

Briefing on flexible ramping product

Roger Avalos, Lead Market Monitoring Analyst

Market Surveillance Committee Meeting General Session July 15, 2015

Demand Curve

t=1 i

- The flexible ramping product demand curve should represent the marginal value of flexible capacity
 - i.e. the marginal reduction in expected Power Balance Constraint violation costs from flexible capacity

$$\min Cost = \sum_{t=1}^{2} \sum_{i} MW_{i,t} * c(MW_{i,t}) + R_1^{short} * PC^{short} + R_2^{short} * PC^{short}$$
$$\min Cost = \sum_{i=1}^{2} \sum_{i} MW_{i,t} * c(MW_{i,t}) + R_1^{short} * PC^{short} + \int_{-\infty}^{+\infty} PC^{short} * \max(0, \varepsilon_2 - Y_1^{up}) P(\varepsilon_2) d\varepsilon_2$$

 The flexible ramping up demand curve is the probability that the forecast error is greater than or equal to the amount of flexible ramping up capacity

$$\frac{\partial E[C(short)]}{\partial Y_1^{up}} = \int_{Y_1^{up}}^{+\infty} PC^{short} * P(\varepsilon_2) d\varepsilon_2$$

Depiction of Demand Curve Price at FRU Quantity

Expected PBC Violation Costs Given FRU Capacity (Discrete Probabilities)

- *PBC Violation Cost*_i = *Penalty* * $max(0, Error_i FRU Capacity)$
- Expected PBC Violation Cost = \sum_{i} Penalty * (Error_i FRU Capacity) * P_i

												Total	Change in
Pr(Error=X)		6.25%	6.00%	5.75%	5.50%	5.25%	5.00%	4.50%	4.25%	4.00%	3.50%	Expected	Expected
	Error	1	2	3	4	5	6	7	8	9	10	Cost	Cost
sxible Capacity	0	\$1,000	\$2,000	\$3,000	\$4,000	\$5,000	\$6,000	\$7,000	\$8,000	\$9,000	\$10,000	\$2,503	
	1	\$0	\$1,000	\$2,000	\$3,000	\$4,000	\$5,000	\$6,000	\$7,000	\$8,000	\$9,000	\$2,003	\$500.00
	2	\$0	\$0	\$1,000	\$2,000	\$3,000	\$4,000	\$5,000	\$6,000	\$7,000	\$8,000	\$1,565	\$437.50
	3	\$0	\$0	\$0	\$1,000	\$2,000	\$3,000	\$4,000	\$5,000	\$6,000	\$7,000	\$1,188	\$377.50
	4	\$0	\$0	\$0	\$0	\$1,000	\$2,000	\$3,000	\$4,000	\$5,000	\$6,000	\$868	\$320.00
	5	\$0	\$0	\$0	\$0	\$0	\$1,000	\$2,000	\$3,000	\$4,000	\$5,000	\$603	\$265.00
Ъ	6	\$0	\$0	\$0	\$0	\$0	\$0	\$1,000	\$2,000	\$3,000	\$4,000	\$390	\$212.50
ole	7	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$1,000	\$2,000	\$3,000	\$228	\$162.50
ilai	8	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$1,000	\$2,000	\$110	\$117.50
Ava	9	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$1,000	\$35	\$75.00
	10	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$35.00
Pr(E≥X)		50.00%	43.75%	37.75%	32.00%	26.50%	21.25%	16.25%	11.75%	7.50%	3.50%		
Pr(E≥X)*1,000		\$500.00	\$437.50	\$377.50	\$320.00	\$265.00	\$212.50	\$162.50	\$117.50	\$75.00	\$35.00		

Draft Technical Appendix Demand Curve Calculation

 Calculation in Draft Technical Appendix reduces to (Probability in Bin) * (Penalty Price)

1		400	0.5	1,000	2200 + 100 × 0.5 × 1000 € 52,200	(52200 – 2200) / 100 = 500	
		300	0.014	1,000	&00 + 100 × 0.014 × 1000 = 2,200	(2200 – 800) / 100 = 14	
		200	0.005	1,000	300 + 100 × 0.005 × 1000 = 800	(800 – 30 0) / 100 = 5	
		100	0.003	1,000	100 × 0.003 × 1000= 300	(300 – 0) / 100 = 3	
		0	0	1,000	0		
FRU		Surplus Probability (MW)		Penalty (\$/MWh)	Surplus Cost (\$)	Surplus Incremental Cost (\$/MWh)	

 Table from pg. 16 of FRP Draft Technical Appendix

Demand Curves with Uniform Distribution of Errors

- ISO formulation dependent on histogram bins
 Converges to zero as bins become more granular
- DMM formulation not dependent on bin choice when uniform distribution of errors
 - Bin choice can effect estimated probability that errors are greater than or equal to FRU capacity when distribution not uniform

Demand Curves with Uniform Distribution of Errors

Proposal

• Change demand curve formulation to:

$$Price(FRU) = PC^{short} * \sum_{i} p_{i} \quad \forall p_{i} \text{ of } \varepsilon_{i} \ge FRU = PC * \int_{EU_{t}-FRUS_{t}}^{EU_{t}} p_{t}(e)de$$
$$Price(FRD) = PC^{excess} * \sum_{i} p_{i} \quad \forall p_{i} \text{ of } \varepsilon_{i} \le FRD = PF * \int_{ED_{t}}^{ED_{t}-FRDS_{t}} p_{t}(e)de$$

 Change expected PBC violation cost functions in Draft Technical Appendix to:

$$CSU_{t}(FRUS_{t}) = PC^{short} * \int_{EU_{t}-FRUS_{t}}^{EU_{t}} \left(e - (EU_{t} - FRUS_{t})\right) * p_{t}(e)de$$
$$CSD_{t}(FRDS_{t}) = PC^{excess} * \int_{ED_{t}}^{ED_{t}-FRDS_{t}} \left(e - (EU_{t} - FRDS_{t})\right) * p_{t}(e)de$$

