APPENDIX F: Description and Functional Specifications for Transmission Facilities Eligible for Competitive Solicitation
F1 Description and Functional Specifications of Proposed Reliability-Driven Imperial Valley 230 kV 800 MW Back-to-Back Direct Current (B2BDC) Power Flow Controller Project

F1.1 Description

In the 2013-2014 Transmission Plan, the ISO has identified a reliability-driven need for an 800 MVA flow controller device to regulate power flow on the Imperial Valley – La Rosita 230kV line under critical Category B (N-1) or Category C.3 (N-1-1) contingencies. It is depicted in the single line diagram below:

The ISO identified two options for the Imperial Valley flow controller: back-to-back DC (B2BDC) or phase-shifting transformers. The final decision on which technology to procure and install will be forthcoming after further discussions with the Comision Federal de la Electricidad (CFE) of Mexico as the proposed flow controller device will affect power flow on the CFE 230kV transmission system. For this functional specification, it will be for the Imperial Valley Back-to-Back DC flow controller. There is a separate functional specification for the Imperial Valley phase-shifting transformer(s). The ISO estimates that the installed cost of the proposed B2BDC flow controller, and new switchyard if needed, will cost a total of approximately $240 to $300 million.
F1.2 Functional Specifications

Back-to-Back DC Power Flow Controller Functional Specification

Location: at or near vicinity of the Imperial Valley Substation

Maximum rated power: **800 MW**

Minimum Flow Level while energized: **0 MW**

Nominal line-to-line AC voltage: **230kV**

Transmission line flow to be regulated: Imperial Valley – La Rosita 230kV line

Latest in-service date: **May 1, 2017**

System operating frequency: **60 Hz**

Connecting terminals:

- Incoming: 230kV line terminal from Imperial Valley Substation;
- Outgoing: 230kV line to La Rosita Substation

Back-to-back DC system

- Point-to-point DC system
- Control active power on the 230kV line
- To be located in the same building at Imperial Valley Substation or new adjacent switchyard if required;
- DC voltage for the B2BDC equipment is to be provided by the vendor as the optimal DC voltage level may vary between vendors’ designs;
- Selection of the classical HVDC or voltage sourced converter technology is to be provided by the vendors that will result in the most economical design for the overall installed system (*i.e.*, **cost savings associated with classical DC technology but potentially requiring larger footprint will need to be compared with higher cost but smaller footprint for the voltage-sourced converter technology**).
- Response time: Tens of milliseconds
- Noise level limit: applicable local municipal code requirements
- Reactive power compensation at terminals as required (note: this is typically applicable to conventional HVDC technology)
- Equipped with 230kV bypass switch for clearance;

New Special Protection System

- To be installed for automatic control of the B2BDC system under critical N-1 or N-1-1 of 500kV lines. Should be capability of ramping from 0 MW to 800 MW within five seconds in response to SPS signal triggered by parallel 500 kV line contingencies. The SPS would be installed by SDG&E and would not be part of the scope of the B2BDC project. Further discussion with CFE is required for refinement and approval of the operation of the SPS and the B2BDC power flow controller.
F2 Description and Functional Specifications of Proposed Reliability-Driven Estrella Substation Project

F2.1 Description

In the 2013-2014 Transmission Planning Cycle, the ISO approved the construction of a reliability-driven Estrella Substation Project in the Los Padres Division of the PG&E service territory. The project will provide Paso Robles Substation with more reinforced 70 kV sources from Templeton and Estrella. A simplified single-line diagram of the proposed project is shown below in Figure F2-1.

![Figure F2-1: Proposed single-line diagram of the Estrella Substation Project](image)

The scope of this project is to construct a new 230/70 kV substation, Estrella, approximately 5 miles east of the existing Paso Robles Substation. The Estrella substation will also be located relatively close to the Morro Bay-Gates and Templeton-Gates 230 kV transmission corridor. The Estrella 230 kV bus will be looped into the Morro Bay-Gates 230 kV line. A new 230/70 kV transformer will be installed at the Estrella substation. In addition, a 45 MVA distribution transformer will be installed on the Estrella 230 kV bus. The Estrella 70 kV bus will be looped into the existing San Miguel-Paso Robles 70 kV line. A reverse power relay will be installed on the Estrella 230/70 kV and the existing Templeton 230/70 kV #1 transformer banks to prevent
the 70 kV system from feeding the 230 kV system. The Paso Robles-Estrella 70 kV line will be reconducted sufficiently enough to prevent thermal overloads and it will operate at, a minimum, summer normal and summer emergency ratings of 825 and 975 amps, respectively.

The project will mitigate the thermal overloads and voltage concerns identified in the Los Padres 70 kV system specifically, in the San Miguel, Paso Robles, Templeton, Atascadero, Cayucos and San Luis Obispo areas following a Category B contingency due to loss of either the Templeton 230/70 kV #1 Bank or the Paso Robles-Templeton 70 kV Line. These two Category B contingencies put approximately 60-70 MW of load at Paso Robles at risk by activating the existing Paso Robles UVLS during summer peak conditions to alleviate the thermal and low voltage concerns. Also, a Category C3 contingency condition involving loss of Morro Bay-Templeton and Templeton-Gates 230 kV lines results in thermal overloads and low voltages in the underlying 70 kV system. With the additional source from the Gates 230 kV system, the Estrella Substation Project will provide robust system reinforcement to the Paso Robles and Templeton 70 kV system operations.

The ISO estimates that the proposed Estrella Substation Project in its entirety will cost less than $35 million to $45 million in 2014 dollars. The proposed in-service date of the project is May 2019.

The facilities in the Estrella substation project that are considered eligible for competitive solicitation are the 230 kV buswork and termination equipment, and the 230/70 kV transformers. The 70 kV buswork and termination equipment and modifications to existing facilities are not eligible for competitive solicitation.
F2.2 Functional Specifications

Switching Station

Nominal Phase to Phase Voltage: 230 kV

Initial Bus Configuration (DBDB, BAAH, SBSB, etc.): Breaker and a half (BAAH)

Ultimate Bus Configuration (DBDB, BAAH, SBSB, etc.): BAAH

Initial Number of Lines: 2

Ultimate Number of Lines: 4 (To accommodate future looping of Templeton-Gates 230 kV Line)

Initial Number of 230 kV CBs: 6

Ultimate Number of 230 kV CBs: 12

Initial Minimum Bus Ampacity: _____3000_____ Ultimate Bus Ampacity: _____3000_____

Minimum CB Ampacity: _____2000____ Minimum CB Interrupting Capability: _____40 kA____

Transfer Bus Required (SBSB only): N/A

Station Minimum BIL: 900 kV

Initial Reactive Power Requirements: None

Ultimate Reactive Power Requirements: To be determined

Telemetering Requirements: Install necessary equipment, including RTUs to monitor the typical
bulk power elements such as MW, MVAr, and phase currents (Amps) at each line and also
voltages (kV) at lines and buses and all circuit breaker (CB) status/control, protection relays
statuses and alarms. The installed equipment must be capable of transmitting information to the
appropriate Control Center.

Latest In Service Date: May 2019

Low Profile Required: Subject to local permitting requirements

Gas Insulation Required: No

Initial Number of Transformers: 1

Ultimate Number of Transformers: 2

Transformer Nominal Low Winding Phase to Phase Voltage: _____70 kV_____

Tertiary Winding Required: _____Yes____ Nominal Voltage Rating: _____13.2 kV_____

Primary Voltage Winding (wye, grounded wye, delta, etc): _____Grounded Wye________

Secondary Voltage Winding: Grounded Wye Tertiary Voltage Winding: Corner Grounded Delta

Maximum Transformer % IZ: _____7.5____ Minimum Transformer %IZ: _____6.5____

Minimum Transformer OA Rating: _____120 MVA_____

Maximum Transformer Load: _____200 MVA____ LTC Required: _____Yes +/- 10%_____

No Load Taps Required: Yes – NLTs with two 2.5% taps above & below nominal 230 kV voltage
F3 Description and Functional Specifications of Proposed Reliability-Driven Wheeler Ridge Junction Substation Project

F3.1 Description

In the 2013-2014 Transmission Planning Cycle, the ISO approved the construction of a reliability-driven Wheeler Ridge Junction Substation Project in the Kern Division of the PG&E service territory. The project will provide Wheeler Ridge Substation, as well as CDWR pumps, with a more reinforced 230 kV source from Kern PP. A simplified single-line diagram of the existing and proposed project is shown below in Figures F3-1 and F3-2.

Figure F3-1: Existing single-line diagram of Wheeler Ridge Junction Substation Project
The scope of this project includes:

- Build new 230/115 kV transmission substation at Wheeler Ridge Junction (WRJ)
 - 3 – 230 kV line terminations (ultimate 6)
 - 3 – 115 kV line terminations (ultimate 8)
 - 2 – 230/115 kV 420 MVA transformers

- Convert 15.5 miles of the Wheeler Ridge-Lamont 115 kV line from Wheeler Ridge to tower 011/065 to 230 kV operation. Terminate at Wheeler Ridge and WRJ stations.

- Open end Kern-Tevis-Stockdale-Lamont 115 kV line at tower 005/035 and loop Stockdale 115 kV substation.

- Convert/Re-conductor 5 miles of the Kern-Tevis-Stockdale-Lamont 115 kV Line section from Towers 005/035 to 011/065 to 230 kV operation on both sides of double circuit tower line (other side is idle circuit). Terminate both circuits at the WRJ station. Terminate both remaining 115 kV lines to Lamont at WRJ station.

- Remove Stockdale #2 230 kV Tap from Stockdale substation, and terminate the first newly converted 230 kV circuit. Bypassing Stockdale substation.
- Terminate second newly converted 230 kV circuit at Stockdale substation, for a loop arrangement.

- Recondutor and upgrade 6 miles of the idle line from Wheeler Ridge Junction towards Magunden substation. Upgrade for 115 kV operation, and terminate at Magunden and WRJ stations.

The project will mitigate the thermal overloads and voltage concerns identified in the Wheeler Ridge 230 kV system, specifically in the area of the CDWR pumps, following a Category C1 or C2 contingency due to loss of either the Midway 230kV Bus 1D or Midway 230kV CB642 fault. This project will also mitigate several 115kV concerns on the Kern PP 115kV area.

This project is dependent on the Midway #2 230kV Line project that was submitted through the 2013 Request Window and approved during the 2013-2014 CAISO TPP.

The ISO estimates that the proposed *Wheeler Ridge Jct Project* in its entirety will cost between $90 million and $140 million in 2014 dollars. The proposed in-service date of the project is May 2020.

The facilities in the Wheeler Ridge Junction substation project that are considered eligible for competitive solicitation are the 230 kV buswork and termination equipment, and the 230/115 kV transformers. The 115 kV buswork and termination equipment and the reconfiguration of existing facilities are not eligible for competitive solicitation.
F3.2 Functional Specifications

Substation

Nominal Phase to Phase Voltage: 230/115kV

Initial Bus Configuration (DBDB, BAAH, SBSB, etc.): Breaker and a half (BAAH)

Ultimate Bus Configuration (DBDB, BAAH, SBSB, etc.): BAAH

Initial Number of 230 kV Lines: 3

Ultimate Number of 230 kV Lines: 6

Initial Number of 230 kV CBs: 8

Ultimate Number of 230 kV CBs: 12

Initial Minimum Bus Ampacity: ___ 3000A _____ Ultimate Bus Ampacity: ____ 3000A____

Minimum CB Ampacity: ___ 2000A ____ Minimum CB Interrupting Capability: ___ 40 kA____

Transfer Bus Required (SBSB only): N/A

Station Minimum BIL: 900 kV

Initial Reactive Power Requirements: None

Ultimate Reactive Power Requirements: To be determined

Telemetering Requirements: Install necessary equipment, including RTUs to monitor the typical bulk power elements such as MW, MVAr, and phase currents (Amps) at each line and also voltages (kV) at lines and buses and all circuit breaker (CB) status/control, protection relays statuses and alarms. The installed equipment must be capable of transmitting information to the appropriate Control Center.

Latest In Service Date: May 2020

Low Profile Required: Subject to local permitting requirements

Gas Insulation Required: No

Initial Number of Transformers: 2

Ultimate Number of Transformers: 2

Transformer Nominal Low Winding Phase to Phase Voltage: 115 kV

Tertiary Winding Required: ___ Yes ____ Nominal Voltage Rating: ___ 13.2 kV____

Primary Voltage Winding (wye, grounded wye, delta, etc): ___ Grounded Wye____

Secondary Voltage Winding Grounded Wye ____ Tertiary Voltage Winding Corner Grounded Delta

Maximum Transformer % IZ: ___ 6.5 % ____ Minimum Transformer %IIZ: ___ 5.5%____

(_Impedance of the two are required to match as close as possible for parallel operation_)

Minimum Transformer OA Rating: ____ 252 MVA____

Maximum Transformer Load: 420 MVA ____ LTC Required: Yes +/- 10%

No Load Taps Required: 5 NLTs with two 2.5% taps above & below nominal voltage of 230 kV
F4 Description and Functional Specifications of Proposed Policy-Driven Suncrest 230 kV 300 MVAr Dynamic Reactive Power Support

F4.1 Description

In the 2013-2014 Transmission Plan, the ISO has identified a policy-driven need for a 300 MVAr dynamic reactive power support connecting to the Suncrest 230 kV bus as depicted below:

The dynamic reactive power support is required to provide continuous or quasi-continuous reactive power response following system disturbances. It needs to be one of the following types of devices: SVC (Static VAR Compensator), STATCOM (Static Synchronous Compensator), or Synchronous Condenser. The ISO estimates that the cost of the proposed dynamic reactive power support will approximately cost $50 to 75 million.
F4.2 Functional Specifications

Dynamic Reactive Power Support Functional Specification

Point of Interconnection: Suncrest 230 kV bus

Rated Real Power Output: 0 MW

Rated MVAR: +300/-100 at the Suncrest 230 kV bus

Nominal Terminal Voltage: 230 kV

Latest in Service Date: June 1, 2017
F5 Description and Functional Specifications of Proposed Economically Driven Colorado River – Delaney 500 kV Line Project

F5.1 Description

In the 2013-2014 Transmission Plan, the ISO has identified an economically-driven need for a 500 kV transmission line between SCE owned Colorado River 500 kV substation and APS owned Delaney 500 kV substation, as depicted below:

The estimated cost of the proposed 500 kV line is $338 million in 2014 dollars. This estimated cost includes facilities necessary at the Delaney and Colorado River substations that will be installed by the owners of those substations. Once this project is approved by the ISO Board, the ISO will request cost estimates from APS and SCE for the facilities needed in these substations to connect the new Delaney-Colorado River line.
F5.2 Functional Specifications

Transmission Line Functional Specifications

Overhead Line Construction

Line Terminus 1: Colorado River Substation 500 kV Bus

Line Terminus 2: Delaney Substation 500 kV Bus

Nominal Phase to Phase Voltage: 500 kV

Minimum Line Continuous Ampacity - Summer: 3,800 Amps

Minimum Line Continuous Ampacity – Winter: 3,800 Amps

Minimum Line 4 Hour Emergency Ampacity – Summer: 5,200 Amps

Minimum Line 4 Hour Emergency Ampacity – Winter: 5,200 Amps

Minimum Line 30 Minute Emergency Ampacity – Summer: 5,600 Amps

Minimum Line 30 Minute Emergency Ampacity – Winter: 5,600 Amps

Approximate Line Impedance: (0.0012 to 0.0015) + j(0.027 to 0.033) pu (100 MVA base)

Maximum Line Resistance: 0.0015 pu (100 MVA base)

Approximate Line Length: 115-140 miles

Approximate Switched Shunt Line Reactor Capacity: 75 MVAR switched shunt reactor connected to the line at Colorado River terminal, 75 MVAR switched shunt reactor connected to the line at Delaney terminal

Approximate Series Compensation Level: 35%
Location of Series Compensation: Approximately in the middle of the Colorado River-Delaney 500 kV line or equivalent compensation at line termination stations

Minimum Series Capacitor Continuous Ampacity - Summer: 2,700 Amps

Minimum Series Capacitor Continuous Ampacity – Winter: 2,700 Amps

Minimum Series Capacitor 4 Hour Emergency Ampacity – Summer: 2,700 Amps

Minimum Series Capacitor 4 Hour Emergency Ampacity – Winter: 2,700 Amps

Minimum Series Capacitor 30 Minute Emergency Ampacity – Summer: 3,645 Amps

Minimum Series Capacitor 30 Minute Emergency Ampacity – Winter: 3,645 Amps

Latest In Service Date: 2020

Support Structures: Single circuit structures

Shield Wire Required: Optical ground wire (minimum 6 pairs of fibers)

Failure Containment Loading Mitigation (anti-cascade structures, etc.): Per applicable codes

Shield Wire Ground Fault Withstand Ampacity: Coordinate with interconnecting entities

Aeolian Vibration Control (Conductor and Shield Wire): Vibration dampers must be installed on all conductors and overhead shield wires, with the exception of slack spans.

Transmission Line Minimum BIL: 1,800 kV with solidly grounded systems

Minimum ROW Width: Per applicable codes
Route Requirement: The transmission solution was developed on the basis that route would meet the applicable NERC/WECC standard so that Part 1.1.1 of Section E. Regional Differences of Standard FAC 010-2.1 related to the common mode contingency does not apply to the Colorado River-Palo Verde and Colorado River-Delaney 500 kV lines. In response to a stakeholder comment, the ISO has reviewed this requirement, and agrees that alternatives that include multiple circuit structures can be included for review providing that the project sponsor provide the mitigation for meeting system performance requirements as provided by NERC/WECC reliability standards with no reduction in overall reliability. Further, the ISO will assess if this configuration reduces the net financial benefits of this economically-driven.

Governing Design and Construction Standards: (GO 95, NESC Code, applicable municipal codes)
F6 Description and Functional Specifications of Proposed Reliability-Driven Spring Substation in the Morgan Hill Area

F6.1 Description
In the 2013-2014 Transmission Planning Cycle, the ISO approved the construction of a reliability-driven Morgan Hill Area Reinforcement Project in the San Jose Division of the PG&E service territory. The project will provide the Morgan Hill Area, as well as the San Jose Area, with a more reinforced 230 kV source from the new Spring Substation. A simplified single-line diagram of the existing and proposed project is shown below in Figures F6-1 and F6-2.

Figure F6-1: Existing single-line diagram of the Morgan Hill Area
The scope of this project includes:

- Construct a new 230/115 kV substation, Spring Substation, west of the existing Morgan Hill Substation.
- Install a new 230/115 kV 420 MVA transformer at Spring Substation.
- Loop the existing Morgan Hill-Llagas 115 kV Line into Spring 115 kV bus using a portion of the idle Green Valley-Llagas 115 kV Line Right-of-Way.
- Reconduct the Spring-Llagas 115 kV Line with bundled 715 Al or similar.
- Loop the Metcalf-Moss Landing No.2 230 kV Line into the Spring Substation 230 kV bus

This project was submitted through the 2013 Request Window and approved during the 2013-2014 CAISO TPP.

This project will mitigate thermal and voltage violations. These violations arise following the loss of the Llagas-Gilroy Peakers 115 kV Line and either one of the 115 kV Lines heading north to Metcalf Substation.
In addition, at the onset of the Category C DCTL with lose of Metcalf–Morgan Hill 115kV Line & Metcalf-Lgas 115kv Line, the Consequential Load Drop of the Llagas and Morgan Hill substations will result in about 170 MW of load dropped.

The ISO estimates that the proposed **Morgan Hill Area Reinforcement Project** in its entirety will cost between $35 million and $45 million in 2014 dollars. The proposed in-service date of the project is 2021.

The facilities in the Morgan Hill Area Reinforcement project that are considered eligible for competitive solicitation are the 230 kV buswork and termination equipment, and the 230/115 kV transformers at Spring Substation. The 115 kV buswork and termination equipment and the reconfiguration of existing facilities are not eligible for competitive solicitation.
F6.2 Functional Specification

Substation

Nominal Phase to Phase Voltage: 230/115kV

Initial Bus Configuration (DBDB, BAAH, SBSB, etc.): Breaker and a half (BAAH)

Ultimate Bus Configuration (DBDB, BAAH, SBSB, etc.): BAAH

Initial Number of 230 kV Lines: 2

Ultimate Number of 230 kV Lines: 4

Initial Number of 230 kV CBs: 5

Ultimate Number of 230 kV CBs: 12

Initial Minimum Bus Ampacity: ___ 3000A ___ Ultimate Bus Ampacity: ___ 3000A ___

Minimum CB Ampacity: ___ 2000A ___ Minimum CB Interrupting Capability: ___ 63 kA ___

Transfer Bus Required (SBSB only): N/A

Station Minimum BIL: 900 kV

Initial Reactive Power Requirements: None

Ultimate Reactive Power Requirements: To be determined

Telemetering Requirements: Install necessary equipment, including RTUs to monitor the typical bulk power elements such as MW, MVAr, and phase currents (Amps) at each line and also voltages (kV) at lines and buses and all circuit breaker (CB) status/control, protection relays statuses and alarms. The installed equipment must be capable of transmitting information to the appropriate Control Center.

Latest In Service Date: May 2021

Low Profile Required: Subject to local permitting requirements

Gas Insulation Required: No

Initial Number of Transformers: 1

Ultimate Number of Transformers: 2

Transformer Nominal Low Winding Phase to Phase Voltage: 115 kV

Tertiary Winding Required: ___ Yes ___ Nominal Voltage Rating: ___ 13.2 kV ___

Primary Voltage Winding (wye, grounded wye, delta, etc): Grounded Wye

Secondary Voltage Winding: Grounded Wye Tertiary Voltage Winding: Corner Grounded Delta

Maximum Transformer % IZ: ___ 6.5% ___ Minimum Transformer %IZ: ___ 5.5% ___

Minimum Transformer OA Rating: ___ 252 MVA ___

Maximum Transformer Load: ___ 420 MVA ___ LTC Required: ___ Yes +/- 10 % ___

No Load Taps Required: 5 NLTs with two 2.5% taps above & below nominal voltage of 230 kV
F7 Description and Functional Specifications of Proposed Reliability-Driven Miguel 500 kV 375 MVAr Reactive Power Support

F7.1 Description

In the 2013-2014 Transmission Plan, the ISO has identified a reliability-driven need for a 375 MVAr reactive power support connecting to the Miguel 500 kV bus as depicted below:

The reactive power support is required to provide continuous reactive power support. It needs to be one of the following types of devices: Mechanically switched shunt capacitor, SVC (Static VAR Compensator), STATCOM (Static Synchronous Compensator), or Synchronous Condenser. The ISO estimates that the cost of the proposed dynamic reactive power support will approximately cost $30-$40 million.
F7.2 Functional Specifications

Reactive Power Support Functional Specification

Point of Interconnection: Miguel 500 kV bus

Rated MVAR: +375 at the Miguel 500 kV bus

Maximum MVAR switched-in at one time: 200 MVAR

Nominal Terminal Voltage: 500 kV

Latest in Service Date: June 1, 2017