Clean Coalition Making Clean Local Energy Accessible Now

Transmission Access Charges (TAC) Structure

Structure and implications of a TED-based TAC

Doug Karpa, J.D., Ph.D

Policy Director Clean Coalition <u>415.860.6681 mobile</u> doug@clean-coalition.org

Making Clean Local Energy Accessible Now

25 September 2017

Agenda

STRUCTURE OF THE TED-BASED TAC

- 1. How a TED-based TAC would work
 - a. TRR cost recovery formula, with examples
 - b. TAC allocation among LSEs
- 2. TED-based TAC would alter procurement
 - a. TED-Based TAC maps delivery costs onto procurement

3. Procurement changes would reduce future transmission investment

- a. Reduces all 4 drivers of transmission investment
- b. Numerical model of transmission avoidance

4. Policy Arguments

- a. Rate design principles
- b. Policy objectives

The grid consists of a three parts

Transmission Access Charges (TAC)

Volumetric fees assessed on energy consumption for using the CAISO-controlled transmission grid

Iow Voltage (LV) and High Voltage (HV) TAC

Transmission Energy Downflow (TED)

<u>GROSS</u> metered energy flow from higher to lower voltages across defined transmission interfaces (backflow doesn't net out or affect DOWNflow)

Customer Energy Downflow (CED)

<u>GROSS</u> Metered energy flow measured across customer meters (a.k.a. end-use customer metered load) (backflow doesn't net out or affect DOWNflow)

Participating Transmission Owner (PTO)

Fentity that owns part of the CAISO-controlled transmission grid

Distributed Generation (DG) Output

- Energy produced by distribution connected resources and consumed with the distribution area
 - **FIFOM** wholesale distributed generation
 - Net energy metering (NEM) exports

This stakeholder proceeding is concerned with this part

All the energy flowing across this section of the grid comes from upstream generation and...

Costs for this section of the grid are recovered by

- a fee on energy
- charged to the entities procuring that energy.

1.a. How to calculate TED-based TAC1. Examples and 2017 cost impacts

TED-Based TAC:

Recover the costs of the HV transmission grid with

-a fee

- -on energy crossing the HV transmission grid.
- **HV Transmission Revenue Requirement:**

money to be recovered to pay for the transmission grid

HV TED: the energy flowing across the HV grid

•This proposal involves:

- •No change in the TRR reporting process
- •No change in TRR
- •No change in operations
- •No change in TAC formula

•Only a change in *where* energy is measured

PART 1: Cost Effects: A ILLUSTRATIVE example

Clean Coalition

Three procuring entities in the State of Honalee

Popeye G&E - An IOU needing 75 GWH to serve load

•Procures 3 GWH from wholesale DG (4%)

•Procures 72 GWH from transmission grid resources

•Magic Dragon Clean Power - a CCA needing 25 GWH

•Procures 2 GWH from wholesale DG (8%)

•Procures 23 GWH from transmission resources

- •Knifefish ESP needing 10 GWH to serve load
 - •Procures 0 GWH DG
 - •Procures 10 GWH from transmission grid
 - •Analogous to Municipal utility using TED-based charges today

Step 1: Calculate how much TAC the LSE owes for the energy it procures

2016 Scenario	ΙΟυ	CCA	ESP	Total	Notes
LSE Customer Energy Downflow (CED, in GWh)	75	25	10	110	Gross Load
Distribution sourced energy DG output (GWh)	3	2	0	5	
Share of LSE CED served by DG	4%	8%	0%	4.5%	4% is the highest current % of DG in any PTO utility service territory
Transmission sourced energy TED (GWh)	72	23	10	105	Proposed TAC basis
% of Total CED	68%	23%	9%	100%	Share of total CED
% of Total TED	68.6%	21.9%	9.5%	100%	Share of total TAC basis (proposed)

PART 1: Cost effect example: Calculation of TED-Based TAC

2017 Scenario	IOU	CCA	ESP	Total	Notes
LSE Customer Energy Downflow (CED, in GWh)	75	25	10	110	Gross Load
Distribution sourced energy DG output (GWh)	3	2	0	5	
Share of LSE CED served by DG	4%	8%	0%	4.5%	4% is the highest current % of DG in any PTO utility service territory
Transmission sourced energy TED (GWh)	72	23	10	105	Proposed TAC basis
% of Total CED	68%	23%	9%	100%	Share of total CED
% of Total TED	68.6%	21.9%	9.5%	100%	Share of total TAC basis (proposed)
TRR (in thousands)	NA	NA	NA	\$1,650	
TAC RATE (¢/kWh)	1.57¢	1.57¢	1.57¢	1.57¢	(=TRR/Total TED)
TED-Based TAC Payments (in thousands)	\$1131	\$362	\$157	\$1,650	TRR is completely recovered

PART 1: Cost effect example: Comparison to CED

2017 Scenario	ΙΟυ	CCA	ESP	Total	Notes
Customer Energy Downflow CED (GWh)	75	25	10	110	Gross Load
Distribution sourced energy (GWh)	3	2	0	5	
Share of LSE CED served by DG	4%	8%	0%	4.5%	4% is the highest
Transmission sourced energy TED (GWh)	72	23	10	105	Proposed TAC basis
% of Total CED	68%	23%	9%	100%	Share of total CED
% of Total TED	68.6%	21.9%	9.5%	100%	Share of total TAC
TRR (in thousands)	NA	NA	NA	\$1,650	
TAC RATE (¢/kWh)	1.57¢	1.57¢	1.57¢	1.57¢	(=TRR/Total TED)
TED-Based TAC Payments (in thousands, rounded)	\$1131	\$362	\$157	\$1,650	TRR is completely recovered
CED-based TAC Rate	1.50¢	1.50¢	1.50¢	1.50¢	4.4% lower
CED-Based TAC Payments (thousands)	\$1,125	\$375	\$150		
Change (Percent and dollar amounts)	+0.5% (+\$6.4)	-3.6% (-\$13.6)	+5% (\$7)		

Clean Coalition

Step 2: Recovery those TAC charges from customers through delivery charges

2017 Scenario	IOU	ССА	ESP	Total	Notes
LSE Customer Energy Downflow (CED, in GWh)	75	25	10	110	Gross Load
Distribution sourced energy DG output (GWh)	3	2	0	5	
Transmission sourced energy TED (GWh)	72	23	10	105	Proposed TAC basis
TED-Based TAC Payments (in thousands, rounded)	\$1131	\$362	\$157	\$1,650	TRR is completely recovered
Average Delivery charge per kWh	1.52¢	1.46¢	1.57¢	AVG: 1.50¢	The same rate charged to all LSE's customers, regardless

Delivery charges are applied to customer classes served by LSE according to its rate design.

All LSE customers in a customer class are charged the same delivery charge whether their particular load is served by DG or not.

Popeye G&E Distribution Area 1: Mostly supplied by local DG resources **Delivery charge: \$0.0152/kWh**

Popeye G&E Distribution Area 2: No local DG resources **Delivery charge: \$0.0152/kWh**

PART 1: Cost effect example: Catching up in DG

2017 Scenario	IOU	CCA	ESP	Total	Notes
Customer Energy Downflow CED (GWh)	75	25	10	110	Gross Load
Distribution sourced energy (GWh)	6	2	0.8	8.8	
Share of LSE CED served by DG	8%	8%	8%	8%	4% is the highest current %
Transmission sourced energy TED (GWh)	69	23	9.2	101.2	Proposed TAC basis
% of Total CED	68%	23%	9%	100%	Share of total CED
% of Total TED	68%	23%	9%	100%	Share of total TAC basis
TRR (in thousands)	NA	NA	NA	\$1,650	
TAC RATE (¢/kWh)	1.63¢	1.63¢	1.63¢	1.63¢	(=TRR/Total TED)
TED-Based TAC Payments (in thousands, rounded)	\$1125	\$375	\$150	\$1,650	TRR is completely recovered
CED-based TAC Rate	1.50¢	1.50¢	1.50¢	1.50¢	4.4% lower
CED-Based TAC Payments (in thousands)	\$1125	\$375	\$150		
Change (Percent and dollar amounts)	+0.0% (+\$0)	+0.0% (+\$0)	+0.0% (+\$0)		

PART 1: Cost effect example: using CAISO data

🍣 California ISO

March 01, 2016 TAC Rates Based on Filed Annual TRR/TRBA and Load Data

TAC Components:					
	Filed Annual TRR (\$) [1]	Filed Annual Gross Load (MWh) [2]	HV Utility Specific Rate (\$/MWH) [3] = [1] / [2]	TAC Rate (\$/MWH) [4] = total [1]/total [2]	TAC Amount (\$) [5] = ([2]) * [4]
PG&E	\$ 607,131,854	90,445,937	\$ 6.7126	\$ 11.1337	\$ 1,006,995,411
SCE	\$ 1,004,417,227	90,511,765	\$ 11.0971	\$ 11.1337	\$ 1,007,728,318
SDG&E	\$ 469,609,354	20,824,991	\$ 22.5503	\$ 11.1337	\$ 231,858,623
Anaheim	\$ 29,372,296	2,507,620	\$ 11.7132	\$ 11.1337	\$ 27,919,019
Azusa	\$ 3,163,102	257,416	\$ 12.2879	\$ 11.1337	\$ 2,865,985
Banning	\$ 1,274,841	144,652	\$ 8.8132	\$ 11.1337	\$ 1,610,508
Pasadena	\$ 14,679,975	1,231,980	\$ 11.9158	\$ 11.1337	\$ 13,716,461
Riverside	\$ 32,665,860	2,180,985	\$ 14.9776	\$ 11.1337	\$ 24,282,372
Vernon	\$ 2,973,458	1,181,728	\$ 2.5162	\$ 11.1337	\$ 13,156,972
DATC Path 15	\$ 25,407,824	-	\$ -	\$ 11.1337	\$ 0
Startrans IO	\$ 3,587,536	-	\$ -	\$ 11.1337	\$ 0
Trans Bay Cable	\$ 118,857,411	-	\$ -	\$ 11.1337	\$ 0
Citizens Sunrise	\$ 11,783,984	-	\$ -	\$ 11.1337	\$ 0
Colton	\$ 3,485,980	372,179	\$ 9.3664	\$ 11.1337	\$ 4,143,719
VEA	\$ 11,934,204	544,970	\$ 21.8988	\$ 11.1337	\$ 6,067,517
ISO Total	\$ 2,340,344,906	210,204,223			\$ 2,340,344,906

PART 1: Cost effect example: using CAISO data

2017 Scenario	PG&E	SCE	SDG&E	Total	Notes
Customer Energy Downflow (GWh)	90,500	90,511	20,825	201,782	Gross Load
Distribution sourced energy (GWh)	3,527	2,263	833	6,623	
Share of LSE CED served by DG	3.9%	2.5%	4.0%	3.28%	-SCE, SDG&E DG penetration rates are chosen to illustrate MAXIMAL IMPACTS -PG&E rate calculated from DRP filings
Transmission sourced energy TED (GWh)	86,919	88,248	883	194,254	Proposed TAC basis
TRR (in millions)	NA	NA	NA	\$2,081	From March 2016 filing
TED-based TAC RATE (¢/kWh)	1.066¢	1.066¢	1.066¢	1.066¢	(=TRR/Total TED)
TED-Based TAC Payments (in thousands)	\$927	\$941	\$213	\$2,081	TRR is completely recovered
CED- based TAC RATE (¢/kWh)	1.031¢	1.031¢	1.031¢	1.031¢	3.7% lower
CED-Based TAC Payments (in millions)	\$933	\$933.5	\$214.8		
Change (Percent and dollars, millions)	-0.64% (-\$5.9)	+0.81% (+\$7.5)	-0.74% (-\$1.6)		

Distribute to ratepayers, on average

2017 Scenario	PG&E	SCE	SDG&E	Total	Notes
Customer Energy Downflow (GWh)	90,500	90,511	20,825	201,782	Gross Load
TED-Based TAC Payments (in thousands)	\$927	\$941	\$213	\$2,081	TRR is completely recovered
Average Delivery charge per kWh	1.025¢	1.040¢	1.024¢	1.031¢	Proposed TAC basis
CED-Based TAC Payments (in millions)	\$933	\$933.5	\$214.8		
Average delivery charge per kWh	1.031¢	1.031¢	1.031¢	1.031¢	
Change in Average delivery charge	-0.00659¢	0.00834¢	-0.00765¢		

Delivery charges are applied to customer classes served by LSE according to its rate design.

Shifts BETWEEN IOUs would be less than 1%

https://www.pge.com/includes/docs/pdfs/myhome/customerservice/energychoice/communitychoiceaggregation/mce_rateclasscomparison.pdf

Customer Schedule	Class	PG&E	Adjusted
E-1	Residential	\$0.14049	\$0.13390
E-1 (CARE)	Residential	\$0.04161	\$0.03502
E-6	Residential	\$0.13848	\$0.13189
EV-A	Residential	\$0.11894	\$0.11235
EV-B	Residential	\$0.07683	\$0.07024
A-1	Small & Medium Bus.	\$0.13391	\$0.12732
A-10X	Small & Medium Bus.	\$0.10100	\$0.09441
E-19S	Industrial	\$0.08420	\$0.07761
E-20	Industrial	\$0.06694	\$0.06035

Rate changes would be less than 1% of the differences AMONG RATE CLASSES

1.a. How to calculate TED-based TAC2. Cost impacts over the next 20 years

2037 Scenario	ΙΟυ	CCA	ESP	Total	Notes
LSE Customer Energy Downflow (CED, in GWh)	75	25	10	110	Gross Load
% of Total CED	68%	23%	9%	100%	Share of total CED
CAISO PROJECTED 2035 TRR (in thousands)	NA	NA	NA	\$5,280	FUTURE TRR
CED-Based TAC RATE (¢/kWh)	4.8¢	4.8¢	4.8¢	4.8¢	(=TRR/Total CED)
CED-Based TAC Payments (in thousands)	\$3,600	\$1 ,200	\$480	\$5,280	TRR is completely recovered

A 5% growth rate in TAC rate projected over 20 years from the initial 1.5¢ would predict a TAC rate of 4.8¢

Actual TAC Rates have been growing FASTER than that.

PART 1: Cost effect example 2037 1.5X RATE OF DG DEPLOYMENT

2037 Scenario	ΙΟυ	CCA	ESP	Total	Notes
LSE Customer Energy Downflow (CED, in GWh)	75	25	10	110	Gross Load
CAISO PROJECTED 2035 TRR (thousands)	NA	NA	NA	\$5,280	FUTURE TRR
CED-Based TAC RATE (¢/kWh)	4.8¢	4.8¢	4.8¢	4.8¢	(=TRR/Total CED)
CED-Based TAC Payments	\$3,600	\$1,200	\$480	\$5,280	TRR is completely recovered
Distribution sourced energy (GWh)	10	10	0	20	
Share of LSE CED served by DG	13%	40%	0%	18%	1.5XBAU projections
Transmission sourced energy TED (GWh)	65	15	10	90	Proposed TAC basis
TRR (in thousands)	NA	NA	NA	\$3,040	Cost increases at 3.1%, compared to 5% See Transm'n avoidance model
TAC RATE (¢/kWh)	3.38¢	3.38¢	3.38¢	3.38¢	(=TRR/Total TED)
TED-Based TAC Payments (in thousands, rounded)	\$2,196	\$507	\$338	\$3,040	TRR is completely recovered
Change (Percent and dollar amounts)	-39% (-\$1,404)	-57.8% (-\$693)	-29.6% (-\$142)		

1.b. How to calculate share of TED among LSEs

Principle: Allocate TAC liability according to each LSE's proportional share of TED

LSE TAC liability = TAC rate * LSE share of TED

LSE share of TED = LSE CED – (LSE LV and DG output)

This can be done as long as the UDC knows the **HV TAC rate** and each **LSE's DG output**.

PART 1: Allocating TAC between multiple LSEs on the same distribution grid: Overcollect + Refund Method *Coalition*

1. CAISO files the HV TAC rate with FERC and assigns costs to utilities based on their TED.

HV TAC rate = (HV TRR)/(HV TED)

- 2. Each LSE can identify their LV and DG output using information available to their scheduling coordinator. LSE LV and DG output = LV output + WDG output + NEM metered exports (available from scheduling coordinators reporting to UDC)
- 3. The UDC that serve multiple LSEs would apply the HV TAC rate to each kilowatt-hour of <u>CED</u> and collected from customers. *HV TAC rate * LSE total CED = LSE TAC liability + overcollection*
- 4. The UDC would refund the excess fees to each LSE in proportion to their LV and DG output.

LSE Refund = HV TAC rate * LSE LV and DG output (will match the overcollected amount from each LSE)

PART 1: Cost effect example: Allocation of TAC among LSEs

Scenario	ΙΟυ	ССА	ESP	Total	Notes
Customer Energy Downflow CED (GWh)	12	5	3	20	
Distribution sourced energy (GWh)	3	1	0	4	
Share of LSE CED served by DG	25%	20%	0%	20%	
Transmission sourced energy TED (GWh) = CED(metered) – DG procurement	9	4	3	16	
TAC RATE (¢/kWh)				1.57¢	
TED-Based TAC Payments (thousands)	16	GWh * \$00	157 =	\$251,200	Charged to the UDC
Collected by UDC based on CED	20	GWH * \$0.0	157 =	\$314,000	
Overcollection			Refunded to LSEs for DG		
Refund to LSE (= DG * TAC)	\$47,100	\$15,700	\$0	\$62,80 0	

2.a. Implications of TED-based TAC for procurement

Procurement is done by

- •Least cost
- •Best fit

•Currently, less than 4% of energy comes from distribution-connected generation.

Least Cost with delivery costs with TED-based TAC

- Procurement costs include both costs of generation and delivery.
- Existing LCBF methodologies can incorporate this cost information without additional regulatory changes.

PART 2: Impacts of TED-based TAC on procurement

- TED-based TAC will allow the costs of the transmission delivery system to be incorporated into procurement decisions.
- Where local energy supplies are cheaper, these will be procured
- Where transmission-sourced energy supplies are cheaper, these will be procured

PART 2: Impacts of TED-based TAC on procurement: Identification of most cost effective resources.

Clean Coalition

Recent contract prices from central renewable sources (RPS) and distributed renewables (ReMAT) indicate that in some instances DG should be procured

Data sources: 2014-16 RPS via CPUC; 2014-16 ReMAT via PG&E, SCE ReMAT web sites. NOTE: 2017 SCE ReMAT contracted price was 4.5c/kWh as of May. The most recent offer price was 4.1c/kWh. PART 2: Impacts of TED-based TAC on procurement: changes in procurement mix hypothetical illustration

•Popeye G&E 50 MW procurement

Capacity available at price points - No delivery costs

50 MW capacity procured:

47 MW central Generation, 3 MW Distributed @7 cents per kWh or lower (+2 cents/ kWh TAC) PART 2: Impacts of TED-based TAC on procurement: changes in procurement mix hypothetical illustration

•Popeye G&E 50 MW procurement

• Same distribution of generation costs +2 cents/kWh TAC charge for transmission sourced offers

Capacity available curve- delivery costs included with TEDbased TAC

Price per kWh

50 MW capacity procured:

18

42.5 MW central Generation, 7 MW Distributed @9 cents per kWh or lower (+no additional TAC added)

•Popeye G&E 50 MW procurement

	Transmission – sourced	Distribution grid- sourced	Average price per kWh including TAC
TED-Based TAC	42.5 MW	7.5 MW	\$0.0781
Traditional TAC	47 MW	3 MW	\$0.08125

TED-Based TAC

Results in more DG winning procurement contracts in a non-linear relationship Results in lower average costs because not all procured energy carries TAC charges How much more DG results depends on the overall distribution of bids.

Clean Coalition

TED-Based TAC should:

- Lead to more DG procurement
- Result in lower average procurement costs because not all procured energy carries TAC charges
 - (Municipal customers already get this discount)
- Drive a non-linear relationship between TAC and increase in DG deployment, depending on the distribution of projects

3. How increasing Distributed Generation constrains the growth in TAC

a. The Four Cost Drivers of Transmission investment

PART 3a: Impacts of TED-based TAC on TAC growth rate

DER reduces existing and future transmission costs

DER deployment can reduce the need for future transmission grid investment.

- •<u>12/2016, Fresno Bee</u>: Growth of local solar puts plans for \$115 million transmission project on hold
- •<u>5/2016, Greentech Media</u>: \$192 million in PG&E transmission projects cancelled due to energy efficiency and local solar

The Issue Paper identified 4 main drivers of transmission investment, and DER can address needs for each driver.

- 1. Peak load
- 2. Policy
- 3. Economics
- 4. Reliability

PART 3a. Impacts of TED-based TAC on TAC growth rate: Four Drivers of Transmission investment—Peak Load

Example DG production during peak load conditions

Sept 1, 2017, CAISO near record peak

Total demand (net DER) and contribution of Transmission level Solar & Wind

- Policy goals are likely to make up a substantial portion of new transmission investment.
 - RETI 2.0 report estimates at least \$5 billion in new transmission build will be required to meet the 50% RPS by 2030
 - O&M costs increase that cost by $5x \rightarrow $25b$ over 50 years
 - Plus financing costs (return on equity)
 - Aggregated wholesale distributed generation can be RPS-eligible resources.

- DG can reduce peak transmission and transmission flows locally
 - DG frees up transmission capacity, creating opportunities for more cost-effective delivery of remote energy
 - DG at important locations can reduce the marginal costs of energy by reducing congestion and line losses
- When excess capacity exists to reach new, cheap remote resources, the cost of accessing resources decreases.

DER can provide essential reliability services.¹

- Energy storage can provide frequency and voltage stability services under varying real load conditions.²
 - Solar+Storage can provide real power
 - Automated DR can manage load profiles
 - Advanced inverters can provide reactive power for voltage support if needed.
 - DERs also provide resiliency by adding diversity to the generation portfolio.

1 C. Loutan et al., *Demonstration of Essential Reliability Services by a 300-MW Solar Photovoltaic Power Plant* (March 2017), available at https://www.nrel.gov/docs/fy17osti/67799.pdf.

2 Khalsa, Amrit S., and Surya Baktiono. *CERTS Microgrid Test Bed Battery Energy Storage System Report: Phase 1., 2016*, available at <u>https://certs.lbl.gov/sites/all/files/aep-battery-energy-storage-system-report-phase1.pdf</u>.

Service	Key to Delivering Service
Power Balancing	Capacity of real power (W)
Voltage Balancing	Location of reactive power (VAr)
Frequency Balancing	Speed of ramping real power (W)

The Duck Chart only addresses Power Balancing but Distributed Energy Resources deliver unparalleled location and speed characteristics

"The old adage is that reactive power does not travel well."

Oak Ridge National

Laboratory (2008)

Figure 1-1. Transmission line absorption of reactive power.

Source: Oak Ridge National Laboratory (2008)

3. How increasing Distributed Generation constrains the growth in TAC

b. Numerical model of the impact of increased DG on transmission investment

Forecasted PG&E Total TAC Rate

We emphasize that this model was developed to *illustrate* the TRR and associated TAC rate impacts of reducing new transmission investment proportional* to reductions in total delivered energy over time (MWh)

- While we use reasonable estimates, these are not actual forecasts the number of variables make that impossible
- The tool illustrates the type of impacts that can be expected and compares different levels of DER adoption. The actual change in DER deployment will depend on what the market can deliver.
- We're offering the tool to:
 - allow stakeholders to see how inputting different assumptions influences the magnitude and nature of the results, and
 - also as an open source to make improvements to the formulae, methods, and assumptions. Feel free to make changes.

* = Typical generation profiles are considered. Alternate approaches are welcome to give greater emphasis to peak capacity (MW) or avoided remote RPS procurement

•STEP 1:

- Establish expected total energy delivered by
 - •Wholesale DG based on PG&E's estimates
 - •NEM exports
- •Extrapolated over 20 years.

Share of Gross Load Served Assumption/Source* Locally Example: 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 See Spreadsheet Capacity Factor CMP from Feed in Tariffs (MW) 23 30 36 43 50 56 63 70 76 83 Molesale Distributed Generation (DG) (MW) 550 665 770 828 885 947 947 947 947 947 947 Molesale DG (MWO) 550 665 806 871 935 1,003 1,017 1,023 1,030 NEM Photovoltaic (PV) 2,224 2,694 3,076 3,471 3,874 4,288 4,718 5,153 5,591 6,035 NEM Non-PV DG (MW) 220 255 292 328 367 407 448 492 535 578 Total NEM DG (MW) 2,044 4,079 5,175 5,697 6,175 6,661 7,149 7,643 Share of NEM DG generation entering grid NEM DG capacity plus WDG capacity serving local loadds/	rotal Annual													
Locally Example: 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 See Spreadsheet Capacity Factor CHP from Feed in Tariffs (MW) 23 30 36 43 50 56 63 70 76 83 Wholesale Distributed Generation (DG) (MW) 557 665 770 828 885 947 947 947 947 947 947 Total Wholesale DG (WDG) (MW) 580 695 806 871 935 1,003 1,010 1,017 1,023 1,030 NEM Photovoltaic (PV) (MW) 2,224 2,694 3,076 3,471 3,874 4,288 4,718 5,153 5,591 6,035 NEM Non-PV DG (MW) 2,220 255 292 328 367 407 448 492 535 578 Total NEM DG (MW) 2,444 2,949 3,368 3,799 4,240 4,695 5,166 5,651 6,614 M	Share of Gross Load Served										A	ssumption/S	ource*	
CHP from Feed in Tariffs 23 30 36 43 50 56 63 70 76 83 (MW) \$57 665 770 828 885 947 947 947 947 947 Total Wholesale DG (WDG) \$57 665 870 3,871 3,874 4,288 4,718 5,153 5,591 6,035 NEM Photovoltaic (PV) 2,224 2,694 3,076 3,471 3,874 4,288 4,718 5,153 5,591 6,035 NEM Non-PV DG (MW) 2,220 2,55 292 328 367 407 448 492 535 578 Total NEM DG (MW) 2,444 2,949 3,368 3,799 4,240 4,695 5,166 5,645 6,126 6,614 Total WDG + NEM DG generation entering grid Generation entering grid South Sou	<u>Locally Example: (</u>	<u>2016</u>	<u>2017</u>	<u>2018</u>	<u>2019</u>	<u>2020</u>	<u>2021</u>	<u>2022</u>	<u>2023</u>	<u>2024</u>	<u>2025</u> S	ee Spreads	heet	Capacity Factor
(MW) 23 30 36 43 50 56 63 70 76 83 Wholesale Distributed Generation (DG) (MW) 557 665 770 828 885 947 947 947 947 947 Total Wholesale DG (WDG) 580 695 806 871 935 1,003 1,010 1,017 1,023 1,030 NEM Photovoltaic (PV) 2,224 2,694 3,076 3,471 3,874 4,288 4,718 5,153 5,591 6,035 NEM Non-PV DG (MW) 2,202 2,255 2.92 328 367 407 448 492 535 578 Total NEM DG (MW) 2,444 2,949 3,368 3,799 4,240 4,695 5,166 5,645 6,126 6,614 Total WDG + NEM DG 3,023 3,644 4,174 4,670 5,175 5,697 6,165 5,0.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% <	CHP from Feed in Tariffs													
Wholesale Distributed 557 665 770 828 885 947 947 947 947 947 Generation (DG) (MW) 580 695 806 871 935 1,003 1,010 1,017 1,023 1,030 NEM Photovoltaic (PV) 2,224 2,694 3,076 3,471 3,874 4,288 4,718 5,153 5,591 6,035 NEM Non-PV DG (MW) 220 225 292 328 367 407 448 492 535 578 Total NEM DG (MW) 2,444 2,949 3,368 3,799 4,240 4,695 5,166 5,645 6,126 6,614 Total NEM DG (MW) 3,023 3,644 4,174 4,670 5,175 5,697 6,175 6,661 7,149 7,643 Share of NEM DG generation entering grid NEM DG capacity plus WDG capacity 2,000 2,000	(MW)	23	30	36	43	50	56	63	70	76	83			
Generation (DG) (MW) 557 665 770 828 885 947 947 947 947 947 947 Total Wholesale DG (WDG) (MW) 580 695 806 871 935 1,003 1,010 1,017 1,023 1,030 NEM Photovoltaic (PV) (MW) 2,224 2,694 3,076 3,471 3,874 4,288 4,718 5,153 5,591 6,035 NEM Non-PV DG (MW) 220 255 292 328 367 407 448 492 535 578 Total NEM DG (MW) 3,023 3,644 4,174 4,670 5,175 5,697 6,165 5,645 6,126 6,614 Share of NEM DG generation entering grid NEM DG capacity plus WDG capacity serving local loads (MW) 1,801 2,169 2,490 2,770 3,055 3,350 3,592 3,839 4,086 4,336 Average MWh Yield per MW DG capacity 1,801 2,169 2,490 2,770 3,055 3,350 3,592 3,839 4,086 4,336 Gross Load (GWh) 91,500 93,330 95,197 <td>Wholesale Distributed</td> <td></td>	Wholesale Distributed													
Total Wholesale DG (WDG) (MW) 580 695 806 871 935 1,003 1,017 1,023 1,030 NEM Photovoltaic (PV) (MW) 2,224 2,694 3,076 3,471 3,874 4,288 4,718 5,153 5,591 6,035 NEM Non-PV DG (MW) 2,20 255 292 328 367 407 448 492 535 578 Total NEM DG (MW) 2,044 2,949 3,688 3,799 4,200 6,615 6,614 Total NEM DG (MW) 3,023 3,644 4,174 4,670 5,175 5,697 6,175 6,661 7,149 7,643 Share of NEM DG generation entering grid NEM DG capacity plus WDG capacity serving local loads (MW) 1,801 2,169 2,490 2,770 3,055 3,350 3,592 3,839 4,086 4,336 Average MWh Yield per WDG capacity 1,801 2,169 2,490 2,700 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 <td>Generation (DG) (MW)</td> <td><u>557</u></td> <td><u>665</u></td> <td>770</td> <td>828</td> <td>885</td> <td><u>947</u></td> <td><u>947</u></td> <td><u>947</u></td> <td><u>947</u></td> <td>947</td> <td></td> <td></td> <td></td>	Generation (DG) (MW)	<u>557</u>	<u>665</u>	770	828	885	<u>947</u>	<u>947</u>	<u>947</u>	<u>947</u>	947			
(MW) 580 695 806 871 935 1,003 1,010 1,017 1,023 1,030 NEM Photovoltaic (PV) 2,224 2,694 3,076 3,471 3,874 4,288 4,718 5,153 5,591 6,035 NEM Non-PV DG (MW) 220 225 292 328 367 4,07 448 492 535 578 Total NEM DG (MW) 2,444 2,949 3,368 3,799 4,240 4,695 5,166 5,645 6,126 6,614 Total WDG + NEM DG 3,023 3,644 4,174 4,670 5,175 5,697 6,175 6,661 7,149 7,643 Share of NEM DG 50.0%	Total Wholesale DG (WDG)													
NEM Photovoltaic (PV) (MW) 2,224 2,694 3,076 3,471 3,874 4,288 4,718 5,153 5,591 6,035 NEM Non-PV DG (MW) 220 255 292 328 367 407 448 492 535 578 Total NEM DG (MW) 2,444 2,949 3,368 3,799 4,240 4,695 5,166 5,645 6,126 6,614 Total WDG + NEM DG generation entering grid NEM DG capacity plus WDG capacity serving local loads (MW) 50.0% <td>(MW)</td> <td>580</td> <td>695</td> <td>806</td> <td>871</td> <td>935</td> <td>1,003</td> <td>1,010</td> <td>1,017</td> <td>1,023</td> <td>1,030</td> <td></td> <td></td> <td></td>	(MW)	580	695	806	871	935	1,003	1,010	1,017	1,023	1,030			
(MW) 2,224 2,694 3,076 3,471 3,874 4,288 4,718 5,153 5,591 6,035 NEM Non-PV DG (MW) 220 225 292 328 367 407 448 492 535 578 Total NEM DG (MW) 2,444 2,949 3,368 3,799 4,200 4,695 5,166 5,645 6,126 6,614 Total NEM DG (MW) 3,023 3,644 4,174 4,670 5,175 5,697 6,617 6,661 7,149 7,643 Share of NEM DG generation entering grid capacity plus WDG capacity serving local loads (MW) 1,801 2,169 2,490 2,000 50.0% <td>NEM Photovoltaic (PV)</td> <td></td>	NEM Photovoltaic (PV)													
NEM Non-PV DG (MW) 220 255 292 328 367 407 448 492 535 578 Total NEM DG (MW) Total WDG + NEM DG (MW) 2,444 2,949 3,368 3,799 4,240 4,695 5,166 5,645 6,126 6,614 3,023 3,644 4,174 4,670 5,175 5,697 6,175 6,661 7,149 7,643 Share of NEM DG generation entering grid NEM DG capacity plus WDG capacity serving local loads (MW) 50.0% <td>(MW)</td> <td>2,224</td> <td>2,694</td> <td>3,076</td> <td>3,471</td> <td>3,874</td> <td>4,288</td> <td>4,718</td> <td>5,153</td> <td>5,591</td> <td>6,035</td> <td></td> <td></td> <td></td>	(MW)	2,224	2,694	3,076	3,471	3,874	4,288	4,718	5,153	5,591	6,035			
NUM NOTIFY USG (MW) 220 233 232 328 301 401 442 335 378 Total NEM DG (MW) Total WDG + NEM DG (MW) 2,444 2,949 3,368 3,799 4,240 4,695 5,166 5,645 6,126 6,614 Share of NEM DG generation entering grid NEM DG capacity plus WDG capacity serving local loads (MW) 50.0% 50.		220	255	202	220	267	407	110	402	525	E 70			
Total NEM DG (MW) Total WDG + NEM DG (MW) 2,444 2,949 3,368 3,799 4,240 4,695 5,166 5,645 6,126 6,614 MOG 3,023 3,644 4,174 4,670 5,175 5,697 6,175 6,661 7,149 7,643 Share of NEM DG generation entering grid NEM DG capacity plus WDG capacity serving local loads (MW) 1,801 2,169 2,490 2,770 3,055 3,350 3,592 3,839 4,086 4,336 Average MWh Yield per MW DG capacity 3,603 4,338 4,979 5,541 6,110 6,700 7,185 7,678 8,171 8,673 Gross Load (GWh) 91,500 93,330 95,197 97,101 99,043 1-1,023 1-03,044 1-05,105 1-7,207 1-09,351 Share of Gross Load served by WDG + NEM exports 3,98 4.68 5.2% 5.7% 6.2% 6.6% 7.0% 7.3% 7.6% 7.9%							407	440	492					
Total WDG + NEM DG 3,023 3,644 4,174 4,670 5,175 5,697 6,175 6,661 7,149 7,643 Share of NEM DG generation entering grid NEM DG capacity plus WDG capacity plus WDG apacity plus WDG 50.0% <t< td=""><td>Total NEM DG (MW)</td><td>2,444</td><td>2,949</td><td>3,368</td><td>3,799</td><td>4,240</td><td>4,695</td><td>5,166</td><td>5,645</td><td>6,126</td><td>6,614</td><td></td><td></td><td></td></t<>	Total NEM DG (MW)	2,444	2,949	3,368	3,799	4,240	4,695	5,166	5,645	6,126	6,614			
(MW) 3,023 3,644 4,174 4,670 5,175 5,697 6,175 6,661 7,149 7,643 Share of NEM DG generation entering grid NEM DG capacity plus WDG 2,000 50.0%	Total WDG + NEM DG		-		-						·			
Share of NEM DG 50.0%	(MW)	3,023	3,644	4,174	4,670	5,175	5,697	6,175	6,661	7,149	7,643			
Share of NEM DG 50.0%														
Since of the model 50.0% </td <td>Share of NEM DG</td> <td></td>	Share of NEM DG													
NEM DG capacity plus WDG capacity plus WDG (MW) 1,801 2,169 2,490 2,770 3,055 3,350 3,592 3,839 4,086 4,336 Average MWh Yield per 2,000	generation entering grid	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%			
capacity serving local loads (MW) 1,801 2,169 2,490 2,770 3,055 3,350 3,592 3,839 4,086 4,336 Average MWh Yield per 2,000 </td <td>NFM DG capacity plus WDG</td> <td></td>	NFM DG capacity plus WDG													
(MW) 1,801 2,169 2,490 2,770 3,055 3,350 3,592 3,839 4,086 4,336 Average MWh Yield per 2,000 </td <td>capacity serving local loads</td> <td></td>	capacity serving local loads													
Average MWh Yield per 2,000 2,00	(MW)	1.801	2.169	2.490	2.770	3.055	3.350	3.592	3.839	4.086	4.336			
MW DG capacity 2,000	, Average MWh Yield per	/	,	,	, -	-,	-,	-,	-,	,	,			
WDG + NEM exports (GWh) 3,603 4,338 4,979 5,541 6,110 6,700 7,185 7,678 8,171 8,673 Gross Load (GWh) 91,500 93,330 95,197 97,101 99,043 101,023 103,044 105,105 107,207 109,351 Share of Gross Load served 3.9% 4.6% 5.2% 5.7% 6.2% 6.6% 7.0% 7.3% 7.6% 7.9%	MW DG capacity	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000			
WDG + NEM exports (GWh) 3,603 4,338 4,979 5,541 6,110 6,700 7,185 7,678 8,171 8,673 Gross Load (GWh) 91,500 93,330 95,197 97,101 99,043 101,023 103,044 105,105 107,207 109,351 Share of Gross Load served 3.9% 4.6% 5.2% 5.7% 6.2% 6.6% 7.0% 7.3% 7.6% 7.9%	. ,													
Gross Load (GWh) 91,500 93,330 95,197 97,101 99,043 101,023 103,044 105,105 107,207 109,351 Share of Gross Load served by WDG + NEM exports 3.9% 4.6% 5.2% 5.7% 6.2% 6.6% 7.0% 7.3% 7.6% 7.9%	WDG + NEM exports (GWh)	3,603	4,338	4,979	5,541	6,110	6,700	7,185	7,678	8,171	8,673			
Gross Load (GWh) 91,500 93,330 95,197 97,101 99,043 101,023 103,044 105,105 107,207 109,351 Share of Gross Load served by WDG + NEM exports 3.9% 4.6% 5.2% 5.7% 6.2% 6.6% 7.0% 7.3% 7.6% 7.9%														
Share of Gross Load (GWR) 91,500 93,330 95,197 97,101 99,043 101,023 103,044 105,105 107,207 109,351 Share of Gross Load served by WDG + NEM exports 3.9% 4.6% 5.2% 5.7% 6.2% 6.6% 7.0% 7.3% 7.6% 7.9%	Cross Lood (C)A/b)	01 500	02 220	05 107	07 101	00.042	101 022	102 044	105 105	107 207	100 251			
by WDG + NEM exports 3.9% 4.6% 5.2% 5.7% 6.2% 6.6% 7.0% 7.3% 7.6% 7.9%	Gross Load (Gwn)	91,500	93,330	95,197	97,101	99,043	101,023	103,044	105,105	107,207	109,351			
by WDG + NEINI exports 0.0 % 4.0 % 0.2 % 0.7 % 0.2 % 0.0 % 7.0 % 7.0 % 7.0 % 7.0 %	Share of Gross Load Served	3 9%	4 6%	5 2%	5 7%	6 2%	6.6%	7 0%	7 3%	7 6%	7 9%			
	by wbg + New exports	0.070	7.0 /0	0.2 /0	0.770	0.2 /0	0.070	7.070	7.570	7.070	1.370			
	served by new WDG + new													

40.2% 34.3% 29.5% 29.3% 29.8% 24.0% 23.9% 23.5% 23.4%

Making Clean Local Energy Accessible Now

NEM exports

•STEP 2:

- •A Develop projection of load growth (CAISO)
- •B Develop projection of WDG + NEM exports
- •C Calculate transmission revenue requirement based on total transmission-sourced energy •Calculate TAC
- •Alter rate of WDG + NEM growth to recalculate TRR over time.
 - •Calculate TAC

Part 3b: DG deployment avoids transmission investment **TAC fix Impact Model – future year projection**

Business As Usual (BAU)

		1	2	3	4	5
PG&E TAC Rates	Assumption/Source	2,016	<u>2017</u>	<u>2018</u>	<u>2019</u>	<u>2020</u>
HVTAC rate (\$/MWh)	2016 data: TAC filings September 1, 2016	\$10.68	\$11.21	\$11.77	\$12.36	\$12.98
Nominal annual growth in HVTAC rate	CAISO projected increase, 2012;		7.0%			
Inflation	Clean Coalition		2.0%			
Real annual growth in HVTAC rate	Real growth = nominal growth - inflation		5.0%			
20 year levelized HVTAC rate (current \$/MWh)	Average of 20 years, including current year	\$17.65				
Total TAC rate (\$/MWh)		\$18.00	\$18.90	\$19.84	\$20.84	\$21.88
20 year levelized Total TAC rate (\$/MWh)		\$29.76				
PG&E TAC Payments to CAISO (Equals TRR)						
HVTAC payments to CAISO (HVTRR) (\$ billions)		\$0.98	\$1.05	\$1.12	\$1.20	\$1.29
	Maintains 2016 ratio LVTAC:HVTAC over 20					
LVTAC payments to CAISO (LVTRR) (\$ billions)	years	<u>\$0.67</u>	\$0.72	\$0.77	\$0.82	\$0.88
Cumulative Total TAC payments to CAISO (Total TRR) (\$ billions)		\$1.65	\$3.41	\$5.30	\$7.32	\$9.49
20 year levelized Total TAC payments to CAISO (\$ billions)	Average of 20 years, including current year	\$3.41				
PG&E Share of Gross Load served by WDG + NEM exports						
PG&E Gross Load (GWh)	PG&E growth is same as Total PTO growth	91,500	93,330	95,197	97,101	99,043
New PG&E Gross Load (GWh)			1,830	1,867	1,904	1,942
	PG&E DRP filings; Trajectory growth scenario. Annual increase in growth after 2025 is average					
Share of PG&E Gross Load served by WDG + NEM exports	of increase in growth 2016-2025	3.9%	4.6%	5.2%	5.7%	6.2%
Absolute growth in share of PG&E Gross Load served by WDG + NEM exports			0.7%	0.6%	0.5%	0.5%
PG&E WDG + NEM exports (GWh)		3,603	4,338	4,979	5,541	6,110
New WDG + NEM exports (GWh)			736	641	562	569
Share of new Gross Load served by new WDG + new NEM exports			40.2%	34.3%	29.5%	29.3%
PG&E NEM DG capacity plus WDG capacity serving local loads (MW)	2000 average MWh yield per MW DG capacity	1,801	2,169	2,490	2,770	3,055
	Ratio of DG capacity serving local loads to total					
PG&E Total WDG + NEM DG (MW)	DG remains after 2025 is same as 2025: 57%	3,023	3,644	4,174	4,670	5,175
Total WDG + NEM DG added (MW)			621	530	496	505

Part 3b: DG deployment avoids transmission investment TAC fix Impact Model – sample scenario outputs

Year 20 Year 20

Cumulative Total TAC payments to CAISO (\$ in billions)	<u>Year 1</u>	Year	<u>· 20</u>	<u>Change</u>	<u>C</u>	hange	<u>Notes</u>
Business As Usual (BAU)		\$3.3	\$135.8	5	\$-	-	
Post-TAC fix Scenario 0: BAU with new billing determinant		\$3.3	\$128.4	\$(7	'.5)	-6%	Change versus BAU
Post-TAC fix Scenario 1: Total DG added per year 1.5x of BAU		\$3.3	\$112.4	\$(23	.5)	-17%	versus BAU
Post-TAC fix Scenario 2: Total DG added per year 2x of BAU		\$3.3	\$97.4	\$(38	5.5)	-28%	Change versus BAU
Post-TAC fix Scenario 3: Total DG added per year 3x of BAU		\$3.3	\$71.9	\$(63	.9)	-47%	versus BAU

CAISO peak load after additional WDG versus baseline (MW)	<u>2016</u>	<u>2017</u>	<u>2018</u>	<u>2019</u>	<u>2020</u>
Post-TAC fix Scenario 0: BAU with new billing determinant	49,243	49,392	49,542	49,692	49,843
Business As Usual (BAU)	49,243	49,392	49,542	49,692	49,843
Post-TAC fix Scenario 1: Total DG added per year 1.5x of BAU	49,243	49,200	49,185	49,187	49,191
Post-TAC fix Scenario 2: Total DG added per year 2x of BAU	49,243	49,008	48,827	48,682	48,539
Post-TAC fix Scenario 3: Total DG added per year 3x of BAU	49,243	48,823	48,334	47,891	47,450

Part 3b: DG deployment avoids transmission investment TAC fix Ratepayers benefit from avoided transmission

4. Policy rationales for TED-based TAC

FERC Principles require that transmission pricing:

- 1 Must meet the traditional revenue requirement
- 2 Must reflect comparability
- 3 Should promote economic efficiency
- 4 Should promote fairness
- 5 Should be practical

Courts and FERC require cost responsibility to track cost causation.

FERC Principle 1: Tradition Revenue Requirement is always guaranteed

- •No change in the TRR reporting process
- •No change in TRR
- No change in operations
- •No change in TAC formula
- •Only a change in where energy is measured

Requirement

HV TAC Rate

(costs associated with facilities operating >200kV)

HV TED

FERC Principle 2: TED-based TAC facilitates comparability

- •Does not create price incentives to use utility owned transmission resources
- •Provides similar costs for customers for PTO and non-PTO utilities
- •Puts sources on comparable footing with respect to delivery costs.

•FERC Principle 3: Promotes economic efficiency

- Provides for cost effective procurement
 - •Where DG is not cost effective, more transmission-sourced resources will be procured.
 - •Where DG is more cost effective, less transmission-sourced resources will be procured.
- Constrains on transmission costs growth
- •Distribution connected resources do not need transmission assets to serve customers
 - •Reliability needs can be met with distribution-sourced assets
 - •"Back up" for offline assets can be supplied by distribution resources for transmission connected assets
 - •Ancillary services (frequency, etc.) are paid for separately from TAC

•FERC Principle 4: Promotes fairness

- •LSEs driving the need for transmission growth should contribute to paying for that growth.
- •Similarly situated customers should not face different disincentives for local power.
- •Ratepayers should be allowed to realize opportunities for savings from local resources.

•FERC Principle 5: should be practical

- •Municipal utilities already use TED as a WAC basis
- •TED-based TAC can be implemented with several options, including meters or accounting approaches

Use TED as the TAC billing determinant Consistent, unbiased, and technology-neutral PRINCIPLES

- a. More accurate measurement of transmission usage
- b. Cost allocation principles support it
 IMPACTS
- a. Reduces distortion on DER and creates market signal for resources that avoid the transmission grid
- b. Results in avoided transmission investment and major ratepayer savings
- c. DER reduces all 4 drivers of transmission investment

The TAC Fix is backed by a broad range of organizations

Clean Coalition

Making Clean Local Energy Accessible Now

For more information on the TAC Campaign, visit <u>www.clean-</u> <u>coalition.org/tac</u> or email <u>doug@clean-</u> <u>coalition.org</u>