project.

### Stockton Overall Requirements:

| 2026                 | QF   | Muni | Market | Max. Qualifying |
|----------------------|------|------|--------|-----------------|
|                      | (MW) | (MW) | (MW)   | Capacity (MW)   |
| Available generation | 66   | 106  | 532    | 704             |

| 2026                                | Existing Generation  | Deficiency | Total MW    |
|-------------------------------------|----------------------|------------|-------------|
|                                     | Capacity Needed (MW) | (MW)       | Requirement |
| Category B (Single) <sup>11</sup>   | 183                  | 0          | 183         |
| Category C (Multiple) <sup>12</sup> | 516                  | 0          | 516         |

<sup>11</sup> LCR requirement for a single contingency means that there wouldn't be any criteria violations following the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

<sup>&</sup>lt;sup>12</sup> LCR requirement for multiple contingencies means that not only there wouldn't be any criteria violations following the loss of a single element, but also the operators will have enough generation (other operating

### 5. Greater Bay Area

## **Area Definition**

The transmission tie lines into the Greater Bay Area are:

- 1) Lakeville-Sobrante 230 kV
- 2) Ignacio-Sobrante 230 kV
- 3) Parkway-Moraga 230 kV
- 4) Bahia-Moraga 230 kV
- 5) Lambie SW Sta-Vaca Dixon 230 kV
- Peabody-Contra Costa P.P. 230 kV
- 7) Tesla-Kelso 230 kV
- 8) Tesla-Delta Switching Yard 230 kV
- 9) Tesla-Pittsburg #1 230 kV
- 10) Tesla-Pittsburg #2 230 kV
- 11) Tesla-Newark #1 230 kV
- 12) Tesla-Newark #2 230 kV
- 13) Tesla-Ravenswood 230 kV
- 14) Tesla-Metcalf 500 kV
- 15) Moss Landing-Metcalf 500 kV
- 16) Moss Landing-Metcalf #1 230 kV
- 17) Moss Landing-Metcalf #2 230 kV
- 18) Oakdale TID-Newark #1 115 kV
- 19) Oakdale TID-Newark #2 115 kV

The substations that delineate the Greater Bay Area are:

- 1) Lakeville is out Sobrante is in
- 2) Ignacio is out Sobrante is in
- 3) Parkway is out Moraga is in
- 4) Bahia is out Moraga is in
- 5) Lambie SW Sta is in Vaca Dixon is out
- 6) Peabody is out Contra Costa P.P. is in
- 7) Tesla is out Kelso is in
- 8) Tesla is out Delta Switching Yard is in
- Tesla is out Pittsburg is in
- 10) Tesla is out Pittsburg is in
- 11) Tesla is out Newark is in

procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

- 12) Tesla is out Newark is in
- 13) Tesla is out Ravenswood is in
- 14) Tesla is out Metcalf is in
- 15) Moss Landing is out Metcalf is in
- 16) Moss Landing is out Metcalf is in
- 17) Moss Landing is out Metcalf is in
- 18) Oakdale TID is out Newark is in
- 19) Oakdale TID is out Newark is in

Total 2026 busload within the defined area: 10416 MW with -707 MW of AAEE, 213 MW of losses and 268 MW of pumps resulting in total load + losses + pumps of 10190 MW.

Total units and qualifying capacity available in this area:

| MKT/SCHED<br>RESOURCE ID | BUS#  | BUS NAME  | kV   | NQC    |    | LCR SUB-AREA<br>NAME                | NQC Comments               | CAISO Tag  |
|--------------------------|-------|-----------|------|--------|----|-------------------------------------|----------------------------|------------|
| ALMEGT_1_UNIT 1          | 38118 | ALMDACT1  | 13.8 | 23.80  | 1  | Oakland                             |                            | MUNI       |
| ALMEGT_1_UNIT 2          | 38119 | ALMDACT2  | 13.8 | 24.40  | 1  | Oakland                             |                            | MUNI       |
| BANKPP_2_NSPIN           | 38760 | DELTA E   | 13.2 | 13.47  | 10 | Contra Costa                        | Pumps                      | MUNI       |
| BANKPP_2_NSPIN           | 38760 | DELTA E   | 13.2 | 13.47  | 11 | Contra Costa                        | Pumps                      | MUNI       |
| BANKPP_2_NSPIN           | 38765 | DELTA D   | 13.2 | 13.47  | 8  | Contra Costa                        | Pumps                      | MUNI       |
| BANKPP_2_NSPIN           | 38765 | DELTA D   | 13.2 | 13.47  | 9  | Contra Costa                        | Pumps                      | MUNI       |
| BANKPP_2_NSPIN           | 38770 | DELTA C   | 13.2 | 13.47  | 6  | Contra Costa                        | Pumps                      | MUNI       |
| BANKPP_2_NSPIN           | 38770 | DELTA C   | 13.2 | 13.47  | 7  | Contra Costa                        | Pumps                      | MUNI       |
| BANKPP_2_NSPIN           | 38815 | DELTA B   | 13.2 | 13.47  | 4  | Contra Costa                        | Pumps                      | MUNI       |
| BANKPP_2_NSPIN           | 38815 | DELTA B   | 13.2 | 13.47  | 5  | Contra Costa                        | Pumps                      | MUNI       |
| BANKPP_2_NSPIN           | 38820 | DELTA A   | 13.2 | 3.37   | 1  | Contra Costa                        | Pumps                      | MUNI       |
| BANKPP_2_NSPIN           | 38820 | DELTA A   | 13.2 | 3.37   | 2  | Contra Costa                        | Pumps                      | MUNI       |
| BANKPP_2_NSPIN           | 38820 | DELTA A   | 13.2 | 12.51  | 3  | Contra Costa                        | Pumps                      | MUNI       |
| BLHVN_7_MENLOP           |       |           |      | 0.56   |    |                                     | Not modeled                | Net Seller |
| BRDSLD_2_HIWIND          | 32172 | HIGHWINDS | 34.5 | 36.37  | 1  | Contra Costa                        | Aug NQC                    | Wind       |
| BRDSLD_2_MTZUM2          | 32179 | MNTZUMA2  | 0.69 | 20.14  | 1  | Contra Costa                        | Aug NQC                    | Wind       |
| BRDSLD_2_MTZUMA          | 32188 | HIGHWND3  | 0.69 | 8.03   | 1  | Contra Costa                        | Aug NQC                    | Wind       |
| BRDSLD_2_SHILO1          | 32176 | SHILOH    | 34.5 | 45.80  | 1  | Contra Costa                        | Aug NQC                    | Wind       |
| BRDSLD_2_SHILO2          | 32177 | SHILOH 2  | 34.5 | 35.83  | 1  | Contra Costa                        | Aug NQC                    | Wind       |
| BRDSLD_2_SHLO3A          | 32191 | SHILOH3   | 0.58 | 22.98  | 1  | Contra Costa                        | Aug NQC                    | Wind       |
| BRDSLD_2_SHLO3B          | 32194 | SHILOH4   | 0.58 | 29.14  | 1  | Contra Costa                        | Aug NQC                    | Wind       |
| CALPIN_1_AGNEW           | 35860 | OLS-AGNE  | 9.11 | 28.00  | 1  | San Jose, South<br>Bay-Moss Landing | Aug NQC                    | Market     |
| CAYTNO_2_VASCO           | 30531 | 0162-WD   | 230  | 4.30   | FW | Contra Costa                        | Aug NQC                    | Market     |
| CLRMTK_1_QF              |       |           |      | 0.00   |    | Oakland                             | Not modeled                | QF/Selfgen |
| COCOPP_2_CTG1            | 33188 | MARSHCT1  | 16.4 | 191.35 | 1  | Contra Costa                        | Aug NQC                    | Market     |
| COCOPP_2_CTG2            | 33188 | MARSHCT2  | 16.4 | 189.30 | 2  | Contra Costa                        | Aug NQC                    | Market     |
| COCOPP_2_CTG3            | 33189 | MARSHCT3  | 16.4 | 191.45 | 3  | Contra Costa                        | Aug NQC                    | Market     |
| COCOPP_2_CTG4            | 33189 | MARSHCT4  | 16.4 | 191.44 | 4  | Contra Costa                        | Aug NQC                    | Market     |
| COCOSB_6_SOLAR           |       |           |      | 0.00   |    | Contra Costa                        | Not modeled Energy<br>Only | Market     |
| CONTAN_1_UNIT            | 36856 | CCA100    | 13.8 | 27.70  | 1  | San Jose, South<br>Bay-Moss Landing | Aug NQC                    | MUNI       |

| CROKET_7_UNIT   | 32900 | CRCKTCOG    | 18   | 184.26 | 1 | Pittsburg                           | Aug NQC                | QF/Selfgen |
|-----------------|-------|-------------|------|--------|---|-------------------------------------|------------------------|------------|
| CSCCOG_1_UNIT 1 | 36859 | Laf300      | 12   | 3.00   | 1 | San Jose, South<br>Bay-Moss Landing |                        | MUNI       |
| CSCCOG_1_UNIT 1 | 36859 | Laf300      | 12   | 3.00   | 2 | San Jose, South<br>Bay-Moss Landing |                        | MUNI       |
| CSCGNR_1_UNIT 1 | 36858 | Gia100      | 13.8 | 24.00  | 1 | San Jose, South<br>Bay-Moss Landing |                        | MUNI       |
| CSCGNR_1_UNIT 2 | 36895 | Gia200      | 13.8 | 24.00  | 2 | San Jose, South<br>Bay-Moss Landing |                        | MUNI       |
| CUMBIA_1_SOLAR  | 33102 | COLUMBIA    | 0.38 | 0.00   | 1 | Pittsburg                           | Aug NQC                | Market     |
| DELTA_2_PL1X4   | 33107 | DEC STG1    | 24   | 269.61 | 1 | Pittsburg                           | Aug NQC                | Market     |
| DELTA_2_PL1X4   | 33108 | DEC CTG1    | 18   | 181.13 | 1 | Pittsburg                           | Aug NQC                | Market     |
| DELTA_2_PL1X4   | 33109 | DEC CTG2    | 18   | 181.13 | 1 | Pittsburg                           | Aug NQC                | Market     |
| DELTA_2_PL1X4   | 33110 | DEC CTG3    | 18   | 181.13 | 1 | Pittsburg                           | Aug NQC                | Market     |
| DUANE_1_PL1X3   | 36863 | DVRaGT1     | 13.8 | 49.27  | 1 | San Jose, South<br>Bay-Moss Landing | -                      | MUNI       |
| DUANE_1_PL1X3   | 36864 | DVRbGT2     | 13.8 | 49.27  | 1 | San Jose, South<br>Bay-Moss Landing |                        | MUNI       |
| DUANE_1_PL1X3   | 36865 | DVRaST3     | 13.8 | 49.26  | 1 | San Jose, South<br>Bay-Moss Landing |                        | MUNI       |
| FLOWD1_6_ALTPP1 | 35318 | FLOWDPTR    | 9.11 | 0.00   | 1 | Contra Costa                        | Aug NQC                | Wind       |
| GATWAY_2_PL1X3  | 33118 | GATEWAY1    | 18   | 190.12 | 1 | Contra Costa                        | Aug NQC                | Market     |
| GATWAY_2_PL1X3  | 33119 | GATEWAY2    | 18   | 186.19 | 1 | Contra Costa                        | Aug NQC                | Market     |
| GATWAY_2_PL1X3  | 33120 | GATEWAY3    | 18   | 186.19 | 1 | Contra Costa                        | Aug NQC                | Market     |
| GILROY_1_UNIT   | 35850 | GLRY COG    | 13.8 | 69.30  | 1 | Llagas, South Bay-<br>Moss Landing  | Aug NQC                | Market     |
| GILROY_1_UNIT   | 35850 | GLRY COG    | 13.8 | 35.70  | 2 | Llagas, South Bay-<br>Moss Landing  | Aug NQC                | Market     |
| GILRPP_1_PL1X2  | 35851 | GROYPKR1    | 13.8 | 45.50  | 1 | Llagas, South Bay-<br>Moss Landing  | Aug NQC                | Market     |
| GILRPP_1_PL1X2  | 35852 | GROYPKR2    | 13.8 | 45.50  | 1 | Llagas, South Bay-<br>Moss Landing  | Aug NQC                | Market     |
| GILRPP_1_PL3X4  | 35853 | GROYPKR3    | 13.8 | 46.00  | 1 | Llagas, South Bay-<br>Moss Landing  | Aug NQC                | Market     |
| GRZZLY_1_BERKLY | 32741 | HILLSIDE_12 | 12.5 | 24.02  | 1 | None                                | Aug NQC                | QF/Selfgen |
| KELSO_2_UNITS   | 33813 | MARIPCT1    | 13.8 | 47.08  | 1 | Contra Costa                        | Aug NQC                | Market     |
| KELSO_2_UNITS   | 33815 | MARIPCT2    | 13.8 | 47.07  | 2 | Contra Costa                        | Aug NQC                | Market     |
| KELSO_2_UNITS   | 33817 | MARIPCT3    | 13.8 | 47.07  | 3 | Contra Costa                        | Aug NQC                | Market     |
| KELSO_2_UNITS   | 33819 | MARIPCT4    | 13.8 | 47.07  | 4 | Contra Costa                        | Aug NQC                | Market     |
| KIRKER_7_KELCYN |       |             |      | 3.27   |   | Pittsburg                           | Not modeled            | Market     |
| LAWRNC_7_SUNYVL | -     |             |      | 0.12   |   | None                                | Not modeled Aug<br>NQC | Market     |
| LECEF_1_UNITS   | 35854 | LECEFGT1    | 13.8 | 46.50  | 1 | San Jose, South<br>Bay-Moss Landing | Aug NQC                | Market     |
| LECEF_1_UNITS   | 35855 | LECEFGT2    | 13.8 | 46.50  | 1 | San Jose, South<br>Bay-Moss Landing | Aug NQC                | Market     |
| LECEF_1_UNITS   | 35856 | LECEFGT3    | 13.8 | 46.50  | 1 | San Jose, South<br>Bay-Moss Landing | Aug NQC                | Market     |
| LECEF_1_UNITS   | 35857 | LECEFGT4    | 13.8 | 46.50  | 1 | San Jose, South<br>Bay-Moss Landing | Aug NQC                | Market     |
| LECEF_1_UNITS   | 35858 | LECEFST1    | 13.8 | 107.88 | 1 | San Jose, South<br>Bay-Moss Landing |                        | Market     |

| LFC 51_2_UNIT 1 | 35310 | PPASSWND | 21   | 2.02   | 1 | None                                | Aug NQC                | Wind       |
|-----------------|-------|----------|------|--------|---|-------------------------------------|------------------------|------------|
| LMBEPK_2_UNITA1 | 32173 | LAMBGT1  | 13.8 | 47.00  | 1 | Contra Costa                        | Aug NQC                | Market     |
| LMBEPK_2_UNITA2 | 32174 | GOOSEHGT | 13.8 | 46.00  | 2 | Contra Costa                        | Aug NQC                | Market     |
| LMBEPK_2_UNITA3 | 32175 | CREEDGT1 | 13.8 | 47.00  | 3 | Contra Costa                        | Aug NQC                | Market     |
| LMEC_1_PL1X3    |       | LMECCT2  | 18   | 163.20 | 1 | Pittsburg                           | Aug NQC                | Market     |
| LMEC_1_PL1X3    |       | LMECCT1  | 18   | 163.20 | 1 | Pittsburg                           | Aug NQC                | Market     |
| LMEC_1_PL1X3    |       | LMECST1  | 18   | 229.60 | 1 | Pittsburg                           | Aug NQC                | Market     |
| MARTIN_1_SUNSET | 00110 |          |      | 1.88   |   | None                                | Not modeled Aug<br>NQC | QF/Selfgen |
| METCLF_1_QF     |       |          |      | 0.00   |   | None                                | Not modeled Aug<br>NQC | QF/Selfgen |
| METEC_2_PL1X3   | 35881 | MEC CTG1 | 18   | 178.43 | 1 | South Bay-Moss<br>Landing           | Aug NQC                | Market     |
| METEC_2_PL1X3   | 35882 | MEC CTG2 | 18   | 178.43 | 1 | South Bay-Moss<br>Landing           | Aug NQC                | Market     |
| METEC_2_PL1X3   | 35883 | MEC STG1 | 18   | 213.14 | 1 | South Bay-Moss<br>Landing           | Aug NQC                | Market     |
| MILBRA_1_QF     |       |          |      | 0.00   |   | None                                | Not modeled            | QF/Selfgen |
| MISSIX_1_QF     |       |          |      | 0.16   |   | None                                | Not modeled Aug<br>NQC | QF/Selfgen |
| MLPTAS_7_QFUNTS |       |          |      | 0.02   |   | San Jose, South<br>Bay-Moss Landing | Not modeled Aug<br>NQC | QF/Selfgen |
| MOSSLD_2_PSP1   | 36221 | DUKMOSS1 | 18   | 138.72 | 1 | South Bay-Moss<br>Landing           | 85% of existing        | Market     |
| MOSSLD_2_PSP1   | 36222 | DUKMOSS2 | 18   | 138.72 | 1 | South Bay-Moss<br>Landing           | 85% of existing        | Market     |
| MOSSLD_2_PSP1   | 36223 | DUKMOSS3 | 18   | 156.06 | 1 | South Bay-Moss<br>Landing           | 85% of existing        | Market     |
| MOSSLD_2_PSP2   | 36224 | DUKMOSS4 | 18   | 138.72 | 1 | South Bay-Moss<br>Landing           | 85% of existing        | Market     |
| MOSSLD_2_PSP2   | 36225 | DUKMOSS5 | 18   | 138.72 | 1 | South Bay-Moss<br>Landing           | 85% of existing        | Market     |
| MOSSLD_2_PSP2   | 36226 | DUKMOSS6 | 18   | 156.06 | 1 | South Bay-Moss<br>Landing           | 85% of existing        | Market     |
| NEWARK_1_QF     |       |          |      | 0.02   |   | None                                | Not modeled Aug<br>NQC | QF/Selfgen |
| OAK C_1_EBMUD   |       |          |      | 0.73   |   | Oakland                             | Not modeled Aug<br>NQC | MUNI       |
| OAK C_7_UNIT 1  | 32901 | OAKLND 1 | 13.8 | 55.00  | 1 | Oakland                             |                        | Market     |
| OAK C_7_UNIT 2  | 32902 | OAKLND 2 | 13.8 | 55.00  | 1 | Oakland                             |                        | Market     |
| OAK C_7_UNIT 3  | 32903 | OAKLND 3 | 13.8 | 55.00  | 1 | Oakland                             |                        | Market     |
| OXMTN_6_LNDFIL  | 33469 | OX_MTN   | 4.16 | 1.44   | 1 | Ames                                |                        | Market     |
| OXMTN_6_LNDFIL  | 33469 | OX_MTN   | 4.16 | 1.45   | 2 | Ames                                |                        | Market     |
| OXMTN_6_LNDFIL  |       | OX_MTN   | 4.16 | 1.45   | 3 | Ames                                |                        | Market     |
| OXMTN_6_LNDFIL  |       | OX_MTN   | 4.16 | 1.45   | 4 | Ames                                |                        | Market     |
| OXMTN_6_LNDFIL  |       | OX_MTN   | 4.16 | 1.45   | 5 | Ames                                |                        | Market     |
| OXMTN_6_LNDFIL  |       | OX_MTN   | 4.16 | 1.45   | 6 | Ames                                |                        | Market     |
| OXMTN_6_LNDFIL  |       | OX_MTN   | 4.16 | 1.45   | 7 | Ames                                |                        | Market     |
| PALALT_7_COBUG  |       |          |      | 4.50   |   | None                                | Not modeled            | MUNI       |
| RICHMN_7_BAYENV |       |          |      | 2.00   |   | None                                | Not modeled Aug<br>NQC | Market     |
| RUSCTY_2_UNITS  | 35304 | RUSELCT1 | 15   | 172.35 | 1 | Ames                                | No NQC - Pmax          | Market     |

| RUSCTY_2_UNITS<br>RUSCTY_2_UNITS |       | RUSELCT2 | 15   | 172.35 | 1  | Ames                                | No NQC - Pmax       | Market     |
|----------------------------------|-------|----------|------|--------|----|-------------------------------------|---------------------|------------|
|                                  | 35306 | RUSELST1 | 15   | 241.00 | 1  | Ames                                | No NQC - Pmax       | Market     |
| RVRVEW_1_UNITA1                  |       | RVEC_GEN | 13.8 | 46.00  | 1  | Contra Costa                        | Aug NQC             | Market     |
| SEAWST_6_LAPOS                   |       | FOREBAYW | 22   | 0.14   | 1  | Contra Costa                        | Aug NQC             | Wind       |
| SRINTL 6 UNIT                    | 33468 | SRI INTL | 9.11 | 0.82   | 1  | None                                | Aug NQC             | QF/Selfgen |
| STAUFF_1_UNIT                    |       | STAUFER  | 9.11 | 0.09   | 1  | None                                | Aug NQC             | QF/Selfgen |
| STOILS_1_UNITS                   |       | CHEVGEN1 | 13.8 | 0.70   | 1  | Pittsburg                           | Aug NQC             | Market     |
| STOILS_1_UNITS                   |       | CHEVGEN2 | 13.8 | 0.70   | 1  | Pittsburg                           | Aug NQC             | Market     |
| STOILS_1_UNITS                   |       | CHEVGEN3 | 13.8 | 0.32   | 3  | Pittsburg                           | Aug NQC             | Market     |
| TIDWTR_2_UNITS                   |       | FOSTER W | 12.5 | 7.01   | 1  | Pittsburg                           | Aug NQC             | Net Seller |
| TIDWTR_2_UNITS                   |       | FOSTER W | 12.5 | 7.00   | 2  | Pittsburg                           | Aug NQC             | Net Seller |
| TIDWTR_2_UNITS                   |       | FOSTER W | 12.5 | 7.00   | 3  | Pittsburg                           | Aug NQC             | Net Seller |
| UNCHEM_1_UNIT                    |       | UNION CH | 9.11 | 10.45  | 1  | Pittsburg                           | Aug NQC             | QF/Selfgen |
| UNOCAL_1_UNITS                   |       | UNOCAL   | 12   | 0.38   | 1  | Pittsburg                           | Aug NQC             | QF/Selfgen |
| UNOCAL_1_UNITS                   |       | UNOCAL   | 12   | 0.38   | 2  | Pittsburg                           | Aug NQC             | QF/Selfgen |
| UNOCAL_1_UNITS                   |       | UNOCAL   | 12   | 0.38   | 3  | Pittsburg                           | Aug NQC             | QF/Selfgen |
| USWNDR_2_SMUD                    |       | SOLANOWP | 21   | 21.94  | 1  | Contra Costa                        | Aug NQC             | Wind       |
| USWNDR_2_SMUD2                   |       | SOLANO   | 34.5 | 42.60  | 1  | Contra Costa                        | Aug NQC             | Wind       |
| USWNDR_2_UNITS                   |       | EXNCO    | 9.11 | 4.18   | 1  | Contra Costa                        | Aug NQC             | Wind       |
| USWPFK_6_FRICK                   |       | USW FRIC | 12   | 0.78   | 1  | Contra Costa                        | Aug NQC             | Wind       |
| USWPFK_6_FRICK                   |       | USW FRIC | 12   | 0.78   | 2  | Contra Costa                        | Aug NQC             | Wind       |
| USWPJR_2_UNITS                   |       | GRNRDG   | 0.69 | 15.66  | 1  | Contra Costa                        | Aug NQC             | Wind       |
| WNDMAS_2_UNIT 1                  |       | WINDMSTR | 9.11 | 3.42   | 1  | Contra Costa                        | Aug NQC             | Wind       |
| ZOND_6_UNIT                      |       | ZOND SYS | 9.11 | 1.45   | 1  | Contra Costa                        | Aug NQC             | Wind       |
| ZOND_0_UNIT                      | 33310 | ZOND 313 | 9.11 | 1.40   | -  |                                     | Aug NQC             | vviilu     |
| IBMCTL_1_UNIT 1                  | 35637 | IBM-CTLE | 115  | 0.00   | 1  | San Jose, South<br>Bay-Moss Landing | No NQC - hist. data | Market     |
| IMHOFF_1_UNIT 1                  | 33136 | CCCSD    | 12.5 | 4.40   | 1  | Pittsburg                           | No NQC - hist. data | QF/Selfgen |
| MARKHM_1_CATLST                  | 35863 | CATALYST | 9.11 | 0.00   | 1  | San Jose, South<br>Bay-Moss Landing |                     | QF/Selfgen |
| NA                               | 36209 | SLD ENRG | 12.5 | 0.00   | 1  | South Bay-Moss<br>Landing           |                     | QF/Selfgen |
| SHELRF_1_UNITS                   | 33141 | SHELL 1  | 12.5 | 20.00  | 1  | Pittsburg                           | No NQC - hist. data | Net Seller |
| SHELRF_1_UNITS                   | 33142 | SHELL 2  | 12.5 | 40.00  | 1  | Pittsburg                           | No NQC - hist. data | Net Seller |
| SHELRF_1_UNITS                   | 33143 | SHELL 3  | 12.5 | 40.00  | 1  | Pittsburg                           | No NQC - hist. data | Net Seller |
| ZANKER_1_UNIT 1                  | 35861 | SJ-SCL W | 4.3  | 5.00   |    | San Jose, South<br>Bay-Moss Landing | No NQC - hist. data | QF/Selfgen |
| New Unit                         | 30524 | 0354-WD  | 230  | 1.83   |    | Contra Costa                        | No NQC - Pmax       | Market     |
| New Unit                         |       | SWIFT    | 115  | 4.00   |    | South Bay-Moss<br>Landing           | No NQC - Pmax       | Market     |
| New Unit                         | 35302 | NUMMI-LV | 12.6 | 0.00   | RN | 3                                   | Energy Only         | Market     |
| New Unit                         |       | A100US-L | 12.6 | 0.00   | RN |                                     | Energy Only         | Market     |
| New Unit                         |       | HGST-LV  | 12.4 | 0.00   | RN |                                     | Energy Only         | Market     |
| CARDCG_1_UNITS                   |       | CARDINAL | 12.5 | 0.00   |    | None                                | Retired             | QF/Selfgen |
| CARDCG_1_UNITS                   |       | CARDINAL | 12.5 | 0.00   |    | None                                | Retired             | QF/Selfgen |
| COCOPP_7_UNIT 6                  |       | C.COS 6  | 18   | 0.00   |    | Contra Costa                        | Retired             | Market     |
| COCOPP_7_UNIT 7                  |       | C.COS 7  | 18   | 0.00   |    | Contra Costa                        | Retired             | Market     |
| GWFPW1_6_UNIT                    |       | GWF #1   | 9.11 | 0.00   | 1  | Pittsburg, Contra<br>Costa          | Retired             | QF/Selfgen |
| GWFPW2_1_UNIT 1                  | 33132 | GWF #2   | 13.8 | 0.00   | 1  | Pittsburg                           | Retired             | QF/Selfgen |
| GWFPW3_1_UNIT 1                  |       | GWF #3   | 13.8 | 0.00   | 1  | Pittsburg, Contra<br>Costa          | Retired             | QF/Selfgen |

| GWFPW4_6_UNIT 1 | 33134 | GWF #4   | 13.8 | 0.00 | 1 | Pittsburg, Contra<br>Costa | Retired         | QF/Selfgen |
|-----------------|-------|----------|------|------|---|----------------------------|-----------------|------------|
| GWFPW5_6_UNIT 1 | 33135 | GWF #5   | 13.8 | 0.00 | 1 | Pittsburg                  | Retired         | QF/Selfgen |
| MOSSLD_7_UNIT 6 | 36405 | MOSSLND6 | 22   | 0.00 | 1 | South Bay-Moss<br>Landing  | Retired by 2021 | Market     |
| MOSSLD_7_UNIT 7 | 36406 | MOSSLND7 | 22   | 0.00 | 1 | South Bay-Moss<br>Landing  | Retired by 2021 | Market     |
| PITTSP_7_UNIT 5 | 33105 | PTSB 5   | 18   | 0.00 | 1 | Pittsburg                  | Retired by 2019 | Market     |
| PITTSP_7_UNIT 6 | 33106 | PTSB 6   | 18   | 0.00 | 1 | Pittsburg                  | Retired by 2019 | Market     |
| PITTSP_7_UNIT 7 | 30000 | PTSB 7   | 20   | 0.00 | 1 | Pittsburg                  | Retired by 2019 | Market     |
| UNTDQF_7_UNITS  | 33466 | UNTED CO | 9.11 | 0.00 | 1 | None                       | Retired         | QF/Selfgen |

# Major new projects modeled:

- 1. Vaca Dixon-Lakeville 230 kV line reconductoring
- 2. East Shore-Oakland J 115 kV reconductoring project
- 3. Evergreen-Mabury Conversion to 115 kV
- 4. Metcalf-Evergreen 115 kV line reconductoring
- 5. Metcalf-Piercy & Swift and Newark-Dixon Landing 115 kV upgrade
- 6. Embarcadero-Potrero 230 kV transmission project
- 7. Morgan Hill Area Reinforcement
- 8. Tesla-Newark 230 kV Path upgrade
- A few small renewable resources
- 10. Pittsburg Power Plant retirement

# **Critical Contingency Analysis Summary**

### Oakland Sub-area

The critical contingency for the Oakland pocket is the loss of both C-X #2 and C-X #3 115 kV Cables. The area limitation is thermal overloading of the remaining Moraga-Claremont 115 kV lines above their emergency rating. This limiting contingency establishes a local capacity need of 76 MW in 2026 (includes 49 MW of MUNI generation) as minimum capacity necessary for reliable load serving capability within this sub-area.

The Oakland resources are required in order to meet local reliability requirements in the Oakland sub-area based on actual real-time data that shows a need of at least 98 MW

for a 1 in 3 heat wave (2015/16). Further, the real-time data also showed that at times all three Oakland generators are on-line simultaneously in order to maintain local reliability. The local capacity technical study was intended to model a 1 in 10 heat wave resulting in an increased local capacity need beyond that observed in real-time. The discrepancy is due to load forecast distribution among substations in the area. ISO will work with PG&E and CEC to correct this discrepancy in future base cases.

#### Effectiveness factors:

All units within this sub-area have the same effectiveness factor.

## Llagas Sub-area

The most critical contingency is an outage of Metcalf D-Morgan Hill 115 kV line with the Spring 230/115kV Bank #1. The area limitation is the thermal overloading of the Metcalf - Green Valley – Llagas 115 kV line above their emergency rating. This limiting contingency establishes a local capacity need of 30 MW in 2026 (includes 0 MW of QF and MUNI generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

#### **Effectiveness factors:**

All units within this sub-area have the same effectiveness factor.

#### San Jose Sub-area

The most critical contingency in the San Jose sub-area is the Metcalf - Evergreen #1 and #2 115 kV lines. The limiting element is the San Jose STA "A"-"B" 115 kV line and establishes a local capacity 257 MW in 2026 (includes 5 MW of QF and 230 MW of MUNI generation) as minimum capacity necessary for reliable load serving capability within this sub-area.

#### **Effectiveness factors:**

All units within this sub-area have the same effectiveness factor.

### South Bay-Moss Landing Sub-area

The most critical contingency is an outage of the Tesla-Metcalf 500 kV and Moss Landing-Los Banos 500 kV. The area limitation is thermal overloading of the Las Aguillas-Moss Landing 230 kV. This limiting contingency establishes a LCR of 2427 MW in 2026 (includes 5 MW of QF, 230 MW of MUNI generation as well as 188 MW of deficiency) as the minimum capacity necessary for reliable load serving capability within this sub-area.

Resources in San Jose and Llagas sub-areas are also included in this sub-area.

### **Effectiveness factors:**

For thermal overloads, resources in the Moss Landing area are more effective than the resources in the South Bay. For voltage support, resources in the South Bay are more effective than the resources in the Moss Landing area. Minimum requirement assumes at least two blocks of Combined Cycle at Moss Landing.

### Ames and Pittsburg Sub-areas Combined

The need for OTC generation in this sub-area is eliminated after the following projects are operational: Tesla-Pittsburg 230 kV Reconductoring, Moraga 230/115 kV Banks Replacement, Contra Costa-Moraga 230 kV Reconductoring and the Vaca Dixon-Lakeville 230 kV Reconductoring.

The two most critical contingencies listed below together establish a local capacity need of 2649 MW in 2026 as follows: 547 MW in NCNB (includes 14 MW of QF and 114 MW of Muni generation) and 2102 MW in the Bay Area – 407 MW in Ames (includes 0 MW of QF and MUNI generation) and 1695 MW in Pittsburg (includes 200 MW of QF generation) as the minimum capacity necessary for reliable load serving capability within these sub-areas.

The most critical contingency in the Bay Area is an outage of DCTL Newark-Ravenswood & Tesla-Ravenswood 230 kV. The area limitation is thermal overloading of Newark-Ames #1, #2, #3 and Newark-Ames Distribution 115 kV lines.

The most critical contingency in North Coast/North Bay area is an outage of Vaca Dixon-Lakeville 230 kV line overlapped with the outage of Vaca Dixon-Tulucay 230 kV lines. The limiting element is the Moraga-Sobrante 115 kV line.

### **Effectiveness factors:**

Resources must satisfy both constraints simultaneously, therefore no effectiveness factor is provided.

### Contra Costa Sub-area

The most critical contingency is an outage of Kelso-Tesla 230 kV with Gateway out of service. The area limitation is thermal overloading of the Delta Switching Yard-Tesla 230 kV line. This limiting contingency establishes a LCR of 1105 MW in 2026 (includes 264 MW of MUNI pumps and 289 MW of wind generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

### **Effectiveness factors:**

The following table has units within the Bay Area that are at least 10% effective.

| Gen Bus | Gen Name | Gen ID | Eff Fctr (% |
|---------|----------|--------|-------------|
| 33175   | ALTAMONT | 1      | 83          |
| 38760   | DELTA E  | 10     | 71          |
| 38760   | DELTA E  | 11     | 71          |
| 38765   | DELTA D  | 8      | 71          |
| 38765   | DELTA D  | 9      | 71          |
| 38770   | DELTA C  | 6      | 71          |
| 38770   | DELTA C  | 7      | 71          |
| 38815   | DELTA B  | 4      | 71          |
| 38815   | DELTA B  | 5      | 71          |
| 38820   | DELTA A  | 3      | 71          |
| 33170   | WINDMSTR | 1      | 68          |
| 33118   | GATEWAY1 | 1      | 23          |
| 33119   | GATEWAY2 | 1      | 23          |
| 33120   | GATEWAY3 | 1      | 23          |
| 33116   | C.COS 6  | 1      | 23          |
| 33117   | C.COS 7  | 1      | 23          |
| 33133   | GWF #3   | 1      | 23          |
| 33134   | GWF #4   | 1      | 23          |
| 33178   | RVEC_GEN | 1      | 23          |
|         |          |        |             |

| 33131 | GWF #1   | 1 | 22 |
|-------|----------|---|----|
| 32179 | T222     | 1 | 18 |
| 32188 | P0611G   | 1 | 18 |
| 32190 | Q039     | 1 | 18 |
| 32186 | P0609    | 1 | 18 |
| 32171 | HIGHWND3 | 1 | 18 |
| 32177 | Q0024    | 1 | 18 |
| 32168 | ENXCO    | 2 | 18 |
| 32169 | SOLANOWP | 1 | 18 |
| 32172 | HIGHWNDS | 1 | 18 |
| 32176 | SHILOH   | 1 | 18 |
| 33838 | USWP_#3  | 1 | 18 |
| 32173 | LAMBGT1  | 1 | 14 |
| 32174 | GOOSEHGT | 2 | 14 |
| 32175 | CREEDGT1 | 3 | 14 |
| 35312 | SEAWESTF | 1 | 11 |
| 35316 | ZOND SYS | 1 | 11 |
| 35320 | USW FRIC | 1 | 11 |

## Bay Area overall

The most critical need is the aggregate of sub-area requirements. This establishes a LCR of 5732 MW in 2026 (including 232 MW of QF, 410 MW of MUNI and 291 MW of wind generation) as the minimum capacity necessary for reliable load serving capability within this area.

The most critical single contingency is the loss of the Tesla-Metcalf 500 kV with Delta Energy Center out of service. The area limitation is reactive margin. This limiting contingency establishes a local capacity need of 3226 MW in 2026 (includes 232 MW of QF, 291 MW of wind and 410 MW of MUNI generation).

#### **Effectiveness factors:**

For most helpful procurement information please read procedure M-2210Z effectiveness factors at: <a href="http://www.caiso.com/Documents/2210Z.pdf">http://www.caiso.com/Documents/2210Z.pdf</a>

### Changes compared to last year's results:

Compared with 2021 the load forecast went up by 546 MW and the LCR has increased by 538 MW.

# Bay Area Overall Requirements:

| 2026                 | Wind | QF/Selfgen | Muni | Market | Max. Qualifying |
|----------------------|------|------------|------|--------|-----------------|
|                      | (MW) | (MW)       | (MW) | (MW)   | Capacity (MW)   |
| Available generation | 291  | 232        | 410  | 5970   | 6903            |

| 2026                                | Existing Generation  | Deficiency | Total MW    |
|-------------------------------------|----------------------|------------|-------------|
|                                     | Capacity Needed (MW) | (MW)       | Requirement |
| Category B (Single) <sup>13</sup>   | 3226                 | 0          | 3226        |
| Category C (Multiple) <sup>14</sup> | 5544                 | 188        | 5732        |

#### 6. Greater Fresno Area

# **Area Definition**

The transmission facilities coming into the Greater Fresno area are:

- 1) Gates-Mustang #1 230 kV
- 2) Gates-Mustang #2 230 kV
- 3) Gates-Gregg 230kV
- 4) Gates #5 230/70 kV Transformer Bank
- 5) Mercy Spring 230 /70 Bank # 1
- 6) Los Banos #3 230/70 Transformer Bank
- 7) Los Banos #4 230/70 Transformer Bank
- 8) Warnerville-Wilson 230kV
- 9) Melones-North Merced 230 kV line
- 10) Panoche-Tranquility #1 230 kV
- 11) Panoche-Tranquility #2 230 kV
- 12) Panoche #1 230/115 kV Transformer Bank
- 13) Panoche #2 230/115 kV Transformer Bank
- 14) Corcoran-Smyrna 115kV
- 15) Coalinga #1-San Miguel 70 kV

The substations that delineate the Greater Fresno area are:

<sup>13</sup> LCR requirement for a single contingency means that there wouldn't be any criteria violations following the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

<sup>&</sup>lt;sup>14</sup> LCR requirement for multiple contingencies means that not only there wouldn't be any criteria violations following the loss of a single element, but also the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

- 1) Gates is out Henrietta is in
- 2) Gates is out Henrietta is in
- 3) Gates 230 is out Gates 70 is in
- 4) Mercy Springs 230 is out Mercy Springs 70 is in
- 5) Los Banos 230 is out Los Banos 70 is in
- 6) Los Banos 230 is out Los Banos 70 is in
- 7) Warnerville is out Wilson is in
- 8) Melones is out North Merced is in
- 9) Panoche is out Tranquility #1 is in
- 10) Panoche is out Tranquility #2 is in
- 11) Panoche 230 is out Panoche 115 is in
- 12) Panoche 230 is out Panoche 115 is in
- 13) Corcoran is in Smyrna is out
- 14) Coalinga is in San Miguel is out

Total 2026 busload within the defined area: 3715 MW with -165 MW of AAEE and 103 MW of losses resulting in total load + losses of 3653 MW.

Total units and qualifying capacity available in this area:

| MKT/SCHED<br>RESOURCE ID | BUS#  | BUS NAME | kV   | NQC   |    | LCR SUB-AREA<br>NAME        | NQC<br>Comments        | CAISO Tag  |
|--------------------------|-------|----------|------|-------|----|-----------------------------|------------------------|------------|
| ADMEST_6_SOLAR           | 34315 | ADAMS_E  | 12.5 | 0.00  | 1  | Wilson, Herndon             | Energy Only            | Market     |
| AGRICO_6_PL3N5           | 34608 | AGRICO   | 13.8 | 20.00 | 3  | Wilson, Herndon             |                        | Market     |
| AGRICO_7_UNIT            | 34608 | AGRICO   | 13.8 | 7.45  | 4  | Wilson, Herndon             |                        | Market     |
| AGRICO_7_UNIT            | 34608 | AGRICO   | 13.8 | 43.05 | 2  | Wilson, Herndon             |                        | Market     |
| AVENAL_6_AVPARK          | 34265 | AVENAL P | 12   | 0.00  | 1  | Wilson, Coalinga            | Energy Only            | Market     |
| AVENAL_6_SANDDG          | 34263 | SANDDRAG | 12   | 0.00  | 1  | Wilson, Coalinga            | Energy Only            | Market     |
| AVENAL_6_SUNCTY          | 34257 | SUNCTY D | 12   | 0.00  | 1  | Wilson, Coalinga            | Energy Only            | Market     |
| BALCHS_7_UNIT 1          | 34624 | BALCH    | 13.2 | 33.00 | 1  | Wilson, Herndon             | Aug NQC                | Market     |
| BALCHS_7_UNIT 2          | 34612 | BLCH     | 13.8 | 52.50 | 1  | Wilson, Herndon             | Aug NQC                | Market     |
| BALCHS_7_UNIT 3          | 34614 | BLCH     | 13.8 | 52.50 | 1  | Wilson, Herndon             | Aug NQC                | Market     |
| BORDEN_2_QF              | 34253 | BORDEN D | 12.5 | 0.78  | QF | Wilson                      | Aug NQC                | Net Seller |
| CANTUA_1_SOLAR           | 34349 | CANTUA_D | 12.5 | 7.15  | 1  | Wilson                      | Aug NQC                | Market     |
| CANTUA_1_SOLAR           | 34349 | CANTUA_D | 12.5 | 7.15  | 2  | Wilson                      | Aug NQC                | Market     |
| CAPMAD_1_UNIT 1          | 34179 | MADERA_G | 13.8 | 4.29  | 1  | Wilson                      |                        | Market     |
| CHEVCO_6_UNIT 1          | 34652 | CHV.COAL | 9.11 | 1.30  | 1  | Wilson, Coalinga            | Aug NQC                | QF/Selfgen |
| CHEVCO_6_UNIT 2          | 34652 | CHV.COAL | 9.11 | 0.85  | 2  | Wilson, Coalinga            | Aug NQC                | QF/Selfgen |
| CHWCHL_1_BIOMAS          | 34305 | CHWCHLA2 | 13.8 | 8.60  | 1  | Wilson, Herndon             | Aug NQC                | Market     |
| CHWCHL_1_UNIT            | 34301 | CHOWCOGN | 13.8 | 48.00 | 1  | Wilson, Herndon             |                        | Market     |
| COLGA1_6_SHELLW          | 34654 | COLNGAGN | 9.11 | 34.58 | 1  | Wilson, Coalinga            | Aug NQC                | Net Seller |
| CORCAN_1_SOLAR1          |       |          |      | 13.80 |    | Wilson, Herndon,<br>Hanford | Not Modeled<br>Aug NQC | Market     |
| CORCAN_1_SOLAR2          |       |          |      | 7.59  |    | Wilson, Herndon,<br>Hanford | Not Modeled<br>Aug NQC | Market     |
| CRESSY_1_PARKER          | 34140 | CRESSEY  | 115  | 1.21  |    | Wilson                      | Not modeled<br>Aug NQC | MUNI       |
| CRNEVL_6_CRNVA           | 34634 | CRANEVLY | 12   | 0.71  | 1  | Wilson, Borden              | Aug NQC                | Market     |

| CRNEVL_6_SJQN 2 | 34631 | SJ2GEN    | 9.11 | 3.20   | 1 | Wilson, Borden              | Aug NQC                    | Market     |
|-----------------|-------|-----------|------|--------|---|-----------------------------|----------------------------|------------|
| CRNEVL_6_SJQN 3 | 34633 | SJ3GEN    | 9.11 | 4.20   | 1 | Wilson, Borden              | Aug NQC                    | Market     |
| DINUBA_6_UNIT   | 34648 | DINUBA E  | 13.8 | 9.87   |   | Wilson, Herndon,<br>Reedley | -                          | Market     |
| ELCAP_1_SOLAR   |       |           |      | 1.04   |   | Wilson                      | Not Modeled<br>Aug NQC     | Market     |
| ELNIDP_6_BIOMAS | 34330 | ELNIDO    | 13.8 | 8.71   | 1 | Wilson                      | Aug NQC                    | Market     |
| EXCHEC_7_UNIT 1 | 34306 | EXCHQUER  | 13.8 | 94.20  | 1 | Wilson                      | Aug NQC                    | MUNI       |
| FRIANT_6_UNITS  | 34636 | FRIANTDM  | 6.6  | 0.66   | 4 | Wilson, Borden              | Aug NQC                    | Net Seller |
| FRIANT_6_UNITS  | 34636 | FRIANTDM  | 6.6  | 2.49   | 3 | Wilson, Borden              | Aug NQC                    | Net Seller |
| FRIANT_6_UNITS  | 34636 | FRIANTDM  | 6.6  | 4.66   | 2 | Wilson, Borden              | Aug NQC                    | Net Seller |
| GUERNS_6_SOLAR  | 34461 | GUERNSEY  | 12.5 | 7.37   | 1 | Wilson                      | Aug NQC                    | Market     |
| GUERNS_6_SOLAR  | 34461 | GUERNSEY  | 12.5 | 7.37   | 2 | Wilson                      | Aug NQC                    | Market     |
| GWFPWR_1_UNITS  | 34431 | GWF_HEP1  | 13.8 | 42.20  | 1 | Wilson, Herndon,<br>Hanford |                            | Market     |
| GWFPWR_1_UNITS  | 34433 | GWF_HEP2  | 13.8 | 42.20  | 1 | Wilson, Herndon,<br>Hanford |                            | Market     |
| HAASPH_7_PL1X2  | 34610 | HAAS      | 13.8 | 72.00  | 1 | Wilson, Herndon             | Aug NQC                    | Market     |
| HAASPH_7_PL1X2  | 34610 | HAAS      | 13.8 | 72.00  | 2 | Wilson, Herndon             | Aug NQC                    | Market     |
| HELMPG_7_UNIT 1 | 34600 | HELMS     | 18   | 407.00 | 1 | Wilson                      | Aug NQC                    | Market     |
| HELMPG_7_UNIT 2 | 34602 | HELMS     | 18   | 407.00 | 2 | Wilson                      | Aug NQC                    | Market     |
| HELMPG_7_UNIT 3 | 34604 | HELMS     | 18   | 404.00 | 3 | Wilson                      | Aug NQC                    | Market     |
| HENRTA_6_UNITA1 | 34539 | GWF_GT1   | 13.8 | 45.33  | 1 | Wilson                      | ,                          | Market     |
| HENRTA_6_UNITA2 | 34541 | GWF_GT2   | 13.8 | 45.23  | 1 | Wilson                      |                            | Market     |
| HURON_6_SOLAR   | 34557 | HURON_DI  | 12.5 | 6.87   | 1 | Wilson, Coalinga            | Aug NQC                    | Market     |
| HURON_6_SOLAR   | 34557 | HURON_DI  | 12.5 | 6.87   |   | Wilson, Coalinga            | Aug NQC                    | Market     |
| INTTRB_6_UNIT   | 34342 | NT.TURB   | 9.11 | 2.94   | 1 | Wilson                      | Aug NQC                    | QF/Selfgen |
| JAYNE_6_WLSLR   | 34639 | WESTLNDS  | 0.48 | 0.00   | 1 | Wilson, Coalinga            | Energy Only                | Market     |
| KANSAS_6_SOLAR  | 34666 | KANSASS_S | 12.5 | 0.00   | F | Wilson                      | Energy Only                | Market     |
| KERKH1_7_UNIT 1 | 34344 | KERCK1-1  | 6.6  | 13.00  | 1 | Wilson, Herndon             | Aug NQC                    | Market     |
| KERKH1_7_UNIT 2 | 34343 | KERCK1-2  | 6.6  | 0.00   | 2 | Wilson, Herndon             | Aug NQC                    | Market     |
| KERKH1_7_UNIT 3 | 34345 | KERCK1-3  | 6.6  | 12.80  | 3 | Wilson, Herndon             | Aug NQC                    | Market     |
| KERKH2_7_UNIT 1 | 34308 | KERCKHOF  | 13.8 | 153.90 | 1 | Wilson, Herndon             | Aug NQC                    | Market     |
| KINGCO_1_KINGBR | 34642 | KINGSBUR  | 9.11 | 23.71  | 1 | Wilson, Herndon,<br>Hanford | Aug NQC                    | Net Seller |
| KINGRV 7 UNIT 1 | 34616 | KINGSRIV  | 13.8 | 51.20  | 1 | Wilson, Herndon             | Aug NQC                    | Market     |
| KNGBRG_1_KBSLR1 |       |           |      | 0.00   |   | Wilson                      | Not modeled<br>Energy Only | Market     |
| KNGBRG_1_KBSLR2 |       |           |      | 0.00   |   | Wilson                      | Not modeled<br>Energy Only | Market     |
| KNTSTH_6_SOLAR  | 34694 | KENT_S    | 0.8  | 0.00   | 1 | Wilson                      | Energy Only                | Market     |
| LEPRFD_1_KANSAS | 34680 |           | 12.5 |        |   | Wilson, Hanford             | Aug NQC                    | Market     |
| MALAGA_1_PL1X2  | 34671 | KRCDPCT1  | 13.8 | 48.00  | 1 | Wilson, Herndon             | -                          | Market     |
| MALAGA_1_PL1X2  |       | KRCDPCT2  | 13.8 |        |   | Wilson, Herndon             |                            | Market     |
| MCCALL_1_QF     |       | MCCALL 4  | 12.5 |        |   | Wilson, Herndon             | Aug NQC                    | QF/Selfgen |
| MCSWAN_6_UNITS  | 34320 | MCSWAIN   | 9.11 | 5.82   | 1 | Wilson                      | Aug NQC                    | MUNI       |
| MENBIO_6_RENEW1 | 34339 | CALRENEW  | 12.5 | 4.02   | 1 | Wilson, Herndon             | Aug NQC                    | Net Seller |
| MENBIO_6_UNIT   |       | BIO PWR   | 9.11 | 20.11  |   | Wilson                      | Aug NQC                    | QF/Selfgen |
| MERCED_1_SOLAR1 |       |           |      | 0.00   |   | Wilson                      | Not modeled<br>Energy Only | Market     |
| MERCED_1_SOLAR2 |       |           |      | 0.00   |   | Wilson                      | Not modeled<br>Energy Only | Market     |

| MERCFL_6_UNIT   | 34322 | MERCEDFL         | 9.11 | 2.15  | 1  | Wilson                      | Aug NQC                    | Market     |
|-----------------|-------|------------------|------|-------|----|-----------------------------|----------------------------|------------|
| MNDOTA_1_SOLAR1 | 34311 | NORTHSTAR        | 0.2  | 41.40 | 1  | Wilson                      | Aug NQC                    | Market     |
| ONLLPP_6_UNITS  | 34316 | ONEILPMP         | 9.11 | 0.37  | 1  | Wilson                      | Aug NQC                    | MUNI       |
| PINFLT_7_UNITS  | 38720 | PINEFLAT         | 13.8 | 22.00 | 1  | Wilson, Herndon             | Aug NQC                    | MUNI       |
| PINFLT_7_UNITS  |       | PINEFLAT         | 13.8 | 22.00 | 2  | Wilson, Herndon             | Aug NQC                    | MUNI       |
| PINFLT_7_UNITS  |       | PINEFLAT         | 13.8 | 22.00 | 3  | Wilson, Herndon             | Aug NQC                    | MUNI       |
| PNCHPP_1_PL1X2  |       | STARGT1          | 13.8 | 55.58 | 1  | Wilson                      | 3 312                      | Market     |
| PNCHPP_1_PL1X2  |       | STARGT2          | 13.8 | 55.58 | 1  | Wilson                      |                            | Market     |
| PNOCHE_1_PL1X2  |       | WHD_PAN2         | 13.8 | 49.97 |    | Wilson, Herndon             |                            | Market     |
| PNOCHE_1_UNITA1 |       | DG_PAN1          | 13.8 | 48.00 |    | Wilson                      |                            | Market     |
| REEDLY_6_SOLAR  |       |                  |      | 0.00  |    | Wilson, Herndon,<br>Reedley | Not modeled<br>Energy Only | Market     |
| S_RITA_6_SOLAR1 |       |                  |      | 0.00  |    | Wilson                      | Not modeled<br>Energy Only | Market     |
| SCHNDR_1_FIVPTS |       |                  | 12.5 | 2.13  |    | Wilson, Coalinga            | Aug NQC                    | Market     |
| SCHNDR_1_FIVPTS |       | SCHINDLER_D      |      | 4.24  |    | Wilson, Coalinga            | Aug NQC                    | Market     |
| SCHNDR_1_WSTSDE |       | SCHINDLER_D      |      | 3.09  | 4  | Wilson, Coalinga            | Aug NQC                    | Market     |
| SCHNDR_1_WSTSDE |       | SCHINDLER_D      |      | 6.17  |    | Wilson, Coalinga            | Aug NQC                    | Market     |
| SGREGY_6_SANGER |       | SANGERCO         | 13.8 | 5.51  |    | Wilson                      | Aug NQC                    | Market     |
| SGREGY_6_SANGER |       | SANGERCO         | 13.8 | 24.44 | 1  | Wilson                      | Aug NQC                    | Market     |
| STOREY_7_MDRCHW |       | STOREY D         | 12.5 | 0.20  | 1  | Wilson                      | Aug NQC                    | Net Seller |
| STROUD_6_SOLAR  |       | STROUD_D         | 12.5 | 6.57  | 1  | Wilson, Herndon             | Aug NQC                    | Market     |
| STROUD_6_SOLAR  |       | STROUD_D         | 12.5 | 6.57  |    | Wilson, Herndon             | Aug NQC                    | Market     |
| ULTPFR_1_UNIT 1 |       | ULTR.PWR         | 9.11 | 22.72 | 1  | Wilson, Herndon             | Aug NQC                    | QF/Selfgen |
| VEGA_6_SOLAR1   | 34314 | Q548             | 34.5 | 0.00  | 1  | Wilson                      | Energy Only                | Market     |
| WAUKNA_1_SOLAR  | 34696 | CORCORANPV<br>_S | 21   | 18.00 | 1  | Wilson, Herndon,<br>Hanford | Aug NQC                    | Market     |
| WAUKNA_1_SOLAR2 | 34677 | Q558             | 21   | 14.78 | 1  | Wilson, Herndon,<br>Hanford | No NQC - Pmax              | Market     |
| WFRESN_1_SOLAR  |       |                  |      | 0.00  |    | Wilson                      | Energy Only                | Market     |
| WISHON_6_UNITS  | 34658 | WISHON           | 2.3  | 0.36  | 5  | Wilson, Borden              | Aug NQC                    | Market     |
| WISHON_6_UNITS  | 34658 | WISHON           | 2.3  | 4.51  | 1  | Wilson, Borden              | Aug NQC                    | Market     |
| WISHON_6_UNITS  | 34658 | WISHON           | 2.3  | 4.51  | 2  | Wilson, Borden              | Aug NQC                    | Market     |
| WISHON_6_UNITS  | 34658 | WISHON           | 2.3  | 4.51  | 3  | Wilson, Borden              | Aug NQC                    | Market     |
| WISHON_6_UNITS  | 34658 | WISHON           | 2.3  | 4.51  | 4  | Wilson, Borden              | Aug NQC                    | Market     |
| WRGHTP_7_AMENGY | 34207 | WRIGHT D         | 12.5 | 0.30  | QF | Wilson                      | Aug NQC                    | QF/Selfgen |
| BULLRD_7_SAGNES |       | BULLD 12         | 12.5 | 0.06  | 1  | Wilson                      | Aug NQC                    | QF/Selfgen |
| GATES_6_PL1X2   | 34553 | WHD_GAT2         | 13.8 | 0.00  | 1  | Wilson, Coalinga            | _                          | Market     |
| JRWOOD_1_UNIT 1 | 34332 | JRWCOGEN         | 9.11 | 7.80  | 1  | Wilson                      |                            | QF/Selfgen |
| NA              | 34485 | FRESNOWW         | 12.5 | 1.10  | 3  | Wilson                      | No NQC - hist.<br>data     | QF/Selfgen |
| NA              | 34485 | FRESNOWW         | 12.5 | 3.10  | 1  | Wilson                      | No NQC - hist.<br>data     | QF/Selfgen |
| NA              | 34485 | FRESNOWW         | 12.5 | 3.10  |    | Wilson                      | No NQC - hist.<br>data     | QF/Selfgen |
| New Unit        | 34603 | JGBSWLT          | 12.5 | 0.00  | ST | Wilson, Herndon             | Energy Only                | Market     |
| New Unit        | 34653 | Q526             | 33   | 0.00  | 1  | Wilson, Coalinga            | Energy Only                | Market     |
| New Unit        | 34699 | RPS-N-034        | 0.39 | 0.00  | 1  | Wilson, Herndon             | Energy Only                | Market     |
| New Unit        | 34673 | Q532             | 13.8 | 0.00  | 1  | Wilson, Coalinga            | Energy Only                | Market     |
| New Unit        | 34467 | GIFFEN_DIST      | 12.5 | 10.00 | 1  | Wilson, Herndon             | No NQC - Pmax              | Market     |
| New Unit        | 34420 | CORCORAN         | 115  | 19.00 | WD | Wilson, Herndon,<br>Hanford | No NQC - Pmax              | Market     |
| New Unit        | 34319 | CHWCHLASLR       | 0.42 | 20.00 | 1  | Wilson, Herndon             | No NQC - Pmax              | Market     |

| New Unit | 34335 | Q723      | 0.32 | 50.00  | 1 | Wilson, Borden   | No NQC - Pmax | Market |
|----------|-------|-----------|------|--------|---|------------------|---------------|--------|
| New Unit | 34683 | RPS-N-055 | 0.8  | 100.00 | 1 | Wilson           | No NQC - Pmax | Market |
| New Unit | 34340 | RPS-N-059 | 0.8  | 200.00 | 1 | Wilson           | No NQC - Pmax | Market |
| New Unit | 34300 | Q550      | 36   | 0.00   | 1 | Wilson           | Energy Only   | Market |
| New Unit | 36205 | Q648      | 36   | 0.00   | 1 | Wilson           | Energy Only   | Market |
| New Unit | 39604 | PATRIOTB  | 0.32 | 0.00   | 1 | Wilson           | Energy Only   | Market |
| New Unit | 39601 | PATRIOTA  | 0.32 | 0.00   | 1 | Wilson           | Energy Only   | Market |
| New Unit | 34644 | Q679      | 0.48 | 20.00  | 1 | Wilson           | No NQC - Pmax | Market |
| New Unit | 34649 | Q965      | 0.36 | 20.00  | 1 | Wilson           | No NQC - Pmax | Market |
| New Unit | 34623 | Q678      | 0.5  | 60.00  | 1 | Wilson, Coalinga | No NQC - Pmax | Market |
| New Unit | 34688 | Q272      | 0.56 | 123.00 | 1 | Wilson           | No NQC - Pmax | Market |

# Major new projects modeled:

- 1. Kerchhoff PH #2 Oakhurst 115 kV Line
- 2. Warnerville-Wilson 230 kV reactor
- 3. Oro Loma 70 kV Area Reinforcement
- 4. New E2 substation
- 5. New North Merced 230/115 kV substation
- 6. New Mercy Spring 230/70 kV substation
- 7. Le Grand-Chowchilla 115 kV reconductoring
- 8. Panoche-Oro Loma 115kV Reconductoring Project
- 9. Gates-Gregg 230kV line

### Critical Contingency Analysis Summary

#### Hanford Sub-area

The most critical contingency for the Hanford sub-area is the loss of the McCall-Kingsburg #2 115 kV line and Henrietta #3 230/115 kV transformer, which would thermally overload the McCall-Kingsburg #1 115 kV line . This limiting contingency establishes a local capacity need of 17 MW in 2026 (including 0 MW of QF generation) as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

### Effectiveness factors:

All units within this sub-area have the same effectiveness factor.

### Coalinga Sub-area

The most critical contingency for the Coalinga sub-area is the loss of the Gates #5 230/70 kV transformer followed by the Panoche-Schindler #1 and #2 common tower contingency, which could cause voltage instability in the pocket. This limiting contingency establishes a local capacity need of 83 MW (including 2 MW of QF generation) in 2026 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

#### Effectiveness factors:

All units within this sub-area have the same effectiveness factor.

#### Borden Sub-area

The most critical contingency for the Borden sub-area is the loss of the Borden #4 230/70 kV transformer followed by the Friant-Coppermine 70 kV line, which could cause overload on the Borden #1 230/70 kV transformer. This limiting contingency establishes a local capacity need of 5 MW (including 0 MW of QF generation) in 2026 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

### **Effectiveness factors:**

All units within this sub-area have the same effectiveness factor.

### Reedley Sub-area

This sub-area has been eliminated due to New McCall-Reedley #2 115 kV line project.

#### Herndon Sub-area

This sub-area has been eliminated due to the new E2 substation that loops the Helms-Gregg #1 & #2 230kV lines and now injects Helms generation into Sanger, eliminating the need for this sub-area.

### Wilson Sub-area

The most critical contingency for the Wilson sub-area is the loss of Melones-North Merced 230 kV line with one Helms generating unit out of service which can cause voltage instability. This limiting contingency establishes a local capacity need of 1474 MW in 2026 (includes 114 MW of QF and 168 MW of Muni generation) as the generation capacity necessary for reliable load serving capability within this sub-area.

### **Effectiveness factors:**

The following table has units within Fresno that are at least 4% effective.

| Gen Bus | Gen Name | Gen ID | Eff Factor % |
|---------|----------|--------|--------------|
| 34330   | ELNIDO   | 1      | 8            |
| 34314   | Q548     | 1      | 8            |
| 34322   | MERCEDFL | 1      | 8            |
| 34301   | CHOWCOGN | 1      | 7            |
| 34305   | CHWCHLA2 | 1      | 7            |
| 34311   | Q607     | 1      | 7            |
| 34631   | SJ2GEN   | 1      | 5            |
| 34633   | SJ3GEN   | 1      | 5            |
| 34634   | CRANEVLY | 1      | 5            |
| 34658   | WISHON   | 1      | 5            |
| 34658   | WISHON   | 2      | 5            |
| 34658   | WISHON   | 3      | 5            |
| 34658   | WISHON   | 4      | 5            |
| 34658   | WISHON   | SJ     | 5            |
| 34600   | HELMS 1  | 1      | 5            |
| 34602   | HELMS 2  | 1      | 5            |
| 34604   | HELMS 3  | 1      | 5            |
| 34308   | KERCKHOF | 1      | 5            |
| 34343   | KERCK1-2 | 1      | 5            |
| 34344   | KERCK1-1 | 1      | 5            |
| 34345   | KERCK1-3 | 1      | 5            |
| 34632   | HERNDN2T | 1      | 5            |
| 34630   | HERNDN1T | 1      | 4            |
| 34207   | WRIGHT D | QF     | 4            |

# Additional helpful effectiveness factors for Fresno area:

For most helpful procurement information please read procedure M-2210Z effectiveness factors at: <a href="http://www.caiso.com/Documents/2210Z.pdf">http://www.caiso.com/Documents/2210Z.pdf</a>

## Changes compared to 2021 results:

Overall the load forecast increased by 413 MW. The LCR need has increased by 314 MW due to load increase and new identified limiting condition.

# Fresno Area Overall Requirements:

| 2026                 | QF/Selfgen<br>(MW) | Muni<br>(MW) | Market<br>(MW) | Max. Qualifying Capacity (MW) |
|----------------------|--------------------|--------------|----------------|-------------------------------|
| Available generation | 64                 | 167          | 3295           | 3526                          |

| 2026                     | Existing Generation Capacity Needed (MW) | Deficiency<br>(MW) | Total MW<br>Requirement |
|--------------------------|------------------------------------------|--------------------|-------------------------|
| Category B (Single) 15   | 1474                                     | 0                  | 1474                    |
| Category C (Multiple) 16 | 1474                                     | 0                  | 1474                    |

### 7. Kern Area

# Area Definition

The transmission facilities coming into the Kern PP sub-area are:

- 1) Corcoran-Smyrna 115 kV line (Normally Open at Corocoran)
- 2) New Wheeler Ridge-Magunden 115 kV line
- 3) Midway-Semitropic 115 kV line
- 4) Midway-Smyrna-Semitropic 115 kV line
- 5) Copus-Old River 70 kV line
- 6) Wheeler Ridge-Lakeview 70 kV line
- 7) Weed Patch-Magunden-Kern Canyon 70 kV line
- 8) Kern PP 230/115 kV Bank # 3, 4 & 5

The substations that delineate the Kern-PP sub-area are:

1) Corcoran is out Quebec tap is in

<sup>15</sup> LCR requirement for a single contingency means that there wouldn't be any criteria violations following the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

<sup>&</sup>lt;sup>16</sup> LCR requirement for multiple contingencies means that not only there wouldn't be any criteria violations following the loss of a single element, but also the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

- 2) Wheeler Ridge is out Magunden is is in
- 3) Midway 115 kV is out Semitropic 115 kV is in
- 4) Midway 115 kV is out Ganso 115 kV are in
- 5) Copus 70 kV is out South Kern 70 kV is in
- 6) Emidio Junction 70 kV is out Lakeview 70 kV is in
- 7) Weedpatch is out Magunden Junction is in
- 8) Kern PP 230 kV is out Kern PP 115 kV is in

Total 2026 busload within the defined area: 1127 MW with -44 MW of AAEE and 1 MW of losses resulting in total load + losses of 1084 MW.

Total units and qualifying capacity available in this Kern PP sub-area:

| MKT/SCHED<br>RESOURCE ID | BUS#  | BUS NAME     | kV   | NQC   |    | LCR SUB-<br>AREA NAME       | NQC Comments           | CAISO Tag  |
|--------------------------|-------|--------------|------|-------|----|-----------------------------|------------------------|------------|
| 7STDRD_1_SOLAR1          | 34709 | 7STNDRD      | 115  | 13.80 |    | South Kern PP,<br>Kern Oil  | Not modeled Aug<br>NQC | Market     |
| DEXZEL_1_UNIT            | 35024 | DEXEL +      | 9.11 | 20.00 | 1  | South Kern PP,<br>Kern Oil  | Aug NQC                | Net Seller |
| DISCOV_1_CHEVRN          | 35062 | DISCOVRY     | 9.11 | 3.21  | 1  | South Kern PP,<br>Kern Oil  | Aug NQC                | QF/Selfgen |
| LIVOAK_1_UNIT 1          | 35058 | PSE-LVOK     | 9.11 | 41.14 | 1  | South Kern PP,<br>Kern Oil  | Aug NQC                | Net Seller |
| MTNPOS_1_UNIT            | 35036 | MT POSO      | 9.11 | 31.12 | 1  | South Kern PP,<br>Kern Oil  | Aug NQC                | Net Seller |
| VEDDER_1_SEKERN          |       |              | 9.11 | 11.96 | 1  | South Kern PP,<br>Kern Oil  | Aug NQC                | QF/Selfgen |
| ALPSLR_1_NTHSLR          |       | ALPAUGHN_20S | 21   | 20.00 |    | South Kern PP               | Aug NQC                | Market     |
| ALPSLR_1_SPSSLR          |       | ALPAUGHN_50S | 21   | 50.00 |    | South Kern PP               | Aug NQC                | Market     |
| ATWEL2_1_SOLAR1          | 35034 |              |      | 17.74 |    | South Kern PP               | Aug NQC                | Market     |
| ATWELL_1_SOLAR           |       | ATWELL_ISL   | 21   | 13.85 |    | South Kern PP               | Aug NQC                | Market     |
| BDGRCK_1_UNITS           | 35029 | BADGERCK     | 9.11 | 36.29 | 1  | South Kern PP               | Aug NQC                | Net Seller |
| BEARMT_1_UNIT            | 35066 | PSE-BEAR     | 9.11 | 44.58 | 1  | South Kern PP,<br>West Park | Aug NQC                | Net Seller |
| DOUBLC_1_UNITS           | 35023 | DOUBLE C     | 9.11 | 52.23 | 1  | South Kern PP               | Aug NQC                | Net Seller |
| GOOSLK_1_SOLAR1          | 35084 | GOSE LKE     | 12.5 | 11.00 | 1  | South Kern PP               | Aug NQC                | Market     |
| KERNFT_1_UNITS           | 35026 | KERNFRNT     | 9.11 | 47.00 | 1  | South Kern PP               | Aug NQC                | Net Seller |
| KRNCNY_6_UNIT            | 35018 | KERNCNYN     | 11   | 11.50 | 1  | South Kern PP               | Aug NQC                | Market     |
| OLDRIV_6_BIOGAS          |       |              |      | 1.51  |    | South Kern PP               | Not modeled Aug<br>NQC | Market     |
| OLDRV1_6_SOLAR           | 35091 | OLD_RVR1     | 12.5 | 13.85 | 1  | South Kern PP               | Aug NQC                | Market     |
| OLIVEP_1_SOLAR           | 35013 | WHITERIVER_S | 21   | 19.80 | 1  | South Kern PP               | Aug NQC                | Market     |
| OLIVEP_1_SOLAR2          | 35098 | Q557         | 0.48 | 17.19 | 1  | South Kern PP               | Aug NQC                | Market     |
| RIOBRV_6_UNIT 1          | 35020 | RIOBRAVO     | 11   | 0.20  | 1  | South Kern PP               | Aug NQC                | Market     |
| SIERRA_1_UNITS           | 35027 | HISIERRA     | 9.11 | 52.43 | 1  | South Kern PP               | Aug NQC                | Net Seller |
| SKERN_6_SOLAR1           | 35089 | S_KERN       | 0.48 | 13.80 | 1  | South Kern PP               | Aug NQC                | Market     |
| WLDWD_1_SOLAR1           | 39184 | WILDWOOD     | 0.8  | 16.36 | FT | South Kern PP               | Aug NQC                | Market     |
| WLDWD_1_SOLAR2           | 35047 | WILDWOOD     | 0.39 | 12.05 | 1  | South Kern PP               | Aug NQC                | Market     |
| New Unit                 | 35099 | WASCO-LV     | 12.5 | 0.00  | 1  | South Kern PP               | Energy Only            | Market     |

| New Unit        | 34650 | QUEBEC-L | 12.5 | 0.00 | 1   | South Kern PP              | Energy Only        | Market     |
|-----------------|-------|----------|------|------|-----|----------------------------|--------------------|------------|
| New Unit        | 35069 | Q885     | 0.36 | 8.00 | 1   | South Kern PP              | No NQC - est. data | Market     |
| OILDAL_1_UNIT 1 | 35028 | OILDALE  | 9.11 | 0.00 | 1   | South Kern PP,<br>Kern Oil | Aug NQC            | Net Seller |
| ULTOGL_1_POSO   | 35035 | ULTR PWR | 9.11 | 0.00 | - 1 | South Kern PP,<br>Kern Oil | Retired            | QF/Selfgen |

## Major new projects modeled:

- 1. Kern PP 230 kV area reinforcement project
- 2. Kern PP 115 kV area reinforcement project
- 3. Wheeler Ridge Junction Substation Project
- Semitropic Wasco Famoso Kern Oil Kern 70 kV Voltage
   Conversion project
- 5. Midway-Kern PP 1, 3 &4 230 kV line capacity increase project

# Critical Contingency Analysis Summary

#### West Park Sub-area

The West Park Sub area has been eliminated due to Kern PP 115 kV area reinforcement project.

#### Kern Oil Sub-area

The Kern Oil Sub area has been eliminated due to Semitropic– Wasco – Famoso – Kern Oil – Kern 70 kV Voltage Conversion project.

### South Kern PP Sub-area

The most critical contingency is the outage of Midway-Semitropic-Smyrna 115 kV line with the Lerdo-Kern Oil-7th Standard 115 kV line being out out of service resulting in potential thermal overload of the Semitropic D to Semitropic E 115 kV bus section. This limiting contingency establishes a LCR of 392 MW in 2026 (includes 15 MW of QF generation).

The single most critical contingency is the loss of Midway-Semitropic-Smyrna 115 kV line with Mount Poso generating unit out of service resulting in potential thermal

overload of Semitropic D to Semitropic E 115 kV bus section. This limiting contingency establishes a local capacity requirement of 391 MW in 2026 (includes 15 MW of QF generation).

# **Effectiveness factors:**

The following table has units within Kern that are at least 4% effective.

| Gen Bus | Gen Name   | Gen ID | Eff Factor % |
|---------|------------|--------|--------------|
| 35047   | WILDWOOD2  | 1      | 58           |
| 35084   | GOSE LKE_1 | FW     | 58           |
| 39184   | WILDWOOD1  | FT     | 58           |
| 35099   | WASCO-LV   | RN     | 55           |
| 35036   | MT POSO    | 1      | 29           |
| 35024   | DEXEL+     | 1      | 11           |
| 35046   | SEKR       | 1      | 10           |
| 35062   | DISCOVRY   | 1      | 10           |
| 35065   | 7STNDRD_1  | FW     | 10           |
| 35058   | PSE-LVOK   | 1      | 8            |
| 35018   | KERNCNYN   | 1      | 6            |
| 35020   | RIOBRAVO   | 1      | 6            |
| 35023   | DOUBLE C   | 1      | 6            |
| 35026   | KERNFRNT   | 1      | 6            |
| 35027   | HISIERRA   | 1      | 6            |
| 35029   | BADGERCK   | 1      | 6            |
| 35069   | RPS-N-038  | 1      | 6            |
| 35089   | S_KERN     | 1      | 6            |
| 35091   | OLD_RVR1   | 1      | 6            |
| 35066   | PSE-BEAR   | 1      | 6            |
| 35019   | REGULUS    | 1      | 4            |
| 35054   | RPS-N-117  | 1      | 4            |
| 35059   | RPS-N-120  | 2      | 4            |
| 35087   | RPS-N-123  | 3      | 4            |
| 35092   | RPS-N-126  | 4      | 4            |
| 35021   | RPS-N-005  | 1      | 2            |
| 35082   | ORION      | 1      | 2            |
| 35083   | LAKEVIEW_2 | FW     | 2            |

# Changes compared to 2021 results:

Overall the load went up by 868 MW, the maximum qualifying capacity went up by 460 MW and the LCR requirement have gone up by 287 MW mostly due to area redefinition caused by the new transmission projects in the area.

# Kern Area Overall Requirements:

| 2026                 | QF/Selfgen<br>(MW) | Market<br>(MW) | Max. Qualifying Capacity (MW) |
|----------------------|--------------------|----------------|-------------------------------|
| Available generation | 15                 | 566            | 581                           |

| 2026                     | Existing Generation Capacity Needed (MW) | Deficiency<br>(MW) | Total MW<br>Requirement |
|--------------------------|------------------------------------------|--------------------|-------------------------|
| Category B (Single) 17   | 391                                      | 0                  | 391                     |
| Category C (Multiple) 18 | 392                                      | 0                  | 392                     |

#### 8. LA Basin Area

# **Area Definition**

The transmission tie lines into the LA Basin Area are:

- 1) San Onofre San Luis Rey #1, #2, and #3 230 kV Lines
- 2) San Onofre Talega #2 230 kV Lines
- 3) San Onofre Capistrano #1 230 kV Lines
- 4) Lugo Mira Loma #2 & #3 500 kV Lines
- 5) Lugo Rancho Vista #1 500 kV Line
- 6) Sylmar Eagle Rock 230 kV Line
- 7) Sylmar Gould 230 kV Line
- 8) Vincent Mira Loma #1 500 kV Line
- 9) Vincent Mesa Cal #1 230 kV Line
- 10) Vincent Rio Hondo #1 & #2 230 kV Lines
- 11) Devers Red Bluff 500 kV #1 and #2 Lines

<sup>17</sup> LCR requirement for a single contingency means that there wouldn't be any criteria violations following the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

<sup>&</sup>lt;sup>18</sup> LCR requirement for multiple contingencies means that not only there wouldn't be any criteria violations following the loss of a single element, but also the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

- 12) Mirage Coachelv # 1 230 kV Line
- 13) Mirage Ramon # 1 230 kV Line
- 14) Mirage Julian Hinds 230 kV Line

The substations that delineate the LA Basin Area are:

- 1) San Onofre is in San Luis Rey is out
- 2) San Onofre is in Talega is out
- 3) San Onofre is in Capistrano is out
- 4) Mira Loma is in Lugo is out
- 5) Rancho Vista is in Lugo is out
- 6) Eagle Rock is in Sylmar is out
- 7) Gould is in Sylmar is out
- 8) Mira Loma is in Vincent is out
- 9) Mesa Cal is in Vincent is out
- 10) Rio Hondo is in Vincent is out
- 11) Devers is in Red Bluff is out
- 12) Mirage is in Coachely is out
- 13) Mirage is in Ramon is out
- 14) Mirage is in Julian Hinds is out

The CEC-adopted demand forecast for 2026 is 18,541 MW<sup>19</sup> (this includes loads & losses and 1,550 MW AAEE). The total adjusted demand after including 696 MW peak shift adjustment<sup>20</sup> is 19,237 MW. A total of 19,243 MW of adjusted peak demand with 696 MW of peak shift adjustment was modeled for the study.

Total units and qualifying capacity available in the LA Basin area:

| MKT/SCHED<br>RESOURCE ID | BUS#  | BUS NAME   | kV   | NQC   | _ | LCR SUB-AREA<br>NAME | NQC Comments | CAISO<br>Tag |
|--------------------------|-------|------------|------|-------|---|----------------------|--------------|--------------|
| ANAHM_2_CANYN1           | 25211 | CanyonGT 1 | 13.8 | 49.40 | 1 | Western              |              | MUNI         |
| ANAHM_2_CANYN2           | 25212 | CanyonGT 2 | 13.8 | 48.00 | 2 | Western              |              | MUNI         |
| ANAHM_2_CANYN3           | 25213 | CanyonGT 3 | 13.8 | 48.00 | 3 | Western              |              | MUNI         |
| ANAHM_2_CANYN4           | 25214 | CanyonGT 4 | 13.8 | 49.40 | 4 | Western              |              | MUNI         |
| ANAHM_7_CT               | 25208 | DowlingCTG | 13.8 | 40.64 | 1 | Western              | Aug NQC      | MUNI         |
| ARCOGN_2_UNITS           | 24163 | ARCO 5G    | 13.8 | 26.85 | 5 | Western              | Aug NQC      | Net Seller   |
| ARCOGN_2_UNITS           | 24164 | ARCO 6G    | 13.8 | 26.86 | 6 | Western              | Aug NQC      | Net Seller   |
| ARCOGN_2_UNITS           | 24011 | ARCO 1G    | 13.8 | 53.69 | 1 | Western              | Aug NQC      | Net Seller   |

<sup>&</sup>lt;sup>19</sup> CEC-adopted 2015 IEPR demand forecast for 2016-2026, January 2016, for Mid Demand Baseline Case with Low AAEE Savings.

<sup>&</sup>lt;sup>20</sup> The CEC provided a total of 1,010 MW of peak shift for all of SCE area. It is estimated that about 696 MW is for the LA Basin based on the ratio of the behind-the-meter PV modeled in the LA Basin vs. entire SCE area (i.e., 1195 MW / 1735 MW). The CEC provided the amount of peak shift adjustment for all of SCE area for the 2015 IEPR demand forecast to the ISO in November 2016.

| ARCOGN_2_UNITS  | 24012 | ARCO 2G  | 13.8 | 53.69 | 2  | Western                | Aug NQC                    | Net Seller |
|-----------------|-------|----------|------|-------|----|------------------------|----------------------------|------------|
| ARCOGN_2_UNITS  |       | ARCO 3G  |      | 53.69 |    | Western                | Aug NQC                    | Net Seller |
| ARCOGN_2_UNITS  |       | ARCO 4G  |      | 53.69 |    | Western                | Aug NQC                    | Net Seller |
| BARRE_2_QF      |       | BARRE    | 230  | 0.00  |    | Western                | Not modeled                | QF/Selfgen |
| BARRE_6_PEAKER  |       | BARPKGEN | 13.8 |       |    | Western                | Hormodolod                 | Market     |
| BLAST_1_WIND    |       | BLAST    | 115  | 5.01  |    | Eastern, Valley-Devers | Aug NQC                    | Wind       |
| BRDWAY_7_UNIT 3 |       | BRODWYSC | 13.8 | 65.00 |    | Western                | Aug NQC                    | MUNI       |
| BUCKWD_1_NPALM1 |       |          | 115  | 1.36  |    | Eastern, Valley-Devers | Not modeled Aug<br>NQC     | Wind       |
| BUCKWD_1_QF     | 25634 | BUCKWIND | 115  | 1.94  | QF | Eastern, Valley-Devers | Aug NQC                    | QF/Selfgen |
|                 |       | BUCKWIND | 115  | 0.10  |    | Eastern, Valley-Devers | Aug NQC                    | Wind       |
| CABZON_1_WINDA1 |       | CABAZON  | 33   | 5.98  |    | Eastern, Valley-Devers | Aug NQC                    | Wind       |
| CENTER_2_QF     | 24203 | CENTER S | 66   | 17.98 |    | Western                | Not modeled Aug<br>NQC     | QF/Selfgen |
| CENTER_2_RHONDO | 24203 | CENTER S | 66   | 1.91  |    | Western                | Not modeled                | QF/Selfgen |
| CENTER_6_PEAKER | 29308 | CTRPKGEN | 13.8 | 47.00 | 1  | Western                |                            | Market     |
| CENTRY_6_PL1X4  | 25302 | CLTNCTRY | 13.8 | 36.00 | 1  | Eastern, Eastern Metro | Aug NQC                    | MUNI       |
| CHEVMN_2_UNITS  | 24022 | CHEVGEN1 | 13.8 | 4.97  | 1  | Western, El Nido       | Aug NQC                    | Net Seller |
| CHEVMN_2_UNITS  | 24023 | CHEVGEN2 | 13.8 | 4.98  | 2  | Western, El Nido       | Aug NQC                    | Net Seller |
| CHINO_2_JURUPA  |       |          |      | 0.00  |    | Eastern, Eastern Metro | Not modeled<br>Energy Only | Market     |
| CHINO_2_QF      | 24024 | CHINO    | 66   | 5.35  |    | Eastern, Eastern Metro | Not modeled Aug<br>NQC     | QF/Selfgen |
| CHINO_2_SASOLAR |       |          |      | 0.00  |    | Eastern, Eastern Metro | Not modeled<br>Energy Only | Market     |
| CHINO_2_SOLAR   | 24024 | CHINO    | 66   | 0.47  |    | Eastern, Eastern Metro | Not modeled<br>Energy Only | Market     |
| CHINO_2_SOLAR2  |       |          |      | 0.00  |    | Eastern, Eastern Metro | Not modeled<br>Energy Only | Market     |
| CHINO_6_CIMGEN  | 24026 | CIMGEN   | 13.8 | 26.11 | D1 | Eastern, Eastern Metro | Aug NQC                    | QF/Selfgen |
| CHINO_6_SMPPAP  | 24140 | SIMPSON  | 13.8 | 26.63 | D1 | Eastern, Eastern Metro | Aug NQC                    | QF/Selfgen |
| CHINO_7_MILIKN  | 24024 | CHINO    | 66   | 1.19  |    | Eastern, Eastern Metro | Not modeled Aug<br>NQC     | Market     |
| COLTON_6_AGUAM1 | 25303 | CLTNAGUA | 13.8 | 43.00 | 1  | Eastern, Eastern Metro | Aug NQC                    | MUNI       |
| CORONS_2_SOLAR  |       |          |      | 0.00  |    | Eastern, Eastern Metro | Not modeled<br>Energy Only | Market     |
| CORONS_6_CLRWTR |       |          | 66   | 14.00 |    | Eastern, Eastern Metro |                            | MUNI       |
| CORONS_6_CLRWTR | 24210 | MIRALOMA | 66   | 14.00 |    | Eastern, Eastern Metro | Not modeled                | MUNI       |
| DELAMO_2_SOLAR1 |       |          |      | 1.12  |    | Western                | Not modeled Aug<br>NQC     | Market     |
| DELAMO_2_SOLAR2 |       |          |      | 1.31  |    | Western                | Not modeled Aug<br>NQC     | Market     |
| DELAMO_2_SOLRC1 |       |          |      | 0.00  |    | Western                | Not modeled<br>Energy Only | Market     |
| DELAMO_2_SOLRD  |       |          |      | 0.00  |    | Western                | Not modeled<br>Energy Only | Market     |
| DEVERS_1_QF     | 25636 | RENWIND  | 115  | 0.22  | W1 | Eastern, Valley-Devers | Aug NQC                    | QF/Selfgen |
| DEVERS_1_QF     | 25633 | CAPWIND  | 115  | 0.46  | QF | Eastern, Valley-Devers | Aug NQC                    | QF/Selfgen |
| DEVERS_1_QF     | 25636 | RENWIND  | 115  | 0.49  | Q1 | Eastern, Valley-Devers | Aug NQC                    | QF/Selfgen |
| DEVERS_1_QF     | 25646 | SANWIND  | 115  | 0.66  | Q1 | Eastern, Valley-Devers | Aug NQC                    | QF/Selfgen |
| DEVERS_1_QF     |       | ALTWIND  | 115  | 1.11  |    | Eastern, Valley-Devers | Aug NQC                    | QF/Selfgen |
| DEVERS_1_QF     |       | GARNET   | 115  | 1.24  |    | Eastern, Valley-Devers | Aug NQC                    | QF/Selfgen |
| DEVERS_1_QF     |       | VENWIND  | 115  | 1.26  |    | Eastern, Valley-Devers | Aug NQC                    | QF/Selfgen |

| DEVERS_1_QF                  | 25639 | SEAWIND           | 115        | 1.65  | QF | Eastern, Valley-Devers            | Aug NQC                    | QF/Selfgen         |
|------------------------------|-------|-------------------|------------|-------|----|-----------------------------------|----------------------------|--------------------|
| DEVERS_1_QF                  |       | VENWIND           | 115        | 1.98  |    | Eastern, Valley-Devers            | Aug NQC                    | QF/Selfgen         |
| DEVERS_1_QF                  | 25635 | ALTWIND           | 115        | 2.06  | Q2 | Eastern, Valley-Devers            | Aug NQC                    | QF/Selfgen         |
| DEVERS_1_QF                  | 25632 | TERAWND           | 115        | 2.42  | QF | Eastern, Valley-Devers            | Aug NQC                    | QF/Selfgen         |
| DEVERS_1_QF                  | 25645 | VENWIND           | 115        | 2.94  | Q1 | Eastern, Valley-Devers            | Aug NQC                    | QF/Selfgen         |
| DEVERS_1_SEPV05              |       |                   |            | 0.00  |    | Eastern, Valley-Devers            | Energy Only                | Market             |
| DEVERS_1_SOLAR               |       |                   |            | 0.00  |    | Eastern, Valley-Devers            | Not modeled<br>Energy Only | Market             |
| DEVERS_1_SOLAR1              |       |                   |            | 0.00  |    | Eastern, Valley-Devers            | Not modeled<br>Energy Only | Market             |
| DEVERS_1_SOLAR2              |       |                   |            | 0.00  |    | Eastern, Valley-Devers            | Not modeled<br>Energy Only | Market             |
| DMDVLY_1_UNITS               |       | ESRP P2           | 6.9        | 7.51  |    | Eastern, Eastern Metro            | Not modeled Aug<br>NQC     | QF/Selfgen         |
| DREWS_6_PL1X4                |       | CLTNDREW          | 13.8       |       |    | Eastern, Eastern Metro            | Aug NQC                    | MUNI               |
| DVLCYN_1_UNITS               |       | DVLCYN1G          |            | 50.34 |    | Eastern, Eastern Metro            | Aug NQC                    | MUNI               |
| DVLCYN_1_UNITS               |       | DVLCYN2G          |            | 50.34 |    | Eastern, Eastern Metro            | Aug NQC                    | MUNI               |
| DVLCYN_1_UNITS               |       | DVLCYN4G          |            | 67.14 |    | Eastern, Eastern Metro            | Aug NQC                    | MUNI               |
| DVLCYN_1_UNITS<br>ELLIS_2_QF | 24197 | DVLCYN3G<br>ELLIS | 13.8<br>66 | 0.01  | 3  | Eastern, Eastern Metro<br>Western | Not read led A             | MUNI<br>QF/Selfgen |
| ELSEGN_2_UN1011              | 28903 | ELSEG6ST          | 18         | 68    | 6  | Western, El Nido                  | Aug NQC                    | Market             |
| ELSEGN_2_UN1011              | 28904 | ELSEG5ST          | 18         | 195   |    | Western, El Nido                  | Aug NQC                    | Market             |
| ELSEGN_2_UN2021              | 28901 | ELSEG8ST          | 18         | 68.68 | 8  | Western, El Nido                  | Aug NQC                    | Market             |
| ELSEGN_2_UN2021              |       | ELSEG7GT          | 18         | 195   |    | Western, El Nido                  | Aug NQC                    | Market             |
| ETIWND_2_CHMPNE              |       |                   |            | 0.00  |    | Eastern, Eastern Metro            | Not modeled<br>Energy Only | Market             |
| ETIWND_2_FONTNA              | 24055 | ETIWANDA          | 66         | 0.40  |    | Eastern, Eastern Metro            | Not modeled Aug<br>NQC     | QF/Selfgen         |
| ETIWND_2_RTS010              | 24055 | ETIWANDA          | 66         | 0.92  |    | Eastern, Eastern Metro            | Not modeled Aug<br>NQC     | Market             |
| ETIWND_2_RTS015              | 24055 | ETIWANDA          | 66         | 1.17  |    | Eastern, Eastern Metro            | Not modeled Aug<br>NQC     | Market             |
| ETIWND_2_RTS017              | 24055 | ETIWANDA          | 66         | 1.72  |    | Eastern, Eastern Metro            | Not modeled Aug<br>NQC     | Market             |
| ETIWND_2_RTS018              | 24055 | ETIWANDA          | 66         | 0.92  |    | Eastern, Eastern Metro            | Not modeled Aug<br>NQC     | Market             |
| ETIWND_2_RTS023              | 24055 | ETIWANDA          | 66         | 1.09  |    | Eastern, Eastern Metro            | Not modeled Aug<br>NQC     | Market             |
| ETIWND_2_RTS026              | 24055 | ETIWANDA          | 66         | 1.50  |    | Eastern, Eastern Metro            | Not modeled Aug<br>NQC     | Market             |
| ETIWND_2_RTS027              | 24055 | ETIWANDA          | 66         | 1.50  |    | Eastern, Eastern Metro            | Not modeled Aug<br>NQC     | Market             |
| ETIWND_2_SOLAR               | 24055 | ETIWANDA          | 66         | 0.00  |    | Eastern, Eastern Metro            | Not modeled<br>Energy Only | Market             |
| ETIWND_2_UNIT1               | 24055 | ETIWANDA          | 66         | 14.71 |    | Eastern, Eastern Metro            | Not modeled Aug<br>NQC     | Market             |
| ETIWND_6_GRPLND              |       | ETWPKGEN          | 13.8       | 46.00 |    | Eastern, Eastern Metro            |                            | Market             |
| ETIWND_6_MWDETI              | 25422 | ETI MWDG          | 13.8       | 1.62  | 1  | Eastern, Eastern Metro            |                            | Market             |
| ETIWND_7_MIDVLY              | 24055 | ETIWANDA          | 66         | 1.67  |    | Eastern, Eastern Metro            | Not modeled Aug<br>NQC     | QF/Selfgen         |
| GARNET_1_SOLAR               | 24815 | GARNET            | 115        | 0.00  |    | Eastern, Valley-Devers            | Not modeled<br>Energy Only | Market             |

| GARNET_1_SOLAR2                    | 24815 | GARNET              | 115  | 2.77           |    | Eastern, Valley-Devers                        | Not modeled Aug<br>NQC     | Market           |
|------------------------------------|-------|---------------------|------|----------------|----|-----------------------------------------------|----------------------------|------------------|
| GARNET_1_UNITS                     | 24815 | GARNET              | 115  | 0.23           | G2 | Eastern, Valley-Devers                        | Aug NQC                    | Market           |
| GARNET_1_UNITS                     |       | GARNET              | 115  | 0.48           |    | Eastern, Valley-Devers                        | Aug NQC                    | Market           |
| GARNET_1_UNITS                     | 24815 | GARNET              | 115  | 0.66           |    | Eastern, Valley-Devers                        | Aug NQC                    | Market           |
| GARNET_1_WIND                      |       | GARNET              | 115  | 0.29           |    | Eastern, Valley-Devers                        | Aug NQC                    | Wind             |
| GARNET_1_WINDS                     |       | GARNET              | 115  | 1.46           |    | Eastern, Valley-Devers                        | Aug NQC                    | Wind             |
| GARNET_1_WINDS                     | 24815 | GARNET              | 115  | 1.46           | W3 | Eastern, Valley-Devers                        | Aug NQC                    | Wind             |
| GARNET_1_WT3WND                    | 24815 | GARNET              | 115  | 0.00           |    | Eastern, Valley-Devers                        | Not modeled<br>Energy Only | Market           |
| GARNET_2_WIND1                     |       |                     |      | 1.79           |    | Eastern, Valley-Devers                        | Not modeled Aug<br>NQC     | Wind             |
| GARNET_2_WIND4                     |       |                     |      | 1.54           |    | Eastern, Valley-Devers                        | Not modeled Aug<br>NQC     | Wind             |
| GLNARM_7_UNIT 1                    | 29005 | PASADNA1            | 13.8 | 22.07          | 1  | Western                                       |                            | MUNI             |
| GLNARM_7_UNIT 2                    | 29006 | PASADNA2            | 13.8 | 22.30          | 1  | Western                                       |                            | MUNI             |
| GLNARM_7_UNIT 3                    | 29005 | PASADNA1            | 13.8 | 44.83          |    | Western                                       | Not modeled                | MUNI             |
| GLNARM_7_UNIT 4                    | 29006 | PASADNA2            | 13.8 | 42.42          |    | Western                                       | Not modeled                | MUNI             |
| HARBGN_7_UNITS                     |       | HARBOR G            | 13.8 | 0.00           |    | Western                                       | Mothballed                 | Market           |
| HARBGN_7_UNITS                     | _     | HARBOR G            | 13.8 | 0.00           |    | Western                                       | Mothballed                 | Market           |
| HARBGN_7_UNITS                     |       | HARBORG4            | 4.16 | 0.00           |    | Western                                       | Mothballed                 | Market           |
| HINSON_6_CARBGN                    |       | CARBGEN1            | 13.8 | 14.68          |    | Western                                       | Aug NQC                    | Market           |
| HINSON_6_CARBGN                    |       | CARBGEN2            | 13.8 | 14.68          | 1  | Western                                       | Aug NQC                    | Market           |
| HINSON_6_LBECH1                    | 1     | LBEACH12            | 13.8 |                |    | Western                                       | Aug NQC                    | Market           |
| HINSON_6_LBECH2                    | +     | LBEACH12            | 13.8 | 65.00          |    | Western                                       |                            | Market           |
|                                    |       |                     |      |                |    |                                               |                            |                  |
| HINSON_6_LBECH3                    |       | LBEACH34            | 13.8 |                |    | Western                                       |                            | Market           |
| HINSON_6_LBECH4                    |       | LBEACH34            | 13.8 |                |    | Western                                       | A NO.                      | Market           |
| HINSON_6_SERRGN                    |       | SERRFGEN            |      | 25.73          |    | Western                                       | Aug NQC                    | QF/Selfgen       |
| INDIGO_1_UNIT 1                    |       | WINTECX2            |      | 42.00          |    | Eastern, Valley-Devers                        |                            | Market           |
| INDIGO_1_UNIT 2<br>INDIGO_1_UNIT 3 |       | WINTECX1<br>WINTEC8 |      | 42.00<br>42.00 |    | Eastern, Valley-Devers Eastern, Valley-Devers |                            | Market<br>Market |
| INLDEM_5_UNIT 1                    |       | IEEC-G1             |      | 335.00         |    | Eastern, Valley, Valley-<br>Devers            | Aug NQC                    | Market           |
| INLDEM_5_UNIT 2                    | 29042 | IEEC-G2             | 19.5 | 335.00         | 1  | Eastern, Valley, Valley-<br>Devers            | Aug NQC                    | Market           |
| JOHANN_6_QFA1                      | 24072 | JOHANNA             | 230  | 0.00           |    | Western                                       | Not modeled Aug<br>NQC     | QF/Selfgen       |
| LACIEN_2_VENICE                    | 24337 | VENICE              | 13.8 | 1.38           | 1  | Western, El Nido                              | Aug NQC                    | MUNI             |
| LAFRES_6_QF                        |       | LA FRESA            | 66   | 0.00           |    | Western, El Nido                              | Not modeled Aug<br>NQC     | QF/Selfgen       |
| LAGBEL_6_QF                        | 24075 | LAGUBELL            | 66   | 9.79           |    | Western                                       | Not modeled Aug<br>NQC     | QF/Selfgen       |
| LGHTHP_6_ICEGEN                    | 24070 | ICEGEN              | 13.8 | 48.00          | 1  | Western                                       | Aug NQC                    | QF/Selfgen       |
|                                    |       |                     | 66   | 0.30           |    | Western                                       | Not modeled Aug            | QF/Selfgen       |
| LGHTHP_6_QF                        |       | LITEHIPE            | 00   |                |    | vvestern                                      | NQC                        |                  |
| MESAS_2_QF                         | 24209 | MESA CAL            | 66   | 0.04           |    | Western                                       | NQC                        | QF/Selfgen       |
| MIRLOM_2_CORONA                    |       |                     |      | 2.03           |    | Eastern, Eastern Metro                        | Not modeled Aug<br>NQC     | QF/Selfgen       |
| MIRLOM_2_ONTARO                    |       |                     |      | 2.38           |    | Eastern, Eastern Metro                        |                            | Market           |
| MIRLOM_2_RTS032                    |       |                     |      | 0.75           |    | Eastern, Eastern Metro                        | Not modeled Aug<br>NQC     | Market           |

| MIRLOM_2_RTS033 |       |                    |              | 0.75           |    | Eastern, Eastern Metro                           | Not modeled Aug<br>NQC     | Market               |
|-----------------|-------|--------------------|--------------|----------------|----|--------------------------------------------------|----------------------------|----------------------|
| MIRLOM_2_TEMESC |       |                    |              | 2.13           |    | Eastern, Eastern Metro                           | Not modeled Aug<br>NQC     | QF/Selfgen           |
|                 |       | DELGEN<br>MRLPKGEN | 13.8<br>13.8 | 27.66<br>46.00 |    | Eastern, Eastern Metro<br>Eastern, Eastern Metro | Aug NQC                    | QF/Selfgen<br>Market |
| MIRLOM_7_MWDLKM |       |                    | 66           | 4.60           |    | Eastern, Eastern Metro                           | Not modeled Aug<br>NQC     | MUNI                 |
| MOJAVE_1_SIPHON | 25658 | MJVSPHN1           | 13.8         | 4.19           | 2  | Eastern, Eastern Metro                           | Aug NQC                    | MUNI                 |
| MOJAVE_1_SIPHON | 25659 | MJVSPHN1           | 13.8         | 4.19           | 3  | Eastern, Eastern Metro                           | Aug NQC                    | MUNI                 |
| MOJAVE_1_SIPHON |       | MJVSPHN1           | 13.8         | 4.20           |    | Eastern, Eastern Metro                           | Aug NQC                    | MUNI                 |
| MTWIND_1_UNIT 1 |       | MOUNTWND           |              | 4.07           |    | Eastern, Valley-Devers                           | Aug NQC                    | Wind                 |
| MTWIND_1_UNIT 2 |       | MOUNTWND           |              | 1.88           |    | Eastern, Valley-Devers                           | Aug NQC                    | Wind                 |
| MTWIND_1_UNIT 3 |       | MOUNTWND           |              | 1.64           |    | Eastern, Valley-Devers                           | Aug NQC                    | Wind                 |
| OLINDA_2_COYCRK |       | OLINDA             | 66           | 3.13           |    | Western                                          | Not modeled                | QF/Selfgen           |
| OLINDA_2_LNDFL2 |       | BREAPWR2           | 13.8         | 3.88           |    | Western                                          | Aug NQC                    | Market               |
| OLINDA_2_LNDFL2 |       | BREAPWR2           | 13.8         | 3.88           |    | Western                                          | Aug NQC                    | Market               |
| OLINDA_2_LNDFL2 | 29011 | BREAPWR2           | 13.8         | 3.88           | C3 | Western                                          | Aug NQC                    | Market               |
| OLINDA_2_LNDFL2 | 29011 | BREAPWR2           | 13.8         | 3.88           | C4 | Western                                          | Aug NQC                    | Market               |
| OLINDA_2_LNDFL2 | 29011 | BREAPWR2           | 13.8         | 6.98           | S1 | Western                                          | Aug NQC                    | Market               |
| OLINDA_2_QF     | 24211 | OLINDA             | 66           | 0.11           | 1  | Western                                          | Aug NQC                    | QF/Selfgen           |
| OLINDA_7_LNDFIL | 24211 | OLINDA             | 66           | 0.05           |    | Western                                          | Not modeled Aug            | QF/Selfgen           |
| PADUA_2_ONTARO  | 24111 | PADUA              | 66           | 0.19           |    | Eastern, Eastern Metro                           | Not modeled Aug<br>NQC     | QF/Selfgen           |
| PADUA_2_SOLAR1  | 24111 | PADUA              | 66           | 0.00           |    | Eastern, Eastern Metro                           | Not modeled<br>Energy Only | Market               |
| PADUA_6_MWDSDM  | 24111 | PADUA              | 66           | 3.71           |    | Eastern, Eastern Metro                           | Not modeled Aug<br>NQC     | MUNI                 |
| PADUA_6_QF      | 24111 | PADUA              | 66           | 0.48           |    | Eastern, Eastern Metro                           | Not modeled Aug<br>NQC     | QF/Selfgen           |
| PADUA_7_SDIMAS  |       | PADUA              | 66           | 1.05           |    | Eastern, Eastern Metro                           | Not modeled Aug<br>NQC     | Market               |
| PANSEA_1_PANARO | 25640 | PANAERO            | 115          | 0.26           | QF | Eastern, Valley-Devers                           | Aug NQC                    | Wind                 |
| PWEST_1_UNIT    |       |                    |              | 0.12           |    | Western                                          | Not modeled Aug<br>NQC     | Market               |
| RENWD_1_QF      | 25636 | RENWIND            | 115          | 2.47           | Q2 | Eastern, Valley-Devers                           | Aug NQC                    | QF/Selfgen           |
| RHONDO_2_QF     | 24213 | RIOHONDO           | 66           | 0.40           |    | Western                                          | Not modeled Aug<br>NQC     | QF/Selfgen           |
| RHONDO_6_PUENTE | 24213 | RIOHONDO           | 66           | 0.00           |    | Western                                          | Not modeled Aug<br>NQC     | Net Seller           |
| RVSIDE_2_RERCU3 |       | RERC2G3            | 13.8         |                |    | Eastern, Eastern Metro                           |                            | MUNI                 |
|                 |       | RERC2G4            |              | 48.50          |    | Eastern, Eastern Metro                           |                            | MUNI                 |
| RVSIDE_6_RERCU1 |       | RERC1G             | 13.8         |                |    | Eastern, Eastern Metro                           |                            | MUNI                 |
| RVSIDE_6_RERCU2 | 24243 | RERC2G             | 13.8         | 48.50          | 1  | Eastern, Eastern Metro                           |                            | MUNI                 |
|                 |       | SPRINGEN           | 13.8         |                |    | Eastern, Eastern Metro                           | Not modeled Aug<br>NQC     | Market               |
| RVSIDE_6_SPRING |       | SPRINGEN           | 13.8         |                |    | Eastern, Eastern Metro                           |                            | Market               |
| SANTGO_6_COYOTE |       |                    | 66           | 5.63           |    | Western                                          | Aug NQC                    | Market               |
| SANWD_1_QF      | 25646 | SANWIND            | 115          | 1.75           |    | Eastern, Valley-Devers                           | Aug NQC                    | Wind                 |
| SBERDO_2_PSP3   | 24921 | MNTV-CT1           | 18           | 129.71         | 1  | Eastern, West of<br>Devers, Eastern Metro        |                            | Market               |
| SBERDO_2_PSP3   | 24922 | MNTV-CT2           | 18           | 129.71         | 1  | Eastern, West of<br>Devers, Eastern Metro        |                            | Market               |

| SBERDO_2_PSP3   | 24923                                            | MNTV-ST1 | 18   | 225.08 | 1  | Eastern, West of<br>Devers, Eastern Metro |                            | Market     |
|-----------------|--------------------------------------------------|----------|------|--------|----|-------------------------------------------|----------------------------|------------|
| SBERDO_2_PSP4   | 24924                                            | MNTV-CT3 | 18   | 129.71 | 1  | Eastern, West of<br>Devers, Eastern Metro |                            | Market     |
| SBERDO_2_PSP4   | 24925                                            | MNTV-CT4 | 18   | 129.71 | 1  | Eastern, West of<br>Devers, Eastern Metro |                            | Market     |
| SBERDO_2_PSP4   | 24926                                            | MNTV-ST2 | 18   | 225.08 | 1  | Eastern, West of<br>Devers, Eastern Metro |                            | Market     |
| SBERDO_2_QF     | 24214                                            | SANBRDNO | 66   | 0.06   |    | Eastern, West of<br>Devers, Eastern Metro | Not modeled Aug<br>NQC     | QF/Selfgen |
| SBERDO_2_REDLND | 24214                                            | SANBRDNO | 66   | 0.66   |    | Eastern, West of<br>Devers, Eastern Metro | Not modeled Aug<br>NQC     | Market     |
| SBERDO_2_RTS005 | 24214                                            | SANBRDNO | 66   | 1.28   |    | Eastern, West of<br>Devers, Eastern Metro | Not modeled Aug<br>NQC     | Market     |
| SBERDO_2_RTS007 | 24214                                            | SANBRDNO | 66   | 1.15   |    | Eastern, West of<br>Devers, Eastern Metro | Not modeled Aug<br>NQC     | Market     |
| SBERDO_2_RTS011 | 24214                                            | SANBRDNO | 66   | 2.62   |    | Eastern, West of<br>Devers, Eastern Metro | Not modeled Aug<br>NQC     | Market     |
| SBERDO_2_RTS013 | 24214                                            | SANBRDNO | 66   | 2.62   |    | Eastern, West of<br>Devers, Eastern Metro | Not modeled Aug<br>NQC     | Market     |
| SBERDO_2_RTS016 | 24214                                            | SANBRDNO | 66   | 1.12   |    | Eastern, West of<br>Devers, Eastern Metro | Not modeled Aug<br>NQC     | Market     |
| SBERDO_2_RTS048 | 24214                                            | SANBRDNO | 66   | 0.00   |    | Eastern, West of<br>Devers, Eastern Metro | Not modeled<br>Energy Only | Market     |
| SBERDO_2_SNTANA | 24214                                            | SANBRDNO | 66   | 0.00   |    | Eastern, West of<br>Devers, Eastern Metro | NQC                        | QF/Selfgen |
|                 | 24214                                            | SANBRDNO | 66   | 0.64   |    | Eastern, West of<br>Devers, Eastern Metro | Not modeled Aug<br>NQC     | QF/Selfgen |
| SENTNL_2_CTG1   | 29101                                            | TOT032G1 | 13.8 | 91     | 1  | Eastern, Valley-Devers                    |                            | Market     |
| SENTNL_2_CTG2   | 29102                                            | TOT032G2 | 13.8 | 91     | 1  | Eastern, Valley-Devers                    |                            | Market     |
| SENTNL_2_CTG3   | 29103                                            | TOT032G3 | 13.8 | 91     | 1  | Eastern, Valley-Devers                    |                            | Market     |
| SENTNL_2_CTG4   |                                                  | TOT032G4 | 13.8 | 91     |    | Eastern, Valley-Devers                    |                            | Market     |
| SENTNL_2_CTG5   |                                                  | TOT032G5 | 13.8 | 91     |    | Eastern, Valley-Devers                    |                            | Market     |
| SENTNL 2 CTG6   |                                                  | TOT032G6 | 13.8 | 91     |    | Eastern, Valley-Devers                    |                            | Market     |
| SENTNL_2_CTG7   |                                                  | TOT032G7 | 13.8 | 91     |    | Eastern, Valley-Devers                    |                            | Market     |
| SENTNL_2_CTG8   |                                                  | TOT032G8 | 13.8 | 91     | 1  | Eastern, Valley-Devers                    |                            | Market     |
| TIFFNY_1_DILLON | 23100                                            | 10103200 | 13.0 | 4.01   |    | Western                                   | Not modeled Aug<br>NQC     | Wind       |
| TRNSWD_1_QF     | 25637                                            | TRANWIND | 115  | 4.66   | QF | Eastern, Valley-Devers                    | Aug NQC                    | Wind       |
|                 | 24160                                            | VALLEYSC | 115  | 7.94   |    | Eastern, Valley, Valley-<br>Devers        | Not so adalad A            | QF/Selfgen |
| VALLEY_5_REDMTN | 24160                                            | VALLEYSC | 115  | 1.52   |    | Eastern, Valley, Valley-<br>Devers        | Not modeled Aug<br>NQC     | QF/Selfgen |
| VALLEY_5_RTS044 | 24160                                            | VALLEYSC | 115  | 3.90   |    | Eastern, Valley, Valley-<br>Devers        | Not modeled Aug<br>NQC     | Market     |
| VALLEY_5_SOLAR1 | 24160                                            | VALLEYSC | 115  | 0.00   |    | Eastern, Valley, Valley-<br>Devers        | Not modeled<br>Energy Only | Market     |
| VALLEY_5_SOLAR2 | 24160                                            | VALLEYSC | 115  | 14.97  |    | Eastern, Valley, Valley-<br>Devers        | Not modeled Aug<br>NQC     | Market     |
| VALLEY_7_BADLND | 24160                                            | VALLEYSC | 115  | 0.30   |    | Eastern, Valley, Valley-<br>Devers        | Not modeled Aug<br>NQC     | Market     |
| VALLEY_7_UNITA1 | 24160                                            | VALLEYSC | 115  | 2.30   |    | Eastern, Valley, Valley-<br>Devers        | Not modeled Aug<br>NQC     | Market     |
| VERNON_6_GONZL1 |                                                  |          |      | 5.75   |    | Western                                   | Not modeled                | MUNI       |
| VERNON_6_GONZL2 | <del>                                     </del> |          |      | 5.75   |    | Western                                   | Not modeled                | MUNI       |
|                 | 0.4000                                           | MALDDOLO | 40.0 |        |    |                                           | Not modeled                |            |
| VERNON_6_MALBRG |                                                  |          | 13.8 |        |    | Western                                   |                            | MUNI       |
| VERNON_6_MALBRG | 24240                                            | MALBRG2G | 13.8 | 42.37  | C2 | Western                                   |                            | MUNI       |

| VERNON_6_MALBRG  | 24241 | MALBRG3G | 13.8 | 49.26 | S3 | Western                |                            | MUNI       |
|------------------|-------|----------|------|-------|----|------------------------|----------------------------|------------|
| VILLPK_2_VALLYV  | 24216 | VILLA PK | 66   | 4.10  |    | Western                | Not modeled Aug<br>NQC     | QF/Selfgen |
| VILLPK_6_MWDYOR  | 24216 | VILLA PK | 66   | 3.40  |    | Western                | Not modeled Aug<br>NQC     | MUNI       |
| VISTA_2_RIALTO   | 24901 | VSTA     | 230  | 0.00  |    | Eastern, Eastern Metro | Energy Only                | Market     |
| VISTA_2_RTS028   | 24901 | VSTA     | 230  | 2.25  |    | Eastern, Eastern Metro | Not modeled Aug<br>NQC     | Market     |
| VISTA_6_QF       | 24902 | VSTA     | 66   | 0.11  | 1  | Eastern, Eastern Metro | Aug NQC                    | QF/Selfgen |
| WALCRK_2_CTG1    | 29201 | EME WCG1 | 13.8 | 96    | 1  | Western                |                            | Market     |
| WALCRK_2_CTG2    | 29202 | EME WCG2 | 13.8 | 96    | 1  | Western                |                            | Market     |
| WALCRK_2_CTG3    | 29203 | EME WCG3 | 13.8 | 96    | 1  | Western                |                            | Market     |
| WALCRK_2_CTG4    | 29204 | EME WCG4 | 13.8 | 96    | 1  | Western                |                            | Market     |
| WALCRK_2_CTG5    | 29205 | EME WCG5 | 13.8 | 96.65 | 1  | Western                |                            | Market     |
| WALNUT_2_SOLAR   |       |          |      | 0.00  |    | Western                | Not modeled<br>Energy Only | Market     |
| WALNUT_6_HILLGEN | 24063 | HILLGEN  | 13.8 | 47.73 | D1 | Western                | Aug NQC                    | QF/Selfgen |
| WALNUT_7_WCOVCT  | 24157 | WALNUT   | 66   | 0.00  |    | Western                | Not modeled Aug<br>NQC     | Market     |
| WALNUT_7_WCOVST  | 24157 | WALNUT   | 66   | 5.08  |    | Western                | Not modeled Aug<br>NQC     | Market     |
| WHTWTR_1_WINDA1  | 29061 | WHITEWTR | 33   | 3.97  | 1  | Eastern, Valley-Devers | Aug NQC                    | Wind       |
| ARCOGN_2_UNITS   | 24018 | BRIGEN   | 13.8 | 0.00  | 1  | Western                | No NQC - hist.<br>data     | Net Seller |
| HINSON_6_QF      | 24064 | HINSON   | 66   | 0.00  | 1  | Western                | No NQC - hist.<br>data     | QF/Selfgen |
| INLAND_6_UNIT    | 24071 | INLAND   | 13.8 | 15.20 | 1  | Eastern, Eastern Metro | No NQC - hist.<br>data     | QF/Selfgen |
| MOBGEN_6_UNIT 1  | 24094 | MOBGEN   | 13.8 | 0.00  | 1  | Western, El Nido       | No NQC - hist.<br>data     | QF/Selfgen |
| NA               | 24325 | ORCOGEN  | 13.8 | 0.00  | 1  | Western                | No NQC - hist.<br>data     | QF/Selfgen |
| NA               | 24327 | THUMSGEN | 13.8 | 0.00  | 1  | Western                | No NQC - hist.<br>data     | QF/Selfgen |
| NA               | 24329 | MOBGEN2  | 13.8 | 0.00  | 1  | Western, El Nido       | No NQC - hist.<br>data     | QF/Selfgen |
| NA               | 24330 | OUTFALL1 | 13.8 | 0.00  | 1  | Western, El Nido       | No NQC - hist.<br>data     | QF/Selfgen |
| NA               | 24331 | OUTFALL2 | 13.8 | 0.00  | 1  | Western, El Nido       | No NQC - hist.<br>data     | QF/Selfgen |
| NA               | 29021 | WINTEC6  | 115  | 0.00  | 1  | Eastern, Valley-Devers | No NQC - hist.<br>data     | Wind       |
| NA               | 29260 | ALTAMSA4 | 115  | 0.00  | 1  | Eastern, Valley-Devers | No NQC - hist.<br>data     | Wind       |
| NA               | 29340 | CLRWTRST | 13.8 | 0.00  | S1 | Eastern, Eastern Metro | No NQC - hist.<br>data     | QF/Selfgen |
| NA               | 24324 | SANIGEN  | 13.8 | 1.40  | D1 | Eastern, Eastern Metro | No NQC - hist.<br>data     | QF/Selfgen |
| NA               | 24332 | PALOGEN  | 13.8 | 1.40  | D1 | Western, El Nido       | No NQC - hist.<br>data     | QF/Selfgen |
| NA               | 24342 | FEDGEN   | 13.8 | 5.80  | 1  | Western                | No NQC - hist.<br>data     | QF/Selfgen |
| NA               |       | COYGEN   | 13.8 | 6.30  |    | Western                | No NQC - hist.<br>data     | QF/Selfgen |
| NA               | 29951 | REFUSE   | 13.8 | 9.80  | D1 | Western                | No NQC - Pmax              | QF/Selfgen |

| NA              | 29953 | SIGGEN   | 13.8 | 18.60  | D1 | Western                | No NQC - Pmax             | QF/Selfgen |
|-----------------|-------|----------|------|--------|----|------------------------|---------------------------|------------|
| NA              | 29338 | CLRWTRCT | 13.8 | 20.70  | G1 | Eastern, Eastern Metro | No NQC - hist.<br>data    | QF/Selfgen |
| NA              | 29339 | DELGEN   | 13.8 | 29.50  | 1  | Eastern, Eastern Metro | No NQC - hist.<br>data    | QF/Selfgen |
| New             | 90000 | ALMT-GT1 | 18   | 200.00 | X1 | Western                | No NQC - Pmax             | Market     |
| New             | 90001 | ALMT-GT2 | 18   | 200.00 | X2 | Western                | No NQC - Pmax             | Market     |
| New             | 90003 | HUNT-GT1 | 18   | 202.00 | X1 | Western                | No NQC - Pmax             | Market     |
| New             | 90004 | HUNT-GT2 | 18   | 202.00 | X2 | Western                | No NQC - Pmax             | Market     |
| New             | 90002 | ALMT-ST1 | 18   | 240.00 | Х3 | Western                | No NQC - Pmax             | Market     |
| New             | 90005 | HUNT-ST! | 18   | 240.00 | Х3 | Western                | No NQC - Pmax             | Market     |
| ALAMIT_7_UNIT 1 | 24001 | ALAMT1 G | 18   | 0.00   | 1  | Western                | Retired by 2021           | Market     |
| ALAMIT_7_UNIT 2 | 24002 | ALAMT2 G | 18   | 0.00   | 2  | Western                | Retired by 2021           | Market     |
| ALAMIT_7_UNIT 3 | 24003 | ALAMT3 G | 18   | 0.00   | 3  | Western                | Retired by 2021           | Market     |
| ALAMIT_7_UNIT 4 | 24004 | ALAMT4 G | 18   | 0.00   | 4  | Western                | Retired by 2021           | Market     |
| ALAMIT_7_UNIT 5 | 24005 | ALAMT5 G | 20   | 0.00   | 5  | Western                | Retired by 2021           | Market     |
| ALAMIT_7_UNIT 6 | 24161 | ALAMT6 G | 20   | 0.00   | 6  | Western                | Retired by 2021           | Market     |
| ELSEGN_7_UNIT 4 | 24048 | ELSEG4 G | 18   | 0.00   | 4  | Western, El Nido       | Retired                   | Market     |
| ETIWND_7_UNIT 3 | 24052 | MTNVIST3 | 18   | 0.00   | 3  | Eastern, Eastern Metro | Assumed retirement by age | Market     |
| ETIWND_7_UNIT 4 | 24053 | MTNVIST4 | 18   | 0.00   | 4  | Eastern, Eastern Metro | Assumed retirement by age | Market     |
| HNTGBH_7_UNIT 1 | 24066 | HUNT1 G  | 13.8 | 0.00   | 1  | Western                | Retired by 2021           | Market     |
| HNTGBH_7_UNIT 2 | 24067 | HUNT2 G  | 13.8 | 0.00   | 2  | Western                | Retired by 2021           | Market     |
| REDOND_7_UNIT 5 | 24121 | REDON5 G | 18   | 0.00   | 5  | Western                | Retired by 2021           | Market     |
| REDOND_7_UNIT 6 | 24122 | REDON6 G | 18   | 0.00   | 6  | Western                | Retired by 2021           | Market     |
| REDOND_7_UNIT 7 | 24123 | REDON7 G | 20   | 0.00   | 7  | Western                | Retired by 2021           | Market     |
| REDOND_7_UNIT 8 | 24124 | REDON8 G | 20   | 0.00   | 8  | Western                | Retired by 2021           | Market     |
| SONGS_7_UNIT 2  | 24129 | S.ONOFR2 | 22   | 0.00   | R2 | None                   | Retired                   | Nuclear    |
| SONGS_7_UNIT 3  | 24130 | S.ONOFR3 | 22   | 0.00   | R3 | None                   | Retired                   | Nuclear    |

## Major new projects modeled:

- 1. Vincent-Mira Loma 500 kV (part of Tehachapi Upgrade)
- 2. East County 500kV Substation (ECO)
- 3. Mesa Loop-In Project and South of Mesa 230 kV line upgrades
- 4. Imperial Valley Phase Shifting Transformers (2x400 MVA)
- 5. Delaney Colorado River 500 kV Line
- 6. Hassayampa North Gila #2 500 kV Line (APS)
- 7. Bay Blvd. Substation Project
- 8. Sycamore Penasquitos 230 kV Line
- 9. Talega Synchronous Condensers (2x225 MVAR)
- 10. San Luis Rey Synchronous Condensers (2x225 MVAR)
- 11. San Onofre Synchronous Condenser (225 MVAR)

- 12. Santiago Synchronous Condenser (225 MVAR)
- 13. Bypass series capacitors on the ECO-Miguel and Ocotillo-Suncrest 500kV lines
- 14. West of Devers 230 kV line upgrades
- 15. Carlsbad Energy Center (500 MW)
- 16. Pio Pico peakers (300 MW)
- 17. Battery energy storage system projects in the LA Basin and San Diego area (CPUC-approved projects related to the Aliso Canyon gas storage constraint)

## Critical Contingency Analysis Summary

### El Nido Sub-area:

The most critical contingency could be the loss of La Fresa - Redondo #1 and #2 230 kV lines followed by the loss of Hinson - La Fresa 230 kV line, which would result in voltage collapse. This limiting contingency establishes a local capacity need of 305 MW (includes 1 MW of QF, 1 MW of MUNI generation, 7 MW of 20-minute demand response and 20 MW of long-term procurement plan preferred resources) as the minimum capacity necessary for reliable load serving capability within this sub-area.

#### **Effectiveness factors:**

The following table has effectiveness factors for resources in this sub-area.

| Gen Bus | Gen Name | MW Eff Fctr (%) |
|---------|----------|-----------------|
| 24022   | CHEVGEN1 | 100             |
| 24023   | CHEVGEN2 | 100             |
| 28903   | ELSEG6ST | 100             |
| 28904   | ELSEG5ST | 100             |
| 28901   | ELSEG8ST | 100             |
| 28902   | ELSEG7GT | 100             |
| 24337   | VENICE   | 100             |
| 24094   | MOBGEN   | 0               |
| 24329   | MOBGEN2  | 0               |
| 24330   | OUTFALL1 | 0               |
| 24331   | OUTFALL2 | 0               |
| 24332   | PALOGEN  | 0               |
|         |          |                 |

### Western LA Basin Sub-area:

The most critical contingency is the loss of one of the Serrano - Villa Park 230 kV #2 line followed by the loss of the Serrano - Lewis 230 kV line, which would result in thermal overload of the Serrano - Villa Park 230 kV line #1. This limiting contingency establishes a local capacity need of 4136 MW (includes 201 MW of QF, 4 MW of wind and 582 MW of MUNI generation, 432 MW preferred resources and 162 MW of 20-minute "fast" demand response) as the minimum capacity necessary for reliable load serving capability within this sub-area.

## **Effectiveness factors:**

The following table has units that have at least 5% effectiveness factors.

| Resource Locations | Effectiveness Facto | <u>r (%)</u> |
|--------------------|---------------------|--------------|
|                    |                     |              |

| REFUSE 13.8 #D1                       | -34.52 |
|---------------------------------------|--------|
| MALBRG1G 13.8 #C1                     | -34.42 |
| ELSEG6ST 13.8 #6                      | -26.66 |
| ELSEG5GT 16.5 #5                      | -26.64 |
| VENICE 13.8 #1                        | -26.22 |
| MOBGEN1 13.8 #1                       | -26.18 |
| PALOGEN 13.8 #D1                      | -26.18 |
| ARCO 1G 13.8 #1                       | -23.13 |
|                                       | -23.03 |
| THUMSGEN 13.8 #1                      | -23.03 |
| CARBGEN1 13.8 #1                      | -23.02 |
| SERRFGEN 13.8 #D1                     | -23.02 |
| ICEGEN 13.8 #D1                       | -22.33 |
| ALMITOSW 66.0 #I3                     |        |
| ALAMTX1 18.0 #X1                      | -17.93 |
| CTRPKGEN 13.8 #1                      | -17.51 |
| SIGGEN 13.8 #D1                       | -17.51 |
|                                       | -12.76 |
| BARPKGEN 13.8 #1                      |        |
| RIOHONDO 66.0 #18                     | -12.5  |
| WALNUT 66.0 #I3                       | -12.29 |
| OLINDA 66.0 #1                        | -12.07 |
| EME WCG1 13.8 #1                      | -12    |
| BREAPWR2 13.8 #C4                     | -11.98 |
| ELLIS 66.0 #I7                        | -11.98 |
| JOHANNA 66.0 #15<br>SANTIAGO 66.0 #18 | -11.42 |
| SANTIAGO 66.0 #18                     | -10.63 |

| DowlingCTG 13.8 #1 | -9.62 |
|--------------------|-------|
| CanyonGT 1 13.8 #1 | -9.58 |
| VILLA PK 66.0 #I2  | -9.29 |

There are numerous other combinations of contingencies in the area that could overload a significant number of 230 kV lines in this sub-area/area and have slightly less LCR need. As such, anyone of them (combination of contingencies) could become binding for any given set of procured resources. As a result, these effectiveness factors may not facilitate more informed procurement.

### West of Devers Sub-area:

There are no local capacity requirements due to implementation of the Mesa Loop-in as well as West of Devers reconductoring projects.

## Valley-Devers Sub-area:

There are no local capacity requirements due to implementation of the Colorado River-Delany 500 kV line project.

### Valley Sub-area:

There are no local capacity requirements due to implementation of the Colorado River-Delany 500 kV line project.

### Eastern LA Basin Sub-area:

The most critical contingency is the loss of the Alberhill - Serrano 500 kV line, followed by an N-2 of Red Bluff-Devers #1 and #2 500 kV lines, which would result in voltage instability. This limiting contingency establishes a local capacity need of about 2841 MW (this includes 198 MW of QF, 37 MW of wind and 593 MW of Muni generation, as well as 160 MW of 20-minute demand response in the area) as the minimum capacity necessary for reliable load serving capability within this subarea. The available resources in the Eastern LA Basin subarea are sufficient to meet this local capacity requirement.

### LA Basin Overall:

The critical contingency is driven by the combined LA Basin and San Diego sub-area.

## Combined LA Basin and San Diego:

The local capacity requirements for the combined LA Basin and San Diego sub-area is the same as the LA Basin/San Diego/Imperial Valley need; the overlapping G-1/N-1 outage (NERC P3 category) of Termoelectrica de Mexicali (TDM) combined cycle plant (593 MW), followed by an N-1 contingency of the Imperial Valley – North Gila 500 kV line. This overlapping contingency could causes thermal overload on the "S" line (El Centro – Imperial Valley 230 kV line) between Imperial Irrigation District (IID) and SDG&E. This limiting contingency establishes a total local capacity need for the combined LA Basin/San Diego sub-area of 10,041 MW in the 2026 time frame as follows: 7,234 MW in the LA Basin (includes 399 MW of QF, 41 MW of wind and 1175 MW of MUNI generation, 432 MW of long-term procurement plan preferred resources, as well as 322 MW of 20-minute demand response) and 2,807 MW in the San Diego sub-area (includes 103 MW of QF generation, 5 MW of wind, 19 MW of 20-minute demand response and 38 MW of CPUC-approved battery energy storage) as the minimum capacity necessary for reliable load serving capability within these areas.

The second most critical contingency (N-1-1 or NERC P6) resulting in thermal limiting constraint, with slightly lower LCR need, for the combined LA Basin and San Diego subarea is the overlapping outage of ECO-Miguel 500 kV line, system readjustment, followed by Ocotillo-Suncrest 500 kV line. This contingency could cause loading concern for the CFE/CENACE's La Rosita-Rumorosa 230 kV line. This limiting contingency establishes a total local capacity need for the combined LA Basin/San Diego sub-area of 9,729 MW in 2026 time as follows: 7,122 MW in the LA Basin (includes 399 MW of QF, 41 MW of wind and 1175 MW of MUNI generation, 432 MW of long-term procurement plan preferred resources, as well as 322 MW of 20-minute demand response) and 2,607 MW in the San Diego sub-area (includes 103 MW of QF generation, 5 MW of wind, 19 MW of 20-minute demand response and 38 MW of CPUC-approved battery energy storage).

# **Effectiveness factors:**

The following table has LA Basin resources.

| Resource Locations | Effectiveness Factor (%) |
|--------------------|--------------------------|
| SANTIAGO 66.0 #DG  | -6.93                    |
| COYGEN 13.8 #1     | -6.92                    |
| WDT1406_G 0.5 #1   | -6.66                    |
| JOHANNA 66.0 #I4   | -5.98                    |
| ELLIS 66.0 #13     | -5.22                    |
| HUNT-GT1 18.0 #X1  | -4.9                     |
| HUNT-GT2 18.0 #X2  | -4.9                     |
| HUNT-ST1 18.0 #X3  | -4.9                     |
| BARPKGEN 13.8 #1   | -4                       |
| BARRE 1G 13.8 #X1  | -3.77                    |
| BARRE 2G 13.8 #X2  | -3.77                    |
| VILLA PK 66.0 #I2  | -3.77                    |
| VILLA PK 66.0 #DG  | -3.77                    |
| DowlingCTG 13.8 #1 | -3.6                     |
| CanyonGT 1 13.8 #1 | -3.58                    |
| CanyonGT 2 13.8 #2 | -3.58                    |
| CanyonGT 3 13.8 #3 | -3.58                    |
| CanyonGT 4 13.8 #4 | -3.58                    |
| ALMT-GT1 18.0 #X1  | -3.27                    |
| SANIGEN 13.8 #D1   | -3.18                    |
| CIMGEN 13.8 #D1    | -3.14                    |
| SIMPSON 13.8 #D1   | -3.12                    |
| ALMT-GT2 18.0 #X2  | -3.11                    |
| ALMT-ST1 18.0 #X3  | -3.11                    |
| SIGGEN 13.8 #D1    | -2.96                    |
| ICEGEN 13.8 #D1    | -2.92                    |
| WDT1250BES 0.5 #1  | -2.9                     |
| CTRPKGEN 13.8 #1   | -2.87                    |
| WDT1429_BA 0.5 #1  | -2.86                    |
| LCIENEGA 66.0 #I4  | -2.85                    |
| VENICE 13.8 #1     | -2.85                    |
| CARBGEN1 13.8 #1   | -2.83                    |
| CARBGEN2 13.8 #1   | -2.83                    |
|                    |                          |

| PALOGEN 13.8 #D1  | -2.83 |
|-------------------|-------|
| THUMSGEN 13.8 #1  | -2.83 |
| SERRFGEN 13.8 #D1 | -2.82 |
| ARCO 1G 13.8 #1   | -2.81 |
| ARCO 2G 13.8 #2   | -2.81 |
| ARCO 3G 13.8 #3   | -2.81 |
| ARCO 4G 13.8 #4   | -2.81 |
| MOBGEN1 13.8 #1   | -2.81 |
| MOBGEN2 13.8 #1   | -2.81 |
| OUTFALL1 13.8 #1  | -2.81 |
| OUTFALL2 13.8 #1  | -2.81 |
| ARCO 6G 13.8 #6   | -2.8  |
| CHEVGEN 1 13.8 #1 | -2.79 |
| CHEVGEN 2 13.8 #2 | -2.79 |
| CHEVGEN 5 13.8 #1 | -2.79 |
| CHEVGEN 5 13.8 #2 | -2.79 |
| ARCO 5G 13.8 #5   | -2.78 |
| LBEACH34 13.8 #3  | -2.75 |
| LBEACH34 13.8 #4  | -2.75 |
| LBEACH12 13.8 #2  | -2.74 |
| LBEACH12 13.8 #1  | -2.74 |
| ELSEG7GT 16.5 #7  | -2.7  |
| ELSEG5GT 16.5 #5  | -2.68 |
| ELSEG6ST 13.8 #6  | -2.68 |
| ELSEG8ST 13.8 #8  | -2.67 |
| CLRWTRST 12.5 #S1 | -2.65 |
| DELGEN 13.8 #1    | -2.65 |
| CLRWTRCT 12.5 #G1 | -2.63 |
| WDT1425_G1 0.5 #1 | -2.62 |
| WDT1426_G2 0.5 #1 | -2.62 |
| FEDGEN 13.8 #1    | -2.61 |
| MRLPKGEN 13.8 #1  | -2.61 |
| WALNUT 66.0 #I3   | -2.6  |
| WALNUT 66.0 #I2   | -2.6  |
| REFUSE 13.8 #D1   | -2.58 |
| HILLGEN 13.8 #D1  | -2.56 |
| MALBRG2G 13.8 #C2 | -2.56 |
|                   |       |

| BREAPWR2 13.8 #C1 | -2.53 |
|-------------------|-------|
| MALBRG1G 13.8 #C1 | -2.53 |
| WALCRKG4 13.8 #1  | -2.44 |
| WALCRKG5 13.8 #1  | -2.44 |
| WALCRKG1 13.8 #1  | -2.39 |
| WALCRKG2 13.8 #1  | -2.39 |
| WALCRKG3 13.8 #1  | -2.39 |
| RIOHONDO 66.0 #DG | -2.38 |
| RIOHONDO 66.0 #I7 | -2.38 |
| RIOHONDO 66.0 #I2 | -2.38 |
| RIOHONDO 66.0 #I8 | -2.38 |
| RIOHONDO 66.0 #m2 | -2.38 |
| PASADNA1 13.8 #1  | -2.24 |
| PASADNA3 13.8 #1  | -2.21 |
| PASADNA4 13.8 #1  | -2.21 |
| PASADNA2 13.8 #1  | -2.2  |
| PADUA 66.0 #18    | -1.95 |
| ETI MWDG 13.8 #1  | -1.78 |
| APPGEN1G 13.8 #1  | -1.76 |
| APPGEN2G 13.8 #2  | -1.76 |
| APPGEN3G 13.8 #3  | -1.76 |
| WDT1430_BA 0.5 #1 | -1.76 |
| ETWPKGEN 13.8 #1  | -1.75 |
| MTNVIST3 18.0 #3  | -1.67 |
| MTNVIST4 18.0 #4  | -1.67 |
| RERC1G 13.8 #1    | -1.53 |
| RERC2G 13.8 #1    | -1.53 |
| RERC2G3 16.5 #1   | -1.51 |
| RERC2G4 16.5 #1   | -1.51 |
| ALPINE_G 0.5 #EQ  | -1.44 |
| LUZ8 G 13.8 #8    | -1.31 |
| KERRMGEE 13.8 #1  | -1.3  |
| LUZ9 G 13.8 #9    | -1.29 |
| CLTNAGUA 13.8 #1  | -1.18 |
| SPRINGS1 13.8 #1  | -1.16 |
| SPRINGS2 13.8 #1  | -1.16 |
| SPRINGS3 13.8 #1  | -1.16 |
|                   |       |

| SPRINGS4 | 13.8 #1 | -1.16 |
|----------|---------|-------|
| DVLCYN1G | 13.8 #1 | -1.03 |
| DVLCYN2G | 13.8 #2 | -1.03 |
| DVLCYN3G | 13.8 #3 | -1.02 |
| DVLCYN4G | 13.8 #4 | -1.02 |

## Changes compared to last year's results:

Compared with 2021 the load forecast has decreased by 263 MW. The LA Basin LCR need has increased by 630 MW, mainly due to transmission and resource configuration change in the CFE system.

## LA Basin Overall Requirements:

| 2026                 | QF   | Wind | Muni | Battery  | Preffered | Market | Max. Qualifying |
|----------------------|------|------|------|----------|-----------|--------|-----------------|
|                      | (MW) | (MW) | (MW) | St. (MW) | Res. (MW) | (MW)   | Capacity (MW)   |
| Available generation | 399  | 41   | 1175 | 62       | 431       | 5408   | 7795            |

| 2026                                | Existing Generation Capacity Needed (MW) | Deficiency<br>(MW) | Total MW<br>Requirement |
|-------------------------------------|------------------------------------------|--------------------|-------------------------|
| Category B (Single) <sup>21</sup>   | 7234                                     | 0                  | 7234                    |
| Category C (Multiple) <sup>22</sup> | 7234                                     | 0                  | 7234                    |

## 9. Big Creek/Ventura Area

## **Area Definition**

The transmission tie lines into the Big Creek/Ventura Area are:

- 1) Antelope #1 500/230 kV Transformer
- 2) Antelope #2 500/230 kV Transformer
- 3) Sylmar Pardee 230 kV #1 and #2 Lines

<sup>21</sup> LCR requirement for a single contingency means that there wouldn't be any criteria violations following the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

<sup>&</sup>lt;sup>22</sup> LCR requirement for multiple contingencies means that not only there wouldn't be any criteria violations following the loss of a single element, but also the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

- 4) Vincent Pardee 230 kV #2 Line
- 5) Vincent Santa Clara 230 kV Line

The substations that delineate the Big Creek/Ventura Area are:

- 1) Antelope 500 kV is out Antelope 230 kV is in
- 2) Antelope 500 kV is out Antelope 230 kV is in
- 3) Sylmar is out Pardee is in
- 4) Vincent is out Pardee is in
- 5) Vincent is out Santa Clara is in

The CEC-adopted demand forecast for 2026 is 3,807 MW<sup>23</sup> (this includes loads & losses and 305 MW AAEE). The total adjusted demand after including 200 MW peak shift adjustment<sup>24</sup> is 4,007 MW. A total of 3,973 MW of adjusted peak demand was modeled for the study.

Total units and qualifying capacity available in the Big Creek/Ventura area:

| MKT/SCHED<br>RESOURCE ID | BUS#  | BUS NAME | kV   | NQC   | _  | LCR SUB-AREA<br>NAME         | NQC Comments | CAISO Tag |
|--------------------------|-------|----------|------|-------|----|------------------------------|--------------|-----------|
| ACACIA_6_SOLAR           | 29878 | ACACIA_G | 0.48 | 0.00  | EQ | Big Creek                    | Energy Only  | Market    |
| ALAMO_6_UNIT             | 25653 | ALAMO SC | 13.8 | 15.07 | 1  | Big Creek                    | Aug NQC      | MUNI      |
| BIGCRK_2_EXESWD          | 24323 | PORTAL   | 4.8  | 9.35  | 1  | Big Creek, Rector,<br>Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24310 | B CRK2-3 | 7.2  | 16.55 | 5  | Big Creek, Rector,<br>Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24310 | B CRK2-3 | 7.2  | 18.02 | 6  | Big Creek, Rector,<br>Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24309 | B CRK2-2 | 7.2  | 18.22 | 3  | Big Creek, Rector,<br>Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24309 | B CRK2-2 | 7.2  | 19.19 | 4  | Big Creek, Rector,<br>Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24306 | B CRK1-1 | 7.2  | 19.38 | 1  | Big Creek, Rector,<br>Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24306 | B CRK1-1 | 7.2  | 21.03 | 2  | Big Creek, Rector,<br>Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24307 | B CRK1-2 | 13.8 | 21.03 | 3  | Big Creek, Rector,<br>Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24315 | B CRK 8  | 13.8 | 23.76 | 81 | Big Creek, Rector,<br>Vestal | Aug NQC      | Market    |

<sup>&</sup>lt;sup>23</sup> CEC-adopted 2015 IEPR demand forecast for 2016-2026, January 2016, for Mid Demand Baseline Case with Low AAEE Savings.

<sup>24</sup> The CEC provided a total of 1,010 MW of peak shift for all of SCE area. It is estimated that about 696 MW is for the LA Basin based on the ratio of the behind-the-meter PV modeled in the LA Basin vs. entire SCE area (i.e., 1195 MW / 1735 MW). The CEC provided the amount of peak shift adjustment for all of SCE area for the 2015 IEPR demand forecast to the ISO in November 2016.

| BIGCRK_2_EXESWD | 24307 | B CRK1-2 | 13.8 | 30.39  | 4  | Big Creek, Rector,<br>Vestal  | Aug NQC                | Market     |
|-----------------|-------|----------|------|--------|----|-------------------------------|------------------------|------------|
| BIGCRK_2_EXESWD | 24311 | B CRK3-1 | 13.8 | 34.09  | 1  | Big Creek, Rector,<br>Vestal  | Aug NQC                | Market     |
| BIGCRK_2_EXESWD | 24311 | B CRK3-1 | 13.8 | 34.09  | 2  | Big Creek, Rector,<br>Vestal  | Aug NQC                | Market     |
| BIGCRK_2_EXESWD | 24312 | B CRK3-2 | 13.8 | 34.09  | 3  | Big Creek, Rector,<br>Vestal  | Aug NQC                | Market     |
| BIGCRK_2_EXESWD | 24313 | B CRK3-3 | 13.8 | 37.99  | 5  | Big Creek, Rector,<br>Vestal  | Aug NQC                | Market     |
| BIGCRK_2_EXESWD | 24312 | B CRK3-2 | 13.8 | 39.93  | 4  | Big Creek, Rector,<br>Vestal  | Aug NQC                | Market     |
| BIGCRK_2_EXESWD | 24315 | B CRK 8  | 13.8 | 42.85  | 82 | Big Creek, Rector,<br>Vestal  | Aug NQC                | Market     |
| BIGCRK_2_EXESWD | 24314 | B CRK 4  | 11.5 | 49.09  | 41 | Big Creek, Rector,<br>Vestal  | Aug NQC                | Market     |
| BIGCRK_2_EXESWD | 24314 | B CRK 4  | 11.5 | 49.28  | 42 | Big Creek, Rector,<br>Vestal  | Aug NQC                | Market     |
| BIGCRK_2_EXESWD | 24308 | B CRK2-1 | 13.8 | 49.48  | 1  | Big Creek, Rector,<br>Vestal  | Aug NQC                | Market     |
| BIGCRK_2_EXESWD | 24308 | B CRK2-1 | 13.8 | 50.64  | 2  | Big Creek, Rector,<br>Vestal  | Aug NQC                | Market     |
| BIGCRK_2_EXESWD | 24317 | MAMOTH1G | 13.8 | 91.07  | 1  | Big Creek, Rector,<br>Vestal  | Aug NQC                | Market     |
| BIGCRK_2_EXESWD | 24318 | MAMOTH2G | 13.8 | 91.07  | 2  | Big Creek, Rector,<br>Vestal  | Aug NQC                | Market     |
| DELSUR_6_DRYFRB |       |          |      | 3.46   |    | Big Creek                     | Not modeled Aug<br>NQC | Market     |
| DELSUR_6_SOLAR1 |       |          |      | 4.49   |    | Big Creek                     | Not modeled Aug<br>NQC | Market     |
| EASTWD_7_UNIT   | 24319 | EASTWOOD | 13.8 | 199.00 | 1  | Big Creek, Rector,<br>Vestal  |                        | Market     |
| EDMONS_2_NSPIN  | 25605 | EDMON1AP | 14.4 | 16.86  | 1  | Big Creek                     | Pumps                  | MUNI       |
| EDMONS_2_NSPIN  | 25606 | EDMON2AP | 14.4 | 16.86  | 2  | Big Creek                     | Pumps                  | MUNI       |
| EDMONS_2_NSPIN  | 25607 | EDMON3AP | 14.4 | 16.86  | 3  | Big Creek                     | Pumps                  | MUNI       |
| EDMONS_2_NSPIN  | 25607 | EDMON3AP | 14.4 | 16.86  | 4  | Big Creek                     | Pumps                  | MUNI       |
| EDMONS_2_NSPIN  |       | EDMON4AP |      | 16.86  | 5  | Big Creek                     | Pumps                  | MUNI       |
| EDMONS_2_NSPIN  |       | EDMON4AP | 14.4 | 16.86  | 6  | Big Creek                     | Pumps                  | MUNI       |
| EDMONS_2_NSPIN  |       | EDMON5AP | 14.4 | 16.86  | 7  | Big Creek                     | Pumps                  | MUNI       |
| EDMONS_2_NSPIN  |       | EDMON5AP | 14.4 | 16.86  | 8  | Big Creek                     | Pumps                  | MUNI       |
| EDMONS_2_NSPIN  |       | EDMON6AP | 14.4 | 16.86  | 9  | Big Creek                     | Pumps                  | MUNI       |
| EDMONS_2_NSPIN  |       | EDMON6AP | 14.4 | 16.86  | 10 | Big Creek                     | Pumps                  | MUNI       |
| EDMONS_2_NSPIN  |       | EDMON7AP |      | 16.86  | 11 | Big Creek                     | Pumps                  | MUNI       |
| EDMONS_2_NSPIN  |       | EDMON7AP | 14.4 | 16.86  | 12 | Big Creek                     | Pumps                  | MUNI       |
| EDMONS_2_NSPIN  |       | EDMON8AP | 14.4 | 16.86  | 13 | Big Creek                     | Pumps                  | MUNI       |
| EDMONS_2_NSPIN  |       | EDMON8AP | 14.4 | 16.86  | 14 | Big Creek                     | Pumps                  | MUNI       |
| GLOW_6_SOLAR    |       | APPINV   | 0.42 | 0.00   |    | Big Creek                     | Energy Only            | Market     |
| GOLETA_2_QF     |       | GOLETA   | 66   | 0.08   |    | Ventura, S.Clara,<br>Moorpark | Not modeled Aug<br>NQC | QF/Selfgen |
| GOLETA_6_ELLWOD | 29004 | ELLWOOD  | 13.8 | 54.00  | 1  | Ventura, S.Clara,<br>Moorpark |                        | Market     |
|                 |       |          |      |        |    |                               |                        |            |

| 24326 | EXGEN1                                                                                                                                                                                                                        | 13.8 | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S1           | Ventura, S.Clara,<br>Moorpark | Aug NQC                    | QF/Selfgen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 24362 | EXGEN2                                                                                                                                                                                                                        | 13.8 | 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | G1           | Ventura, S.Clara,<br>Moorpark | Aug NQC                    | QF/Selfgen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 24057 | GOLETA                                                                                                                                                                                                                        | 66   | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | Ventura, S.Clara,<br>Moorpark | Not modeled Aug<br>NQC     | Market                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 24057 | GOLETA                                                                                                                                                                                                                        | 66   | 2.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | Ventura, S.Clara,<br>Moorpark | Not modeled Aug<br>NQC     | Market                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 29055 | PSTRIAS2                                                                                                                                                                                                                      | 18   | 78.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S2           | Big Creek                     | Aug NQC                    | Market                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 29051 | PSTRIAG1                                                                                                                                                                                                                      | 18   | 157.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G1           | Big Creek                     | Aug NQC                    | Market                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 29052 | PSTRIAG2                                                                                                                                                                                                                      | 18   | 157.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G2           | Big Creek                     | Aug NQC                    | Market                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 29054 | PSTRIAG3                                                                                                                                                                                                                      | 18   | 157.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G3           | Big Creek                     | Aug NQC                    | Market                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 29053 | PSTRIAS1                                                                                                                                                                                                                      | 18   | 162.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S1           | Big Creek                     | Aug NQC                    | Market                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |                                                                                                                                                                                                                               |      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | Big Creek                     | Not modeled<br>Energy Only | Market                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |                                                                                                                                                                                                                               |      | 3.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | Big Creek                     | Not modeled Aug<br>NQC     | Market                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |                                                                                                                                                                                                                               |      | 2.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | Big Creek                     | Not modeled Aug<br>NQC     | Market                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |                                                                                                                                                                                                                               |      | 7.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | Big Creek                     | Not modeled Aug<br>NQC     | Market                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 29306 | MCGPKGEN                                                                                                                                                                                                                      | 13.8 | 47.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1            | Ventura, S.Clara,<br>Moorpark |                            | Market                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 24099 | MOORPARK                                                                                                                                                                                                                      | 230  | 4.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | Ventura, Moorpark             | Not modeled                | Market                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 29952 | CAMGEN                                                                                                                                                                                                                        | 13.8 | 26.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D1           | Ventura, S.Clara,<br>Moorpark | Aug NQC                    | QF/Selfgen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 24098 | MOORPARK                                                                                                                                                                                                                      | 66   | 2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | Ventura, Moorpark             | Not modeled Aug<br>NQC     | QF/Selfgen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 29900 | ALPINE_G                                                                                                                                                                                                                      | 0.48 | 50.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EQ           | Big Creek                     | Aug NQC                    | Market                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |                                                                                                                                                                                                                               |      | 13.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | Big Creek                     | Not modeled Aug<br>NQC     | Market                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 24102 | OMAR 1G                                                                                                                                                                                                                       | 13.8 | 77.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1            | Big Creek                     |                            | Net Seller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 24103 | OMAR 2G                                                                                                                                                                                                                       | 13.8 | 77.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2            | Big Creek                     |                            | Net Seller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 24104 | OMAR 3G                                                                                                                                                                                                                       | 13.8 | 77.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3            | Big Creek                     |                            | Net Seller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 24105 | OMAR 4G                                                                                                                                                                                                                       | 13.8 | 77.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4            | Big Creek                     |                            | Net Seller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 25614 | OSO A P                                                                                                                                                                                                                       | 13.2 | 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1            | Big Creek                     | Pumps                      | MUNI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 25614 | OSO A P                                                                                                                                                                                                                       | 13.2 | 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2            | Big Creek                     | Pumps                      | MUNI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 25614 | OSO A P                                                                                                                                                                                                                       | 13.2 | 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3            | Big Creek                     | Pumps                      | MUNI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 25614 | OSO A P                                                                                                                                                                                                                       | 13.2 | 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4            | Big Creek                     | Pumps                      | MUNI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 25615 | OSO B P                                                                                                                                                                                                                       | 13.2 | 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5            | Big Creek                     | Pumps                      | MUNI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 25615 | OSO B P                                                                                                                                                                                                                       | 13.2 | 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6            | Big Creek                     | Pumps                      | MUNI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 25615 | OSO B P                                                                                                                                                                                                                       | 13.2 | 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7            | Big Creek                     | Pumps                      | MUNI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 25615 | OSO B P                                                                                                                                                                                                                       | 13.2 | 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8            | Big Creek                     | Pumps                      | MUNI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 24113 | PANDOL                                                                                                                                                                                                                        | 13.8 | 20.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2            | Big Creek, Vestal             | Aug NQC                    | Market                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 24113 | PANDOL                                                                                                                                                                                                                        | 13.8 | 25.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1            | Big Creek, Vestal             | Aug NQC                    | Market                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |                                                                                                                                                                                                                               |      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | Big Creek                     | Not modeled<br>Energy Only | Market                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 24212 | RECTOR                                                                                                                                                                                                                        | 66   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | Big Creek, Rector,<br>Vestal  | Not modeled Aug<br>NQC     | Market                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 24212 | RECTOR                                                                                                                                                                                                                        | 66   | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | Big Creek, Rector,<br>Vestal  | Not modeled Aug<br>NQC     | Market                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | 24362<br>24057<br>24057<br>29055<br>29051<br>29054<br>29053<br>29054<br>29053<br>29054<br>29053<br>24099<br>29952<br>24098<br>29952<br>24104<br>24105<br>25614<br>25614<br>25615<br>25615<br>25615<br>25615<br>24113<br>24113 |      | 24362 EXGEN2 13.8  24057 GOLETA 66  24057 GOLETA 66  29055 PSTRIAS2 18  29051 PSTRIAG1 18  29052 PSTRIAG2 18  29053 PSTRIAG3 18  29053 PSTRIAS1 18  29306 MCGPKGEN 13.8  24099 MOORPARK 230  29952 CAMGEN 13.8  24098 MOORPARK 66  29900 ALPINE_G 0.48  24102 OMAR 1G 13.8  24102 OMAR 1G 13.8  24104 OMAR 3G 13.8  24104 OMAR 3G 13.8  24105 OMAR 4G 13.8  25614 OSO A P 13.2  25614 OSO A P 13.2  25615 OSO B P 13.2  24113 PANDOL 13.8  24212 RECTOR 66 | 24362 EXGEN2 | 24362 EXGEN2                  | 24326 EXGENI               | 24326 EXGENT   13.8   0.47   G1   Ventura, S.Clara, Moorpark   Aug NQC   24057 GOLETA   66   0.68   Ventura, S.Clara, Moorpark   Not modeled Aug NQC   24057 GOLETA   66   2.90   Ventura, S.Clara, Moorpark   NQC   24057 GOLETA   66   2.90   Ventura, S.Clara, Moorpark   NQC   29055 PSTRIAS2   18   78.90   S2   Big Creek   Aug NQC   29055 PSTRIAG1   18   157.90   G2   Big Creek   Aug NQC   29052 PSTRIAG3   18   157.90   G3   Big Creek   Aug NQC   29054 PSTRIAG3   18   157.90   G3   Big Creek   Aug NQC   29053 PSTRIAS1   18   162.40   S1   Big Creek   Aug NQC   29053 PSTRIAS1   18   162.40   S1   Big Creek   Aug NQC   29054 PSTRIAG3   18   157.90   G3   Big Creek   Aug NQC   29055 PSTRIAG3   18   167.90   G3   Big Creek   Aug NQC   29056 PSTRIAG3   18   162.40   S1   Big Creek   Not modeled Aug NQC   29058 PSTRIAG3   18   162.40   S1   Big Creek   Not modeled Aug NQC   29059 PSTRIAG3   18   162.40   S1   Big Creek   Not modeled Aug NQC   29306 MCGPKGEN   13.8   47.20   1   Ventura, S.Clara, Moorpark   24099 MOORPARK   230   4.19   Ventura, Moorpark   Not modeled Aug NQC   24098 MOORPARK   66   2.12   Ventura, Moorpark   Not modeled Aug NQC   24098 MOORPARK   66   2.12   Ventura, Moorpark   Not modeled Aug NQC   24102 DMAR 1G   13.8   77.25   Big Creek   Aug NQC   24102 DMAR 1G   13.8   77.25   Big Creek   Aug NQC   24103 DMAR 2G   13.8   77.25   Big Creek   Pumps   25614 OSO A P   13.2   2.25   Big Creek   Pumps   25614 OSO A P   13.2   2.25   Big Creek   Pumps   25615 OSO B P   13.2   2.25   Big Creek   Pumps   25615 OSO B P   13.2   2.25   Big Creek   Pumps   25615 OSO B P   13.2   2.25   Big Creek   Pumps   25615 OSO B P   13.2   2.25   Big Creek   Pumps   25615 OSO B P   13.2   2.25   Big Creek   Pumps   25615 OSO B P   13.2   2.25   Big Creek   Pumps   25615 OSO B P   13.2   2.25   Big Creek   Pumps   25615 OSO B P   13.2   2.25   Big Creek   Pumps   25615 OSO B P   13.2   2.25   Big Creek   Pumps   25615 OSO B P   13.2   2.25   Big Creek   Pumps   25615 OSO B P   13.2   2.25   Big Creek   Pumps   25615 OSO B |

| RECTOR_2_QF     | 24212 | RECTOR   | 66   | 0.41  |    | Big Creek, Rector,<br>Vestal  | Not modeled Aug<br>NQC     | QF/Selfgen |
|-----------------|-------|----------|------|-------|----|-------------------------------|----------------------------|------------|
| RECTOR_7_TULARE | 24212 | RECTOR   | 66   | 0.00  |    | Big Creek, Rector,<br>Vestal  | Not modeled                | Market     |
| RSMSLR_6_SOLAR1 |       |          |      | 16.81 |    | Big Creek                     | Not modeled Aug<br>NQC     | Market     |
| RSMSLR_6_SOLAR2 |       |          |      | 15.57 |    | Big Creek                     | Not modeled Aug<br>NQC     | Market     |
| SAUGUS_2_TOLAND | 24135 | SAUGUS   | 66   | 0.00  |    | Big Creek                     | Not modeled<br>Energy Only | Market     |
| SAUGUS_6_MWDFTH | 24135 | SAUGUS   | 66   | 7.36  |    | Big Creek                     | Not modeled Aug<br>NQC     | MUNI       |
| SAUGUS_6_PTCHGN | 24118 | PITCHGEN | 13.8 | 19.47 | D1 | Big Creek                     | Aug NQC                    | MUNI       |
| SAUGUS_6_QF     | 24135 | SAUGUS   | 66   | 0.78  |    | Big Creek                     | Not modeled Aug<br>NQC     | QF/Selfgen |
| SAUGUS_7_CHIQCN | 24135 | SAUGUS   | 66   | 3.96  |    | Big Creek                     | Not modeled Aug<br>NQC     | Market     |
| SAUGUS_7_LOPEZ  | 24135 | SAUGUS   | 66   | 5.34  |    | Big Creek                     | Not modeled Aug<br>NQC     | QF/Selfgen |
| SNCLRA_6_OXGEN  | 24110 | OXGEN    | 13.8 | 34.62 | D1 | Ventura, S.Clara,<br>Moorpark | Aug NQC                    | QF/Selfgen |
| SNCLRA_6_PROCGN | 24119 | PROCGEN  | 13.8 | 44.22 | D1 | Ventura, S.Clara,<br>Moorpark | Aug NQC                    | Market     |
| SNCLRA_6_QF     |       |          |      | 0.00  |    | Ventura, S.Clara,<br>Moorpark | Not modeled Aug<br>NQC     | QF/Selfgen |
| SNCLRA_6_WILLMT | 24159 | WILLAMET | 13.8 | 13.61 | D1 | Ventura, S.Clara,<br>Moorpark | Aug NQC                    | QF/Selfgen |
| SPRGVL_2_QF     | 24215 | SPRINGVL | 66   | 0.23  |    | Big Creek, Rector,<br>Vestal  | Not modeled Aug<br>NQC     | QF/Selfgen |
| SPRGVL_2_TULE   | 24215 | SPRINGVL | 66   | 0.00  |    | Big Creek, Rector,<br>Vestal  | Not modeled Aug<br>NQC     | Market     |
| SPRGVL_2_TULESC | 24215 | SPRINGVL | 66   | 0.29  |    | Big Creek, Rector,<br>Vestal  | Not modeled Aug<br>NQC     | Market     |
| SUNSHN_2_LNDFL  | 29954 | WDT273   | 13.7 | 3.04  | 4  | Big Creek                     | Aug NQC                    | Market     |
| SUNSHN_2_LNDFL  | 29954 | WDT273   | 13.7 | 3.04  | 5  | Big Creek                     | Aug NQC                    | Market     |
| SUNSHN_2_LNDFL  | 29954 | WDT273   | 13.7 | 3.05  | 1  | Big Creek                     | Aug NQC                    | Market     |
| SUNSHN_2_LNDFL  | 29954 | WDT273   | 13.7 |       | 2  | Big Creek                     | Aug NQC                    | Market     |
| SUNSHN_2_LNDFL  | 29954 | WDT273   | 13.7 |       | 3  | Big Creek                     | Aug NQC                    | Market     |
| SYCAMR_2_UNIT 1 |       | SYCCYN1G | 13.8 |       | 1  | Big Creek                     | Aug NQC                    | Net Seller |
| SYCAMR_2_UNIT 2 |       | SYCCYN2G | 13.8 |       | 2  | Big Creek                     | Aug NQC                    | Net Seller |
| SYCAMR_2_UNIT 3 |       | SYCCYN3G | 13.8 |       | 3  | Big Creek                     | Aug NQC                    | Net Seller |
| SYCAMR_2_UNIT 4 |       | SYCCYN4G | 13.8 | 85.00 | 4  | Big Creek                     | Aug NQC                    | Net Seller |
| TENGEN_2_PL1X2  | +     | TENNGEN1 | 13.8 | 18.12 | D1 | Big Creek                     | Aug NQC                    | Net Seller |
| TENGEN_2_PL1X2  |       | TENNGEN2 | 13.8 | 18.12 | D2 | Big Creek                     | Aug NQC                    | Net Seller |
| VESTAL_2_KERN   |       | KR 3-1   | 11   | 0.22  | 1  | Big Creek, Vestal             | Aug NQC                    | QF/Selfgen |
| VESTAL_2_KERN   | 24373 | KR 3-2   | 11   | 0.22  | 1  | Big Creek, Vestal             | Aug NQC                    | QF/Selfgen |
| VESTAL_2_RTS042 |       |          |      | 0.00  |    | Big Creek, Vestal             | Not modeled<br>Energy Only | Market     |
| VESTAL_2_WELLHD | 24116 | WELLGEN  | 13.8 | 49.00 | 1  | Big Creek, Vestal             |                            | Market     |
| VESTAL_6_QF     | 24152 | VESTAL   | 66   | 0.31  |    | Big Creek, Vestal             | Not modeled Aug<br>NQC     | QF/Selfgen |
| VESTAL_6_ULTRGN | 24150 | ULTRAGEN | 13.8 | 27.87 | 1  | Big Creek, Vestal             | Aug NQC                    | QF/Selfgen |

| VESTAL_6_WDFIRE | 24152 | VESTAL   | 66   | 5.63   |    | Big Creek, Vestal             | Not modeled Aug<br>NQC | QF/Selfgen |
|-----------------|-------|----------|------|--------|----|-------------------------------|------------------------|------------|
| WARNE_2_UNIT    | 25651 | WARNE1   | 13.8 | 38.00  | 1  | Big Creek                     | Aug NQC                | MUNI       |
| WARNE_2_UNIT    | 25652 | WARNE2   | 13.8 | 38.00  | 1  | Big Creek                     | Aug NQC                | MUNI       |
| APPGEN_6_UNIT 1 | 24009 | APPGEN1G | 13.8 | 0.00   | 1  | Big Creek                     | No NQC - hist. data    | Market     |
| APPGEN_6_UNIT 1 | 24010 | APPGEN2G | 13.8 | 0.00   | 2  | Big Creek                     | No NQC - hist. data    | Market     |
| APPGEN_6_UNIT 1 | 24361 | APPGEN3G | 13.8 | 0.00   | 3  | Big Creek                     | No NQC - hist. data    | Market     |
| NA              | 24422 | PALMDALE | 66   | 0.00   | 1  | Big Creek                     | No NQC - hist. data    | Market     |
| NA              | 24340 | CHARMIN  | 13.8 | 15.00  | 1  | Ventura, S.Clara,<br>Moorpark | No NQC - hist. data    | 3          |
| NA              | 24370 | KAWGEN   | 13.8 | 17.00  | 1  | Big Creek, Rector,<br>Vestal  | No NQC - hist. data    | Market     |
| VESTAL_6_WDFIRE | 29008 | LAKEGEN  | 13.8 | 11.00  | 1  | Big Creek, Vestal             | Aug NQC                | QF/Selfgen |
| New Unit        | 29884 | DAWNGEN  | 0.82 | 20.00  | EQ | Big Creek                     | No NQC - Pmax          | Market     |
| New Unit        | 29888 | TWILGHTG | 0.82 | 20.00  | EQ | Big Creek                     | No NQC - Pmax          | Market     |
| New Unit        | 29918 | VLYFLR_G | 0.2  | 20.00  | EQ | Big Creek                     | No NQC - Pmax          | Market     |
| New Unit        | 29954 | WDT273   | 66   | 10.00  | EQ | Big Creek                     | No NQC - Pmax          | Market     |
| New Unit        | 29952 | CAMGEN   | 14.2 | 28.00  | D1 | Ventura, S.Clara,<br>Moorpark | No NQC - Pmax          | Market     |
| New Unit        | 24089 | MANDLY1G | 13.8 | 131.00 | X1 | Ventura, S.Clara,<br>Moorpark | No NQC - Pmax          | Market     |
| New Unit        | 24090 | MANDLY2G | 13.8 | 131.00 | X2 | Ventura, S.Clara,<br>Moorpark | No NQC - Pmax          | Market     |
| MNDALY_7_UNIT 1 | 24089 | MANDLY1G | 13.8 | 0.00   | 1  | Ventura, S.Clara,<br>Moorpark | Retired by 2021        | Market     |
| MNDALY_7_UNIT 2 | 24090 | MANDLY2G | 13.8 | 0.00   | 2  | Ventura, S.Clara,<br>Moorpark | Retired by 2021        | Market     |
| MNDALY_7_UNIT 3 | 24222 | MANDLY3G | 16   | 0.00   | 3  | Ventura, S.Clara,<br>Moorpark | Retired by 2021        | Market     |
| ORMOND_7_UNIT 1 | 24107 | ORMOND1G | 26   | 0.00   | 1  | Ventura, Moorpark             | Retired by 2021        | Market     |
| ORMOND_7_UNIT 2 | 24108 | ORMOND2G | 26   | 0.00   | 2  | Ventura, Moorpark             | Retired by 2021        | Market     |

# Major new projects modeled:

None

# **Critical Contingency Analysis Summary**

### Rector Sub-area:

The most critical contingency is the loss of the Rector - Vestal 230 kV line with the Eastwood unit out of service, which could thermally overload the remaining Rector - Vestal 230 kV line. This limiting contingency establishes a local capacity need of 476 MW (includes 1 MW of QF generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

### **Effectiveness factors:**

The following table has units that have at least 5% effectiveness to the abovementioned constraint within Rector sub-area:

| Gen Bus | Gen Name | Gen ID | MW Eff Fctr (%) |
|---------|----------|--------|-----------------|
| 24370   | KAWGEN   | 1      | 51              |
| 24306   | B CRK1-1 | 1      | 46              |
| 24306   | B CRK1-1 | 2      | 46              |
| 24307   | B CRK1-2 | 3      | 46              |
| 24307   | B CRK1-2 | 4      | 46              |
| 24319   | EASTWOOD | 1      | 46              |
| 24323   | PORTAL   | 1      | 46              |
| 24308   | B CRK2-1 | 1      | 45              |
| 24308   | B CRK2-1 | 2      | 45              |
| 24309   | B CRK2-2 | 3      | 45              |
| 24309   | B CRK2-2 | 4      | 45              |
| 24310   | B CRK2-3 | 5      | 45              |
| 24310   | B CRK2-3 | 6      | 45              |
| 24315   | B CRK 8  | 81     | 45              |
| 24315   | B CRK 8  | 82     | 45              |
| 24311   | B CRK3-1 | 1      | 45              |
| 24311   | B CRK3-1 | 2      | 45              |
| 24312   | B CRK3-2 | 3      | 45              |
| 24312   | B CRK3-2 | 4      | 45              |
| 24313   | B CRK3-3 | 5      | 45              |
| 24317   | MAMOTH1G | 1      | 45              |
| 24318   | MAMOTH2G | 2      | 45              |
| 24314   | B CRK 4  | 41     | 43              |
| 24314   | B CRK 4  | 42     | 43              |
|         |          |        |                 |

### Vestal Sub-area:

The most critical contingency is the loss of the Magunden - Vestal 230 kV line with the Eastwood unit out of service, which could thermally overload the remaining Magunden - Vestal 230 kV line. This limiting contingency establishes a local capacity need of 693 MW (includes 46 MW of QF generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

### **Effectiveness factors:**

The following table has units that have at least 5% effectiveness to the abovementioned constraint within Vestal sub-area:

| Gen Bus | Gen Name | Gen ID | MW Eff Fctr (%) |
|---------|----------|--------|-----------------|
| 24113   | PANDOL   | 1      | 65              |
| 24113   | PANDOL   | 2      | 65              |
| 24116   | WELLGEN  | 1      | 65              |
| 24150   | ULTRAGEN | 1      | 65              |
| 24372   | KR 3-1   | 1      | 65              |
| 24373   | KR 3-2   | 2      | 65              |
| 28019   | WDT190G  | 1      | 65              |
| 29008   | LAKEGEN  | 1      | 65              |
| 24370   | KAWGEN   | 1      | 50              |
| 24306   | B CRK1-1 | 1      | 44              |
| 24306   | B CRK1-1 | 2      | 44              |
| 24307   | B CRK1-2 | 3      | 44              |
| 24307   | B CRK1-2 | 4      | 44              |
| 24319   | EASTWOOD | 1      | 44              |
| 24323   | PORTAL   | 1      | 44              |
| 24308   | B CRK2-1 | 1      | 44              |
| 24308   | B CRK2-1 | 2      | 44              |
| 24309   | B CRK2-2 | 3      | 44              |
| 24309   | B CRK2-2 | 4      | 44              |
| 24310   | B CRK2-3 | 5      | 44              |
| 24310   | B CRK2-3 | 6      | 44              |
| 24315   | B CRK 8  | 81     | 44              |
| 24315   | B CRK 8  | 82     | 44              |
| 24311   | B CRK3-1 | 1      | 44              |
| 24311   | B CRK3-1 | 2      | 44              |
| 24312   | B CRK3-2 | 3      | 44              |
| 24312   | B CRK3-2 | 4      | 44              |
| 24313   | B CRK3-3 | 5      | 44              |
| 24317   | MAMOTH1G | 1      | 44              |
| 24318   | MAMOTH2G | 2      | 44              |
| 24314   | B CRK 4  | 41     | 42              |
| 24314   | B CRK 4  | 42     | 42              |

## Santa Clara Sub-area:

The most critical contingency is the loss of the Pardee - Santa Clara 230 kV line followed by the loss of Moorpark - Santa Clara 230 kV #1 and #2 lines, which would cause voltage collapse. This limiting contingency establishes a local capacity need of 250 MW (includes 91 MW QF generation, 5 MW of battery storage and 2 MW of preffered resources) as the minimum capacity necessary for reliable load serving capability within this sub-area.

### **Effectiveness factors:**

All units within this area have the same effectiveness factor.

### Moorpark Sub-area:

The most critical contingency is the loss of the Moorpark - Pardee 230 kV #3 line followed by the loss of the Moorpark - Pardee 230 kV #1 and #2 lines, which will cause voltage collapse. This limiting contingency establishes a local capacity need of 536 MW (includes 93 MW QF generation, 5 MW of battery storage and 12 MW of preffered resources) as the minimum capacity necessary for reliable load serving capability within this sub-area.

#### **Effectiveness factors:**

All units within this area have the same effectiveness factor.

## Big Creek/Ventura overall:

The most critical contingency is the loss of the Lugo - Victorville 500 kV line followed by loss of one of the Sylmar - Pardee 230 kV line, which would thermally overload the remaining Sylmar - Pardee 230 kV line. This limiting contingency establishes a local capacity need of 2528 MW (includes 145 MW of QF and 372 MW of MUNI generation, 5 MW of battery storage and 12 MW of preffered resources) as the minimum capacity necessary for reliable load serving capability within this area.

The single most critical contingency is the loss of Sylmar - Pardee #1 (or # 2) line with Pastoria power plant (CCGT) out of service, which could thermally overload the remaining Sylmar - Pardee #2 or #1 230 kV line. This limiting contingency establishes a local capacity need of 2310 MW (includes 145 MW of QF and 372 MW of MUNI generation, 5 MW of battery storage and 12 MW of preffered resources).

### Effectiveness factors:

The following table has effectiveness factors to the most critical contingency.

| Gen Bus | Gen Name | Gen ID | MW Eff Fctr (%) |
|---------|----------|--------|-----------------|
| 24009   | APPGEN1G | 1      | 31              |
| 24010   | APPGEN2G | 2      | 31              |
| 24118   | PITCHGEN | D1     | 31              |
| 24148   | TENNGEN1 | D1     | 31              |
| 24149   | TENNGEN2 | D2     | 31              |
| 24361   | APPGEN3G | 3      | 31              |
| 29954   | WDT273   | EQ     | 31              |
| 24107   | ORMOND1G | 1      | 30              |
| 24108   | ORMOND2G | 2      | 30              |
| 25651   | WARNE1   | 1      | 28              |
| 25652   | WARNE2   | 1      | 28              |
| 24089   | MANDLY1G | 1      | 26              |
| 24090   | MANDLY2G | 2      | 26              |
| 24110   | OXGEN    | D1     | 26              |
| 24119   | PROCGEN  | D1     | 26              |
| 24127   | S.CLARA  | 1      | 26              |
| 24159   | WILLAMET | D1     | 26              |
| 24222   | MANDLY3G | 3      | 26              |
| 24326   | EXGEN1   | S1     | 26              |
| 24340   | CHARMIN  | 1      | 26              |
| 24362   | EXGEN2   | G1     | 26              |
| 29004   | ELLWOOD  | 1      | 26              |
| 29306   | MCGPKGEN | 1      | 26              |
| 29952   | CAMGEN   | D1     | 26              |
| 25653   | ALAMO SC | 1      | 26              |
| 29051   | PSTRIAG1 | G1     | 25              |
| 29052   | PSTRIAG2 | G2     | 25              |
| 29053   | PSTRIAS1 | S1     | 25              |
| 29054   | PSTRIAG3 | G3     | 25              |
| 29055   | PSTRIAS2 | S2     | 25              |
| 24102   | OMAR 1G  | 1      | 21              |
| 24103   | OMAR 2G  | 2      | 21              |
| 24104   | OMAR 3G  | 3      | 21              |
| 24105   | OMAR 4G  | 4      | 21              |
| 24113   | PANDOL   | 1      | 21              |
| 24113   | PANDOL   | 2      | 21              |
| 24116   | WELLGEN  | 1      | 21              |
| 24143   | SYCCYN1G | 1      | 21              |
| 24144   | SYCCYN2G | 2      | 21              |
| 24145   | SYCCYN3G | 3      | 21              |
| 24146   | SYCCYN4G | 4      | 21              |
| 24150   | ULTRAGEN | 1      | 21              |
| 24306   | B CRK1-1 | 1      | 21              |
| 24306   | B CRK1-1 | 2      | 21              |

| 24307 | B CRK1-2 | 3  | 21 |
|-------|----------|----|----|
| 24307 | B CRK1-2 | 4  | 21 |
| 24308 | B CRK2-1 | 1  | 21 |
| 24308 | B CRK2-1 | 2  | 21 |
| 24309 | B CRK2-2 | 3  | 21 |
| 24309 | B CRK2-2 | 4  | 21 |
| 24310 | B CRK2-3 | 5  | 21 |
| 24310 | B CRK2-3 | 6  | 21 |
| 24311 | B CRK3-1 | 1  | 21 |
| 24311 | B CRK3-1 | 2  | 21 |
| 24312 | B CRK3-2 | 3  | 21 |
| 24312 | B CRK3-2 | 4  | 21 |
| 24313 | B CRK3-3 | 5  | 21 |
| 24314 | B CRK 4  | 41 | 21 |
| 24314 | B CRK 4  | 42 | 21 |
| 24315 | B CRK 8  | 81 | 21 |
| 24315 | B CRK 8  | 82 | 21 |
| 24317 | MAMOTH1G | 1  | 21 |
| 24318 | MAMOTH2G | 2  | 21 |
| 24319 | EASTWOOD | 1  | 21 |
| 24323 | PORTAL   | 1  | 21 |
| 24370 | KAWGEN   | 1  | 21 |
| 24372 | KR 3-1   | 1  | 21 |
| 24373 | KR 3-2   | 2  | 21 |
| 28019 | WDT190G  | 1  | 21 |
| 29008 | LAKEGEN  | 1  | 21 |
| 29900 | ALPINE_G | EQ | 17 |
| 24422 | PALMDALE | 1  | 8  |
| 29884 | DAWNGEN  | EQ | 8  |
| 29888 | TWILGHTG | EQ | 8  |
| 29896 | APPINV   | EQ | 8  |
| 29918 | VLYFLR_G | EQ | 8  |
|       |          |    |    |

# Changes compared to last year's results:

Compared with 2021 the load forecast is up by 124 MW and the LCR need has increased by 231 MW, due to load increase.

# Big Creek/Ventura Overall Requirements:

| 2026                 | QF   | Muni | Baterry  | Preffered | Market | Max. Qualifying |  |
|----------------------|------|------|----------|-----------|--------|-----------------|--|
|                      | (MW) | (MW) | St. (MW) | Res. (MW) | (MW)   | Capacity (MW)   |  |
| Available generation | 145  | 372  | 5        | 12        | 3143   | 3677            |  |

| 2026                                | Existing Generation  | Deficiency | Total MW    |
|-------------------------------------|----------------------|------------|-------------|
|                                     | Capacity Needed (MW) | (MW)       | Requirement |
| Category B (Single) <sup>25</sup>   | 2310                 | 0          | 2310        |
| Category C (Multiple) <sup>26</sup> | 2528                 | 0          | 2528        |

## 10. San Diego-Imperial Valley Area

## **Area Definition**

The transmission tie lines forming a boundary around the Greater San Diego-Imperial Valley area include:

- 1) Imperial Valley North Gila 500 kV Line
- 2) Otay Mesa Tijuana 230 kV Line
- 3) San Onofre San Luis Rey #1 230 kV Line
- 4) San Onofre San Luis Rey #2 230 kV Line
- 5) San Onofre San Luis Rey #3 230 kV Line
- 6) San Onofre Talega 230 kV Line
- 7) San Onofre Capistrano 230 kV Line
- 8) Imperial Valley El Centro 230 kV Line
- 9) Imperial Valley PFC La Rosita 230 kV Line

The substations that delineate the Greater San Diego-Imperial Valley area are:

- 1) Imperial Valley is in North Gila is out
- 2) Otay Mesa is in Tijuana is out
- 3) San Onofre is out San Luis Rey is in
- 4) San Onofre is out San Luis Rey is in
- 5) San Onofre is out San Luis Rey is in
- 6) San Onofre is out Talega is in
- 7) San Onofre is out Talega is in
- 8) Imperial Valley is in El Centro is out
- 9) Imperial Valley PFC is in La Rosita is out

<sup>25</sup> LCR requirement for a single contingency means that there wouldn't be any criteria violations following the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

<sup>&</sup>lt;sup>26</sup> LCR requirement for multiple contingencies means that not only there wouldn't be any criteria violations following the loss of a single element, but also the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

The CEC-adopted demand forecast for 2026 is 4,580 MW<sup>27</sup> (this includes loads & losses and 451 MW AAEE). The total adjusted demand after including 720 MW peak shift adjustment<sup>28</sup> is 5,300 MW. A total of 5,307 MW of adjusted peak demand with this peak shift was modeled for the study.

Total units and qualifying capacity available in this area:

| MKT/SCHED<br>RESOURCE ID | BUS<br># | BUS NAME   | kV   | NQC   |    | LCR SUB-AREA<br>NAME          | NQC Comments           | CAISO<br>Tag |
|--------------------------|----------|------------|------|-------|----|-------------------------------|------------------------|--------------|
| BORDER_6_UNITA1          | 22149    | CALPK_BD   | 13.8 | 48.00 | 1  | San Diego, Border             |                        | Market       |
| BREGGO_6_DEGRSL          |          |            |      | 4.36  |    | San Diego                     | Not modeled Aug<br>NQC | Market       |
| BREGGO_6_SOLAR           | 22082    | BR GEN1    | 0.21 | 20.46 | 1  | San Diego                     | Aug NQC                | Market       |
| CBRLLO_6_PLSTP1          | 22092    | CABRILLO   | 69   | 2.83  | 1  | San Diego                     | Aug NQC                | Market       |
| CCRITA_7_RPPCHF          | 22124    | CHCARITA   | 138  | 3.25  | 1  | San Diego                     | Aug NQC                | Market       |
| CHILLS_1_SYCENG          | 22120    | CARLTNHS   | 138  | 0.54  | 1  | San Diego                     | Aug NQC                | QF/Selfgen   |
| CHILLS_1_SYCLFL          | 22120    | CARLTNHS   | 138  | 0.54  |    | San Diego                     | Not modeled Aug<br>NQC | Net Seller   |
| CHILLS_7_UNITA1          | 22120    | CARLTNHS   | 138  | 1.52  | 2  | San Diego                     | Aug NQC                | QF/Selfgen   |
| CNTNLA_2_SOLAR1          | 23463    | DW GEN3&4  | 0.33 | 97.02 | 1  | None                          | Aug NQC                | Market       |
| CNTNLA_2_SOLAR2          | 23463    | DW GEN3&4  | 0.33 | 0.00  | 2  | None                          | Energy Only            | Market       |
| CPSTNO_7_PRMADS          | 22112    | CAPSTRNO   | 138  | 5.12  | 1  | San Diego                     | Aug NQC                | Market       |
| CPVERD_2_SOLAR           | 23301    | IV GEN3 G2 | 0.31 | 48.54 | G2 | None                          | Aug NQC                | Market       |
| CPVERD_2_SOLAR           | 23309    | IV GEN3 G1 | 0.31 | 48.54 | G1 | None                          | Aug NQC                | Market       |
| CRELMN_6_RAMON1          |          |            |      | 1.53  |    | San Diego                     | Not modeled Aug<br>NQC | Market       |
| CRELMN_6_RAMON2          |          |            |      | 3.89  |    | San Diego                     | Not modeled Aug<br>NQC | Market       |
| CRSTWD_6_KUMYAY          | 22915    | KUMEYAAY   | 0.69 | 5.00  | 1  | San Diego                     | Aug NQC                | Wind         |
| CSLR4S_2_SOLAR           | 23299    | DW GEN1 G2 | 0.32 | 42.32 | G2 | None                          | Aug NQC                | Market       |
| CSLR4S_2_SOLAR           | 23298    | DW GEN1 G1 | 0.32 | 42.33 | G1 | None                          | Aug NQC                | Market       |
| DIVSON_6_NSQF            | 22172    | DIVISION   | 69   | 41.54 | 1  | San Diego                     | Aug NQC                | QF/Selfgen   |
| EGATE_7_NOCITY           | 22204    | EASTGATE   | 69   | 0.24  | 1  | San Diego                     | Aug NQC                | QF/Selfgen   |
| ELCAJN_6_LM6K            | 23320    | EC GEN2    | 13.8 | 48.10 | 1  | San Diego, El Cajon           | -                      | Market       |
| ELCAJN_6_UNITA1          | 22150    | EC GEN1    | 13.8 | 45.42 | 1  | San Diego, El Cajon           |                        | Market       |
| ENERSJ_2_WIND            |          |            |      | 24.82 |    | None                          | Aug NQC                | Wind         |
| ESCNDO_6_PL1X2           | 22257    | ESGEN      | 13.8 | 48.71 | 1  | San Diego,<br>Escondido       |                        | Market       |
| ESCNDO_6_UNITB1          | 22153    | CALPK_ES   | 13.8 | 48.00 | 1  | San Diego,<br>Escondido       |                        | Market       |
| ESCO_6_GLMQF             | 22332    | GOALLINE   | 69   | 36.41 | 1  | San Diego, Esco,<br>Escondido | Aug NQC                | Net Seller   |
| IVSLRP_2_SOLAR1          | 23441    | DW GEN2 G2 | 0.36 | 50.27 | 1  | None                          | Aug NQC                | Market       |

<sup>&</sup>lt;sup>27</sup> CEC-adopted 2015 IEPR demand forecast for 2016-2026, January 2016, for Mid Demand Baseline Case with Low AAEE Savings.

<sup>&</sup>lt;sup>28</sup> The CEC provided this amount of peak shift adjustment for the 2015 IEPR demand forecast to the ISO in November 2016.

| VSLRP_2_SOLAR1  | 23442 | DW GEN2 G3      | 0.36 | 50.27  | 1  | None               | Aug NQC                    | Market     |
|-----------------|-------|-----------------|------|--------|----|--------------------|----------------------------|------------|
|                 |       | DW GEN2 G1      | 0.36 | 50.28  |    | None               | Aug NQC                    | Market     |
| LAKHDG_6_UNIT 1 |       | LKHODG1         | 13.8 | 20.00  | 1  | San Diego          | <u> </u>                   | Market     |
| LAKHDG_6_UNIT 2 |       | LKHODG2         | 13.8 | 20.00  |    | San Diego          |                            | Market     |
| LARKSP_6_UNIT 1 |       | LRKSPBD1        | 13.8 | 46.00  | 1  | San Diego, Border  |                            | Market     |
| LARKSP_6_UNIT 2 |       | LRKSPBD2        | 13.8 | 46.00  | 1  | San Diego, Border  |                            | Market     |
| LAROA1_2_UNITA1 |       | LRP-U1          | 16   | 165    | 1  | None               |                            | Market     |
|                 |       | INTBST          | 18   | 157    |    | None               |                            | Market     |
|                 |       | INTBCT          | 16   | 165    |    | None               |                            | Market     |
| MRGT_6_MEF2     |       | MEF_MR2         | 13.8 | 47.90  |    | San Diego, Miramar |                            | Market     |
|                 |       | MEF_MR1         | 13.8 | 48.00  |    | San Diego, Miramar |                            | Market     |
| MSHGTS_6_MMARLF |       |                 | 69   | 3.36   |    | San Diego, Mission | Aug NQC                    | Market     |
| MSSION_2_QF     |       | MISSION         | 69   | 0.73   |    | San Diego          |                            | QF/Selfgen |
| NIMTG_6_NIQF    |       | NOISLMTR        | 69   | 34.47  |    | San Diego          | •                          | QF/Selfgen |
| OCTILO_5_WIND   |       | OCO GEN G1      | 0.69 | 12.21  |    | None               | Aug NQC                    | Wind       |
| OCTILO_5_WIND   |       | OCO GEN G2      | 0.69 | 12.21  |    | None               | Aug NQC                    | Wind       |
|                 |       | PA GEN1         | 13.8 | 48.00  |    | San Diego, Pala    | 71891140                   | Market     |
|                 |       | PA GEN2         | 13.8 | 48.00  |    | San Diego, Pala    |                            | Market     |
|                 |       | OTAY            | 69   | 0.00   |    | San Diego, Border  | Not modeled Energy<br>Only | Market     |
| OTAY_6_LNDFL6   | 22604 | ОТАҮ            | 69   | 0.00   |    | San Diego, Border  | Not modeled Energy<br>Only | Market     |
| OTAY_6_PL1X2    | 22617 | OYGEN           | 13.8 | 35.50  | 1  | San Diego, Border  |                            | Market     |
| OTAY_6_UNITB1   | 22604 | OTAY            | 69   | 2.90   | 1  | San Diego, Border  | Aug NQC                    | Market     |
| OTAY_7_UNITC1   | 22604 | OTAY            | 69   | 2.29   | 3  | San Diego, Border  | Aug NQC                    | QF/Selfgen |
|                 | 22605 | OTAYMGT1        | 18   | 185.06 |    | San Diego          | ,                          | Market     |
| OTMESA_2_PL1X3  | 22606 | OTAYMGT2        | 18   | 185.06 |    | San Diego          |                            | Market     |
|                 |       | OTAYMST1        | 16   | 233.48 |    | San Diego          |                            | Market     |
|                 |       | PEN_CT1         | 18   | 162.39 |    | San Diego          |                            | Market     |
|                 |       | PEN_CT2         | 18   | 162.39 |    | San Diego          |                            | Market     |
| PALOMR_2_PL1X3  |       | PEN_ST          | 18   | 240.83 |    | San Diego          |                            | Market     |
| PTLOMA_6_NTCCGN |       |                 | 69   | 2.06   |    | San Diego          | Aug NQC                    | QF/Selfgen |
|                 |       | POINTLMA        | 69   | 18.41  |    | San Diego          | Aug NQC                    | QF/Selfgen |
| SAMPSN_6_KELCO1 |       |                 | 12.5 | 0.60   |    | San Diego          | Aug NQC                    | Net Seller |
|                 |       | SANMRCOS        | 69   | 1.40   | 1  | San Diego          | Aug NQC                    | QF/Selfgen |
| TERMEX_2_PL1X3  |       | TDM CTG2        | 18   | 156    |    | None               | 71391130                   | Market     |
| TERMEX_2_PL1X3  |       | TDM CTG3        | 18   | 156    | 1  | None               |                            | Market     |
| TERMEX_2_PL1X3  |       | TDM STG         | 21   | 281    | 1  | None               |                            | Market     |
| VLCNTR_6_VCSLR1 | 22301 | I DINI OTO      | 21   | 1.82   |    | San Diego, Pala    | Not modeled Aug<br>NQC     | Market     |
| VLCNTR_6_VCSLR2 |       |                 |      | 4.02   |    | San Diego, Pala    | Not modeled Aug<br>NQC     | Market     |
| NA              | 22916 | PFC-AVC         | 0.6  | 0.00   | 1  | San Diego          | No NQC - hist. data        | QF/Selfgen |
|                 |       | BUE GEN 1<br>G1 | 0.69 | 15.40  | G1 | None               | No NQC - est. data         | Wind       |
| New Unit        | 22945 | BUE GEN 1<br>G2 | 0.69 | 15.40  | G2 | None               | No NQC - est. data         | Wind       |
| New Unit        | 23352 | Q644G           | 0.31 | 20.00  | 1  | None               | No NQC - P max             | Market     |
| New Unit        | 23487 | Q653EDG         | 0.31 | 20.00  | 1  | None               | No NQC - P max             | Market     |
| New Unit        | 23120 | BULLMOOS        | 13.8 | 27.00  |    | San Diego, Border  | No NQC - P max             | Market     |
| New Unit        | 23100 | ECO GEN1<br>G1  | 0.69 |        |    | None               | No NQC - est. data         | Wind       |
|                 |       |                 |      |        |    |                    |                            |            |

| New Unit     | 23155      | c608 G1         | 0.36 | 75.00  | G1 | None                | No NQC - P max     | Market |
|--------------|------------|-----------------|------|--------|----|---------------------|--------------------|--------|
| New Unit     | 23156      | c608_G2         | 0.36 | 75.00  | G2 | None                | No NQC - P max     | Market |
| New Unit     | 23162      | PIO PICO<br>CT1 | 13.8 | 100.00 | 1  | San Diego           | No NQC - Pmax      | Market |
| New Unit     | 23163      | PIO PICO<br>CT2 | 13.8 | 100.00 | 1  | San Diego           | No NQC - Pmax      | Market |
| New Unit     | 23164      | PIO PICO<br>CT3 | 13.8 | 100.00 | 1  | San Diego           | No NQC - Pmax      | Market |
| New Unit     | 23287      | Q429 G1         | 0.31 | 100.00 | 1  | None                | No NQC - P max     | Market |
| New Unit     | 23131      | Q183_G1         | 0.69 | 0.00   | G1 | None                | Energy Only        | Market |
| New Unit     | 23134      | Q183_G2         | 0.69 | 0.00   | G2 | None                | Energy Only        | Market |
| New Unit     | 23105      | ECO GEN1<br>G1  | 0.69 | 23.73  | G2 | None                | No NQC - est. data | Wind   |
| New Unit     | 22783      | EA5<br>REPOWER1 | 13.8 | 100.00 | 1  | San Diego           | No NQC - Pmax      | Market |
| New Unit     | 22784      | EA5<br>REPOWER2 | 13.8 | 100.00 | 1  | San Diego           | No NQC - Pmax      | Market |
| New Unit     | 177/86     | EA5<br>REPOWER4 | 13.8 | 100.00 | 1  | San Diego           | No NQC - Pmax      | Market |
| New Unit     | 17.7 / Q / | EA5<br>REPOWER5 | 13.8 | 100.00 | 1  | San Diego           | No NQC - Pmax      | Market |
| New Unit     | 22788      | EA5<br>REPOWER3 | 13.8 | 100.00 | 1  | San Diego           | No NQC - Pmax      | Market |
| ELCAJN_7_GT1 | _          | ELCAJNGT        | 12.5 | 0.00   | 1  | San Diego, El Cajon | Retired by 2021    | Market |
| ENCINA_7_EA1 |            | ENCINA 1        | 14.4 | 0.00   | 1  | San Diego, Encina   | Retired by 2021    | Market |
| ENCINA_7_EA2 | 22234      | ENCINA 2        | 14.4 | 0.00   | 1  | San Diego, Encina   | Retired by 2021    | Market |
| ENCINA_7_EA3 | 22236      | ENCINA 3        | 14.4 | 0.00   | 1  | San Diego, Encina   | Retired by 2021    | Market |
| ENCINA_7_EA4 | 22240      | ENCINA 4        | 22   | 0.00   | 1  | San Diego, Encina   | Retired by 2021    | Market |
| ENCINA_7_EA5 | 22244      | ENCINA 5        | 24   | 0.00   | 1  | San Diego, Encina   | Retired by 2021    | Market |
| ENCINA_7_GT1 | 22248      | ENCINAGT        | 12.5 | 0.00   | 1  | San Diego, Encina   | Retired by 2021    | Market |
| KEARNY_7_KY3 | 22375      | KEARN3AB        | 12.5 | 0.00   | 2  | San Diego, Mission  | Retired by 2021    | Market |
| KEARNY_7_KY3 | 22375      | KEARN3AB        | 12.5 | 0.00   | 1  | San Diego, Mission  | Retired by 2021    | Market |
| KEARNY_7_KY3 | 22376      | KEARN3CD        | 12.5 | 0.00   | 1  | San Diego, Mission  | Retired by 2021    | Market |
| KEARNY_7_KY3 | 22376      | KEARN3CD        | 12.5 | 0.00   |    | San Diego, Mission  | Retired by 2021    | Market |
| MRGT_7_UNITS | 22488      | MIRAMRGT        | 12.5 | 0.00   | 1  | San Diego, Miramar  | Retired by 2021    | Market |
| MRGT_7_UNITS |            | MIRAMRGT        | 12.5 | 0.00   |    | San Diego, Miramar  | Retired by 2021    | Market |
| KEARNY_7_KY2 |            | KEARN2AB        | 12.5 | 0.00   |    | San Diego, Mission  | Retired            | Market |
| KEARNY_7_KY2 |            | KEARN2AB        | 12.5 | 0.00   |    | San Diego, Mission  | Retired            | Market |
| KEARNY_7_KY2 |            | KEARN2CD        | 12.5 | 0.00   | 1  | San Diego, Mission  | Retired            | Market |
| KEARNY_7_KY2 | 22374      | KEARN2CD        | 12.5 | 0.00   | 2  | San Diego, Mission  | Retired            | Market |

# Major new projects modeled:

- 1. Imperial Valley Phase Shifting Transformers (2x400 MVA)
- 2. Hassayampa North Gila #2 500 kV Line (APS)
- 3. Bay Blvd. Substation Project
- 4. Sycamore Penasquitos 230 kV Line
- 5. Talega Synchronous Condensers (2x225 MVAR)
- 6. San Luis Rey Synchronous Condensers (2x225 MVAR)

- 7. San Onofre Synchronous Condenser (225 MVAR)
- 8. Bypass series capacitors on the ECO-Miguel and Ocotillo-Suncrest 500 kV lines
- 9. Battery energy storage system projects in the San Diego area (3x10 MW at Escondido and 7.5 MW at El Cajon substations)
- 10. Reconductor of Mission Clairmont 69 kV line
- 11. Reconductor of Mission Kearny 69 kV line
- 12. Second Miguel Bay Blvd. 230 kV line
- 13. Mesa Heights Loop-In 69 kV Project
- 14. Second Poway-Pomerado 69 kV line
- 15. TL632 Granite Loop-In and TL6914 reconfiguration
- 16. Artesian 230/69 kV Sub and loop-in
- 17. Pio Pico Power Plant (309 MW)
- 18. Encina Repower (600 MW)

## Critical Contingency Analysis Summary

## El Cajon Sub-area

The most critical contingency for the El Cajon sub-area is the loss of the El Cajon-Jamacha 69 kV line (TL624) followed by the loss of Murray-Garfield 69 kV line (TL620), which could thermally overload the El Cajon-Los Coches 69 kV (TL631). This limiting contingency establishes a LCR of 14 MW (including 0 MW of QF generation) in 2026 as the minimum generation capacity necessary for reliable load serving capability within this sub-area after the TL632 Granite Loop-In and TL6914 reconfiguration project are completed.

### **Effectiveness factors:**

All units within this sub-area have the same effectiveness factor.

### Mission Sub-area

The LCR need for the Mission sub-area is eliminated by implementing the ISO Board-approved "The Mesa Heights Loop-In 69 kV Project" with an in-service date of June 2018.

It is recommended to retain at least 52 MW of the Kearny peakers as part of the minimum generation capacity necessary for reliable load serving capability within this sub-area until project is operational.

#### **Effectiveness factors:**

All Kearny Peakers have the same effectiveness factor.

### Esco Sub-area

The ISO approved Artesian 230 kV substation project and the 2<sup>nd</sup> Poway-Pomerado 69 kV line will eliminate the local capacity need in this sub-area.

### Pala Sub-area

The most critical contingency for the Pala sub-area is the loss of Pendleton – San Luis Rey 69 kV line (TL6912) followed by the loss of Lilac - Pala 69 kV line (TL6932), which could thermally overload the Monserate – Morro Hill Tap 69 kV line (TL694). This limiting contingency establishes a local capacity need of 34 MW in 2026 (includes 0 MW of QF generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

### **Effectiveness factors:**

All units within this area (Pala) have the same effectiveness factor.

### Border Sub-area

The most critical contingency for the Border sub-area is the loss of Bay Boulevard – Otay 69 kV line #1 (TL645) followed by Bay Boulevard Otay – 69 kV line #2 (TL646), which could thermally overload the Imperial Beach – Bay Boulevard 69 kV line (TL647). This limiting contingency establishes a local capacity need of 84 MW in 2026 (includes 2 MW of QF generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

### Effectiveness factors:

All units within this area have the same effectiveness factor.

### Miramar Sub-area

With the implementation of the second Miguel – Bay Blvd. 230 kV line, this sub-area local capacity requirement is eliminated.

It is recommended to retain the Miramar GTs (Cabrillo Power II) until the most limiting contingency is mitigated.

## San Diego Sub-area:

The local capacity requirements for the combined LA Basin and San Diego sub-area is the same as the LA Basin/San Diego/Imperial Valley need; the overlapping G-1/N-1 outage (NERC P3 category) of Termoelectrica de Mexicali (TDM) combined cycle plant (593 MW), followed by an N-1 contingency of the Imperial Valley – North Gila 500 kV line. This overlapping contingency could causes thermal overload on the "S" line (El Centro – Imperial Valley 230 kV line) between Imperial Irrigation District (IID) and SDG&E. This limiting contingency establishes a total local capacity need for the combined LA Basin/San Diego sub-area of 10,041 MW in the 2026 time frame as follows: 7,234 MW in the LA Basin (includes 399 MW of QF, 41 MW of wind and 1175 MW of MUNI generation, 432 MW of long-term procurement plan preferred resources, as well as 322 MW of 20-minute demand response) and 2,807 MW in the San Diego sub-area (includes 103 MW of QF generation, 5 MW of wind, 19 MW of 20-minute demand response and 38 MW of CPUC-approved battery energy storage) as the minimum capacity necessary for reliable load serving capability within these areas.

The second most critical contingency (N-1-1 or NERC P6) resulting in thermal limiting constraint, with slightly lower LCR need, for the combined LA Basin and San Diego subarea is the overlapping outage of ECO-Miguel 500 kV line, system readjustment, followed by Ocotillo-Suncrest 500 kV line. This contingency could cause loading concern for the CFE/CENACE's La Rosita-Rumorosa 230 kV line. This limiting

contingency establishes a total local capacity need for the combined LA Basin/San Diego sub-area of 9,729 MW in 2026 time as follows: 7,122 MW in the LA Basin (includes 399 MW of QF, 41 MW of wind and 1175 MW of MUNI generation, 432 MW of long-term procurement plan preferred resources, as well as 322 MW of 20-minute demand response) and 2,607 MW in the San Diego sub-area (includes 103 MW of QF generation, 5 MW of wind, 19 MW of 20-minute demand response and 38 MW of CPUC-approved battery energy storage).

## **Effectiveness factors:**

The following table has San Diego-Imperial Valley resources.

| Resource Locations  | Effectiveness Factor (%) |  |  |  |
|---------------------|--------------------------|--|--|--|
| INTBCT 16.0 #1      | -24.87                   |  |  |  |
| INTBST 18.0 #1      | -24.87                   |  |  |  |
| IV GEN2-U1 16.0 #1  | -24.82                   |  |  |  |
| DU GEN1 G2 0.2 #G2  | -24.8                    |  |  |  |
| DW GEN1 G2 0.3 #G2  | -24.8                    |  |  |  |
| DW GEN1 G1 0.3 #G1  | -24.79                   |  |  |  |
| DU GEN1 G1 0.2 #G1  | -24.78                   |  |  |  |
| DW GEN3&4 0.3 #2    | -24.64                   |  |  |  |
| DW GEN3&4 0.3 #1    | -24.64                   |  |  |  |
| DW GEN2 G3 0.4 #1   | -24.63                   |  |  |  |
| DW GEN2 G1 0.4 #1   | -24.55                   |  |  |  |
| DW GEN2 G2 0.4 #1   | -24.54                   |  |  |  |
| OCO GEN G1 0.7 #G1  | -21.82                   |  |  |  |
| OCO GEN G2 0.7 #G2  | -21.82                   |  |  |  |
| Q653EDG 0.3 #1      | -21.13                   |  |  |  |
| ECO GEN1 G 0.7 #G1  | -21.05                   |  |  |  |
| Q644G 0.3 #1        | -20.56                   |  |  |  |
| OTAYMGT1 18.0 #1    | -17.17                   |  |  |  |
| OTAYMGT2 18.0 #1    | -17.17                   |  |  |  |
| OTAYMST1 16.0 #1    | -17.17                   |  |  |  |
| PIO PICO C 13.8 #C1 | -16.86                   |  |  |  |
| PIO PICO C 13.8 #C2 | -16.86                   |  |  |  |
| PIO PICO C 13.8 #C3 | -16.86                   |  |  |  |
| CAMERON 69.0 #DG    | -16.44                   |  |  |  |

| KUMEYAAY 0.7 #1   | -16.43 |
|-------------------|--------|
| GLENCLIF 69.0 #DG | -16.42 |
| LOVELAND 69.0 #DG | -16.35 |
| DESCANSO 69.0 #DG | -16.26 |
| OY GEN 13.8 #1    | -16.19 |
| OTAY 69.0 #3      | -16.18 |
| OTAY 69.0 #1      | -16.18 |
| EC GEN2 13.8 #1   | -16.17 |
| EC GEN1 13.8 #1   | -16.15 |
| DIVISION 69.0 #1  | -16.14 |
| NOISLMTR 69.0 #1  | -16.11 |
| LOSCOCHS 69.0 #DG | -16.08 |
| MURRAY 69.0 #DG   | -16.08 |
| SAMPSON 12.5 #1   | -16.03 |
| BORDER 69.0 #DG   | -16.02 |
| CABRILLO 69.0 #1  | -15.94 |
| LRKSPBD1 13.8 #1  | -15.92 |
| LRKSPBD2 13.8 #1  | -15.92 |
| CALPK_BD 13.8 #1  | -15.9  |
| POINTLMA 69.0 #2  | -15.88 |
| POINTLMA 69.0 #1  | -15.88 |
| CREELMAN 69.0 #DG | -15.84 |
| MESAHGTS 69.0 #1  | -15.73 |
| MISSION 69.0 #1   | -15.66 |
| SANTYSBL 69.0 #DG | -15.65 |
| CARLTNHS 138.0 #2 | -15.63 |
| CARLTNHS 138.0 #1 | -15.63 |
| EASTGATE 69.0 #1  | -15.3  |
| MEF MR1 13.8 #1   | -15.28 |
| GENESEE 69.0 #DG  | -15.25 |
| WARNERS 69.0 #DG  | -15.22 |
| CHCARITA 138.0 #1 | -15.15 |
| MEF MR2 13.8 #1   | -15.1  |
| LkHodG1 13.8 #1   | -14.35 |
| LkHodG2 13.8 #1   | -14.35 |
| VALCNTR 69.0 #DG  | -14.06 |
| GOALLINE 69.0 #1  | -13.94 |
|                   |        |

| BORREGO 12.5 #DG   | -13.83 |
|--------------------|--------|
| LILAC 69.0 #DG     | -13.67 |
| ES GEN 13.8 #1     | -13.66 |
| CALPK_ES 13.8 #1   | -13.65 |
| PEN_CT1 18.0 #1    | -13.62 |
| PEN_CT2 18.0 #1    | -13.57 |
| PEN_ST 18.0 #1     | -13.56 |
| SANMRCOS 69.0 #1   | -13.55 |
| Q189 GEN1 13.8 #1  | -13.52 |
| AVOCADO 69.0 #DG   | -13.12 |
| PALA 69.0 #DG      | -13.1  |
| BR GEN1 0.2 #1     | -13.03 |
| PA GEN1 13.8 #1    | -12.99 |
| PA GEN2 13.8 #1    | -12.99 |
| EA5 REPOWE 13.8 #1 | -12.86 |
| EA5 REPOWE 13.8 #1 | -12.86 |
| Q137 GEN1 13.8 #1  | -12.86 |
| Q137 GEN2 13.8 #1  | -12.86 |
| MELROSE 69.0 #DG   | -12.72 |
| CAPSTRNO 138.0 #1  | -10.24 |
|                    |        |

## San Diego Sub-area Requirements:

| 2026                 | QF   | Wind | Battery St. | Preffered | Market | Max. Qualifying |
|----------------------|------|------|-------------|-----------|--------|-----------------|
|                      | (MW) | (MW) | (MW)        | Res. (MW) | (MW)   | Capacity (MW)   |
| Available generation | 103  | 5    | 38          | 55        | 2685   | 2886            |

| 2026                              | Existing Generation Capacity | Deficiency | Total MW    |
|-----------------------------------|------------------------------|------------|-------------|
|                                   | Needed (MW)                  | (MW)       | Requirement |
| Category B (Single) <sup>29</sup> | 2807                         | 0          | 2807        |
| Category C (Multiple) 30          | 2807                         | 0          | 2807        |

\_

<sup>&</sup>lt;sup>29</sup> LCR requirement for a single contingency means that there wouldn't be any criteria violations following the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

<sup>&</sup>lt;sup>30</sup> LCR requirement for multiple contingencies means that not only there wouldn't be any criteria violations following the loss of a single element, but also the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

## San Diego-Imperial Valley overall:

The critical Category B contingency for the San Diego-Imperial Valley overall is the same as the LA Basin/San Diego/Imperial Valley need; the overlapping G-1/N-1 outage (NERC P3 category) of Termoelectrica de Mexicali (TDM) combined cycle plant (593 MW), followed by an N-1 contingency of the Imperial Valley – North Gila 500 kV line. This overlapping contingency could cause thermal overload on the "S" line (El Centro – Imperial Valley 230 kV line) between Imperial Irrigation District (IID) and SDG&E. This limiting contingency establishes a total local capacity need 11883 MW of which 7234 MW in the LA Basin (includes 399 MW of QF, 41 MW of wind and 1175 MW of MUNI generation, 432 MW of long-term procurement plan preferred resources, as well as 322 MW of 20-minute demand response) and 4649 MW is located in the San Diego-Imperial Valley area (includes 103 MW of QF generation, 160 MW of wind, 19 MW of 20-minute demand response and 38 MW of CPUC-approved battery energy storage) as the minimum capacity necessary for reliable load serving capability within these areas.

### **Effectiveness factors:**

The effectiveness factors are in addition to the effectiveness factors for generating resources in the San Diego subarea in response to the G-1/N-1 contingency.

| <b>Resource Locations</b> | Effectiveness Factor (%) |
|---------------------------|--------------------------|
| INTBCT 16.0 #1            | -24.87                   |
| INTBST 18.0 #1            | -24.87                   |
| IV GEN2-U1 16.0 #1        | -24.82                   |
| DU GEN1 G2 0.2 #G2        | -24.8                    |
| DW GEN1 G2 0.3 #G2        | -24.8                    |
| DW GEN1 G1 0.3 #G1        | -24.79                   |
| DU GEN1 G1 0.2 #G1        | -24.78                   |
| DW GEN3&4 0.3 #2          | -24.64                   |
| DW GEN3&4 0.3 #1          | -24.64                   |
| DW GEN2 G3 0.4 #1         | -24.63                   |
| DW GEN2 G1 0.4 #1         | -24.55                   |
| DW GEN2 G2 0.4 #1         | -24.54                   |
| OCO GEN G1 0.7 #G1        | -21.82                   |
| OCO GEN G2 0.7 #G2        | -21.82                   |
| Q653EDG 0.3 #1            | -21.13                   |

ECO GEN1 G 0.7 #G1 -21.05 Q644G 0.3 #1 -20.56

## Changes compared to last year's results:

Compared with 2021 the load forecast increased by 327 MW and the LCR need increased by about 292 MW.

# San Diego-Imperial Valley Overall Requirements:

| 2026                 | QF   | Wind | Battery  | Preffered | Market | Max. Qualifying |
|----------------------|------|------|----------|-----------|--------|-----------------|
|                      | (MW) | (MW) | St. (MW) | Res. (MW) | (MW)   | Capacity (MW)   |
| Available generation | 103  | 160  | 38       | 55        | 4484   | 4840            |

| 2026                              | Existing Generation Capacity Needed (MW) | Deficiency<br>(MW) | Total MW<br>Requirement |
|-----------------------------------|------------------------------------------|--------------------|-------------------------|
| Category B (Single) <sup>31</sup> | 4649                                     | 0                  | 4649                    |
| Category C (Multiple) 32          | 4649                                     | 0                  | 4649                    |

## 11. Valley Electric Area

Valley Electric Association LCR area has been eliminated on the basis of the following:

- No generation exists in this area
- No category B issues were observed in this area
- Category C and beyond
  - No common-mode N-2 issues were observed
  - No issues were observed for category B outage followed by a commonmode N-2 outage

<sup>31</sup> LCR requirement for a single contingency means that there wouldn't be any criteria violations following the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

<sup>&</sup>lt;sup>32</sup> LCR requirement for multiple contingencies means that not only there wouldn't be any criteria violations following the loss of a single element, but also the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

 All the N-1-1 issues that were observed can either be mitigated by the existing UVLS or by an operating procedure