

Primary Frequency Response – Energy Storage

February 9, 2017

CESA Members

Board Members

General Members

Amber Kinetics
Bright Energy Storage
Brookfield Renewables
Consolidated Edison
Development

Customized Energy

Solutions

Demand Energy
Doosan GridTech
Eagle Crest Energy

EDF Renewable Energy

ElectrIQ Power

Energy Storage Systems

eMoterWerks
Enphase Energy

Geli

Green Charge Networks

Greensmith Energy

Gridscape Solutions

Gridtential Energy

Hitachi Chemical Company

IESoftworks

Johnson Controls

Lockheed Martin AES

Mercedes Benz R&D NA

NEC Energy Solutions

NEXTracker

NGK Insulators

NICE America Research

OutBack Power

Technologies

Parker Hannifin

Corporation

Qnovo

Recurrent Energy

RES Americas

Sharp Labs

Southwest Generation

Sovereign Energy

STOREME Inc.

Sumitomo Electric

Sunrun

Swell Energy

Tri-Technic

Younicos

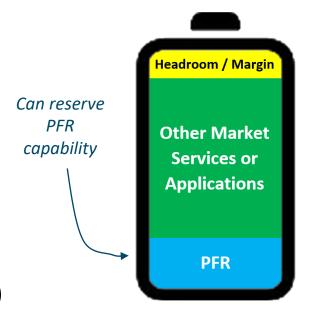
Where we are...

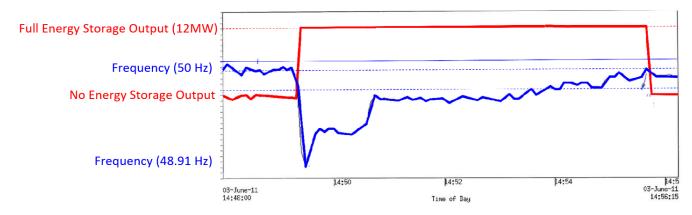
The Problem?

- » Fleet and rules changes driving consideration Primary Frequency Response (PFR) provision.
 - PFR is important
 - No financial incentives to provide this critical service
 - No longer workable to assume PFR will be provided 'for free'

Solution?

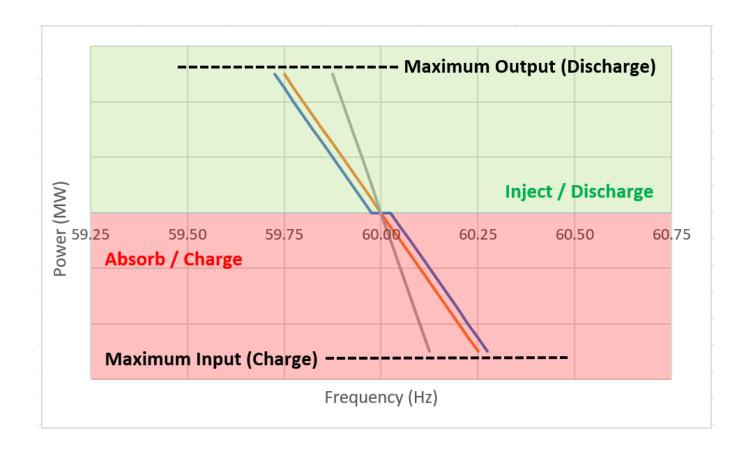
- » An in-market constraint or product can incent capability and performance while compensating for opportunity costs
 - CAISO Markets should reserve PFR capability and service
- » Constraint/Product design should include mechanisms for calculating how much PFR resources can provide
 - Not all resources provide PFR equally or linearly


PFR: "In-Market" Design


- » How an in-market constraint or product would work:
 - Day-Ahead and Real-Time Markets solve for constraints and products, including reserving capacity/capability for PFR provision
 - When dispatched, resources also settles for energy (like Regulation)
- » How much PFR capability (in MW of PFR service) is procured
 - ISO to determine based on BAL-003 need
- » Procured from whom?
 - From eligible resources if so equipped/capable and with deliverable and countable
 PFR capability
- » How to determine capability of PFR from a resource
 - Counting metric is: "MW capable and delivered/ MW reserved"
 - "1/1" is very efficient, but ".1/1" is less efficient
 - Easy to determine/know PFR capability from some resources
 - May need methodology for determining amount of PFR available from some resources.
 - Duration of PFR 'burst' (in terms of energy backing a MW of PFR) may need definition.

PFR from Energy Storage

- » Efficient provider of PFR, a.k.a. "1:1"
- » Autonomous, instantaneous response & contribution
- » Most storage has sufficient energy, e.g. ≥ 15 min., for PFR service.
- » Fully configurable: rate of response, time-delay, deadband
- » Bi-directional if required (under and over freq. support)



Source: https://www.neces.com/assets/CIGRE-Frequency-Response-from-Autonomous-Storage-Units1.pdf

Appendix

- » Storage can be programming for any desired PFR responses.
 - (MW/0.1Hz, time-delay, deadband etc.)

