# CONGESTION REVENUE RIGHTS SENSITIVITY STUDY REPORT 

An Addendum to the Congestion Revenue Rights Preliminary Study Report Dated October 1, 2003

December 15, 2003

## Table of Contents

Congestion Revenue Rights Sensitivity Analysis Report .....  3
1 Introduction. ..... 3
2 Data Set Modifications ..... 3
3 Market Runs ..... 4
4 Sensitivity Run Results ..... 4
5 Observations ..... 5
6 Conclusion ..... 5
7 Appendix ..... 14

## Congestion Revenue Rights Sensitivity Analysis Report

## 1 Introduction

The California ISO released the "Congestion Revenue Rights Preliminary Study Report" in October 2003. The October study (CRR Study 1) was the first installment of a comprehensive study undertaken by the ISO to assess the availability of CRRs to hedge congestion charges under the ISO's Market Design 2002 (MD02) Proposal. The sensitivity analysis described in this report, which is an addendum to the CRR Study 1 report, was undertaken to develop additional useful information for Market Participants and the ISO in assessing CRR allocations under MD02.

The sensitivity analysis consists of two sensitivity runs -- Sensitivity Run 1 and Sensitivity Run 2. Sensitivity Run 1 (SR1) treats existing contracts (ETCs) as obligations, consistent with the ISO's July 22, 2003 Conceptual Design filing ${ }^{1}$. Sensitivity Run 2 (SR2) treats all allocation requests as options, for comparative purposes, as requested by Market Participants.

Prior to conducting market runs for the sensitivity analysis, certain changes were made to the data set that was used for CRR Study 1. These changes are described below.

## 2 Data Set Modifications

The following modifications were made to the original data set used in CRR Study 1 before the sensitivity analysis market runs were made.

- In some cases existing contracts provide for rights in both the source to sink direction and the sink to source direction. Since the use of ETCs in the sink to source direction is highly unlikely, these ETC rights were eliminated from the data set prior to running the simultaneous feasibility test for market runs 1 and 2 of the sensitivity analysis. This resulted in additional capacity in the network for CRR allocations.
- The ETCs associated with the Mohave No. 1 generation were incorrectly modeled as coming 100 percent from Unit No. 1. This was changed such that 50 percent of the ETCs are coming from Unit No. 1 and 50 percent from Unit No.2.
- A small quantity of Converted rights was mistakenly modeled as going over Sylmar_2_NOB in the October Study and was modified to go over Sylmar_2_LDWP.
- A small quantity of converted rights on Palo Verde, Mead, and Sylmar/NOB that was inadvertently left out of the October Study was included in the sensitivity analysis runs.

[^0]- The San Diego In and Out interface limits were changed from 2450 MW to the correct 2850 MW value. Please note that the original value (i.e., 2450 MW) had no impact on the original results from CRR study 1 since this constraint was never binding. The new value of 2850 MW also did not have any impact on either CRR Sensitivity Run 1 or CRR Sensitivity Run 2 since again this constraint was never binding.


## 3 Market Runs

The sensitivity analysis consisted of running the same ten markets described in the CRR Study 1 Report. In Sensitivity Run 1, the 10 market runs were conducted while treating all CRRs as obligations. In the CRR Sensitivity Run 2, for comparative purposes, the 10 market runs were made while treating all CRRs as options.

## 4 Sensitivity Run Results

The following bar graphs show a comparison of results for the two sensitivity runs, along with the results from CRR Study $1^{2}$. The data sets for the two sensitivity runs reflect the changes noted in Section 2 above, while the original data set does not. Consequently, the reader is advised to recognize these differences when comparing the original study results with the results of the sensitivity study runs.

Each of the graphs below is separated into the annual plus respective monthly allocation results for on and off-peak periods and reflects the percentage of cleared allocation requests by participant ${ }^{3}$. The last column of the graph shows the total percentage cleared for all participants in each of the markets. For example, the results shown in the first graph reflect the results of the annual on-peak allocation combined with the monthly on-peak allocation for March.

[^1]
## 5 Observations

The following observations can be made about the two market runs from the graphics.

- A comparison of SR1 and SR2 is reasonable since they are both based on the same set of data. But, the Original study reflects a different data set making a comparison without qualification difficult.
- The total quantity of cleared CRR obligations ranges from about 30 to 40 percent higher than the quantity of cleared CRR options.
- When viewed from a total market perspective, the comparison of the SR1 and SR2 results show an average of around $96 \%$ clearing in SR1-Obligations versus approximately $63 \%$ clearing in SR2-Options.


## 6 Conclusion

The Sensitivity Analysis has provided additional information to Market Participants and the ISO as to the effects of treating CRR requests as obligations, when performing the simultaneous feasibility test, as compared to running a SFT with all CRR options. When comparing the results of Sensitivity Run 1 (all Obligations) with Sensitivity Run 2 (all Options), the quantity of CRR obligations that cleared was greater than or equal to the quantity of CRR options that cleared for each CRR participant.




CRR Study Comparison - Annual \& June Off Peak - \% Cleared Bids (MW)


CRR Study Comparison - Annual \& August OnPeak - \% Cleared Bids (MW)





## 7 Appendix

Listed in the tables below are the binding constraints encountered in each of the two sensitivity analysis market runs. This table is separated by market run, constraints hit during that market run, and whether the constraint was hit during the on-peak or off-peak process. Note that if the first set of LHS and RHS columns are filled with numbers, then that line had constraints on-peak for that particular market. Similarly, if the second set of LHS and RHS columns are filled with numbers, then that line had constraints off-peak for the particular market.

Binding Constraints for Each Market Run

| Market |  | Constraint | On Left Hand Side | n-peak Bind <br> Operation | ing Constr <br> Limit | aints <br> Marginal <br> Value | Left Hand Side | Off-peak Bi <br> Operation | Limit | Marginal Value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SR1 | 1 | EAGLEMT3230. 1033 I | 45 | <= | 45 | -360.66 | 45 |  | 45 | -360.66 |
| SR1 | 1 | IID-SCE _BG OUT | 100 | <= | 100 | -212.28 | 100 | <= | 100 | -212.28 |
| SR1 | 1 | INTK69_N69.0 1045_I | 33 | < | 33 | -348.44 | 33 | <= | 33 | -348.44 |
| SR1 | 1 | IRON_MTN230. 1038_I | 16.5 | <= | 16.5 | -358.63 | 16.5 | <= | 16.5 | -358.63 |
| SR1 | 1 | J.HINDS 230. 1041_I |  |  |  |  | 45 | <= | 45 | -410.9 |
| SR1 | 1 | J.HINDS 230. 1042_I | 45 | <= | 45 | -410.9 |  |  |  |  |
| SR1 | 1 | W ND_GPT1230. 4378_I |  |  |  |  | 54 | <= | 54 | -333.69 |
| SR1 | 2 | ARCO SC 230. 375 Z | 100 | <= | 100 | -1 | 100 | <= | 100 | -1 |
| SR1 | 2 | BAF_COG113.0 3777 I | 45 | <= | 45 | -1 |  |  |  |  |
| SR1 | 2 | BAF_COG113.0 3777_I |  |  |  |  | 45 | <= | 45 | -1 |
| SR1 | 2 | BDLARKSP69.0 36 Z | 60 | <= | 60 | -0.98 |  |  |  |  |
| SR1 | 2 | BLM EAST230. 856 Z | 24 | <= | 24 | -2.87 | 24 | <= | 24 | -2.87 |
| SR1 | 2 | CAL_GEN 115. 939_Z | 35.4 | <= | 35.4 | -1.94 | 35.4 | <= | 35.4 | -1.94 |
| SR1 | 2 | CHINO $\quad 166.0400 \mathrm{Z}$ | 49.5 | <= | 49.5 | -0.99 |  |  |  |  |
| SR1 | 2 | CHINO_166.0 400_Z |  |  |  |  | 49.5 | <= | 49.5 | -0.99 |
| SR1 | 2 | CHINO_166.0 401 Z | 40.7 | <= | 40.7 | -1 |  |  |  |  |
| SR1 | 2 | CHINO_166.0 401_Z |  |  |  |  | 40.7 | <= | 40.7 | -1 |
| SR1 | 2 | DIVISION69.0 71 Z | 53 | <= | 53 | -1 | 53 | <= | 53 | -1 |
| SR1 | 2 | EAGLEMT3230. 1033_I | 45.02 | <= | 45 | -300000 | 45.02 | <= | 45 | -300000 |
| SR1 | 2 | GW F-PWR. 9.0 3239 I | 26.9 | <= | 26.9 | -1 |  |  |  |  |
| SR1 | 2 | INYO 1115. 885_I | 56 | <= | 56 | -2.49 | 56 | <= | 56 | -2.49 |
| SR1 | 2 | IRON_MTN230. 1038_I | 16.52 | <= | 16.5 | -300000 | 16.52 | <= | 16.5 | -300000 |
| SR1 | 2 | MAGUNDE3230. 526_Z | 643 | <= | 643 | -1 | 643 | <= | 643 | -1 |
| SR1 | 2 | MC_GEN_2115. 894_Z | 118.8 | <= | 118.8 | -0.67 | 118.8 | <= | 118.8 | -0.67 |
| SR1 | 2 | MIRIID 230. 12_I | 392.8 | <= | 392.8 | -1.29 | 392.8 | <= | 392.8 | -1.29 |
| SR1 | 2 | MOGEN 115. 899 Z | 62.5 | <= | 62.5 | -0.91 |  |  |  |  |
| SR1 | 2 | NAVY_Il 115. 902_Z | 30 | <= | 30 | -2.78 | 30 | <= | 30 | -2.78 |
| SR1 | 2 | S.CLARA166.0 603 Z | 45.9 | <= | 45.9 | -1 |  |  |  |  |
| SR1 | 2 | S.ONOFRE230. 615_Z | 1230 | <= | 1230 | -0.99 | 1230 | <= | 1230 | -0.99 |
| SR1 | 2 | S.ONOFRE230. 616_Z | 1230 | <= | 1230 | -0.99 | 1230 | <= | 1230 | -0.99 |
| SR1 | 2 | SANTAFE113.0 1656 I | 45 | <= | 45 | -1 |  |  |  |  |
| SR1 | 2 | SANTAFE113.0 1656_I |  |  |  |  | 45 | <= | 45 | -1 |


| Market |  | Constraint | Left Hand Side | n-peak Bind <br> Operation | ing Constr <br> Limit | aints <br> Marginal <br> Value | Left Hand Side | Off-peak Bind <br> Operation | ding Cons <br> Limit | traints <br> Marginal Value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SR1 | 2 | VESTAL_166.0 649 Z | 61.6 | <= | 61.6 | -1.02 |  |  |  |  |
| SR1 | 2 | VESTAL_166.0 649_Z |  |  |  |  | 61.6 | < | 61.6 | -1.02 |
| SR1 | 2 | WALNUT_166.0 665 Z | 55 | <= | 55 | -1 |  |  |  |  |
| SR1 | 2 | WALNUT_166.0 665_Z |  |  |  |  | 55 | <= | 55 | -1 |
| SR1 | 3 | EAGLEMT3230. 1033_I | 45.02 | <= | 45 | -300000 | 45.02 | <= | 45 | -300000 |
| SR1 | 3 | IRON_MTN230. 1038_I | 16.52 | <= | 16.5 | -300000 | 16.52 | <= | 16.5 | -300000 |
| SR1 | 4 | DELTAPMP230. 4344_Z | 373.3 | <= | 373.3 | -1382.42 |  |  |  |  |
| SR1 | 4 | DOW CHEM13.0 2511_I | 37.3 | <= | 37.3 | -47.89 | 37.3 | <= | 37.3 | -100 |
| SR1 | 4 | EAGLEMT3230. 1033_I | 45.02 | <= | 45 | -300000 | 45.02 | <= | 45 | -300000 |
| SR1 | 4 | EASTWOO2230. 711_Z | 250 | <= | 250 | -299.74 |  |  |  |  |
| SR1 | 4 | FRBSTNTP115. 1700 Z | 32 | <= | 32 | -68.12 |  |  |  |  |
| SR1 | 4 | FRBSTNTP115. 1700_Z |  |  |  |  | 32 | <= | 32 | -100 |
| SR1 | 4 | IRON_MTN230. 1038_I | 16.52 | <= | 16.5 | -300000 | 16.52 | <= | 16.5 | -300000 |
| SR1 | 4 | MOHAVE 500. 554 Z | 825 | <= | 825 | -100.15 | 825 | <= | 825 | -100 |
| SR1 | 4 | RIOBRAVO 9.0 3439 I | 16 | <= | 16 | -15.17 |  |  |  |  |
| SR1 | 4 | SANTAFE113.0 1656 I | 45 | <= | 45 | -145.94 |  |  |  |  |
| SR1 | 4 | SANTAFE113.0 1656_I |  |  |  |  | 45 | <= | 45 | -100 |
| SR1 | 4 | TEXSUN2G18.0 3467 I | 190 | <= | 190 | -138.02 |  |  |  |  |
| SR1 | 5 | EAGLEMT3230. 1033_I | 45.02 | <= | 45 | -300000 | 45.02 | <= | 45 | -300000 |
| SR1 | 5 | IRON_MTN230. 1038_I | 16.52 | <= | 16.5 | -300000 | 16.52 | <= | 16.5 | -300000 |
| SR1 | 6 | BAF_COG113.0 3777 I | 45 | <= | 45 | -113.57 |  |  |  |  |
| SR1 | 6 | BAF_COG113.0 3777_I |  |  |  |  | 45 | <= | 45 | -100.83 |
| SR1 | 6 | BALCH_1115. 3096_Z | 33 | <= | 33 | -3.98 | 33 | <= | 33 | -99.28 |
| SR1 | 6 | BDLARKSP69.0 36 Z | 60 | <= | 60 | -103.9 |  |  |  |  |
| SR1 | 6 | DELTAPMP230. 4344_Z | 373.3 | <= | 373.3 | -1055.73 |  |  |  |  |
| SR1 | 6 | DG_PAN1 13.0 2974 | 60 | <= | 60 | -3.76 |  |  |  |  |
| SR1 | 6 | DONNELL2115. 2852_Z |  |  |  |  | 67.5 | <= | 67.5 | -52.3 |
| SR1 | 6 | DRUM_5 13.0 2209_I | 49 | <= | 49 | -8.67 |  |  |  |  |
| SR1 | 6 | EAGLEMT3230. 1033_I | 45.02 | <= | 45 | -300000 | 45.02 | <= | 45 | -300000 |
| SR1 | 6 | EASTWOO2230. 711_Z | 250 | <= | 250 | -299.73 |  |  |  |  |
| SR1 | 6 | ESRP_MWD115. 1049_I |  |  |  |  | 20 | <= | 20 | -22521.84 |

Page 17 of 22

|  | Market | Constraint | Left Hand Side | n-peak Bin <br> Operation | ing Constr <br> Limit | aints <br> Marginal <br> Value | Left Hand Side | Off-peak Bi <br> Operation | ding Cons <br> Limit | traints <br> Marginal Value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SR1 | 6 | EXCHEQU2115. 2924_I |  |  |  |  | 67.9 | <= | 67.9 | -127.81 |
| SR1 | 6 | FRBSTNTP115. 1700 Z | 32 | <= | 32 | -64.92 |  |  |  |  |
| SR1 | 6 | FRBSTNTP115. 1700_Z |  |  |  |  | 32 | <= | 32 | -99.29 |
| SR1 | 6 | GWF-PWR. 9.0 3239 I | 26.9 | <= | 26.9 | -101.6 |  |  |  |  |
| SR1 | 6 | GWF_GT1 13.03189 I | 58 | <= | 58 | -58.05 |  |  |  |  |
| SR1 | 6 | IRON_MTN230. 1038_I | 16.52 | <= | 16.5 | -300000 | 16.52 | <= | 16.5 | $-300000$ |
| SR1 | 6 | KNGSRVR2115. 3097_Z | 49 | <= | 49 | -4.02 |  |  |  |  |
| SR1 | 6 | LLAGAS 115. 3624 Z | 252 | <= | 252 | -98.32 |  |  |  |  |
| SR1 | 6 | MOHAVE 500. 554 Z | 825 | <= | 825 | -100.16 | 825 | <= | 825 | 0 |
| SR1 | 6 | RIOBRAVO 9.0 3439 I | 16 | <= | 16 | -12.18 |  |  |  |  |
| SR1 | 6 | RIOBRAVO 9.0 3439_I |  |  |  |  | 16 | <= | 16 | -99.78 |
| SR1 | 6 | SANTAFE113.0 1656 I | 45 | <= | 45 | -161.01 |  |  |  |  |
| SR1 | 6 | SANTAFE113.0 1656_I |  |  |  |  | 45 | <= | 45 | -100.09 |
| SR1 | 6 | SEAWESTF 9.0 3531_I |  |  |  |  | 20 | <= | 20 | -99.98 |
| SR1 | 6 | STANISL2115. 2643_I | 56 | <= | 56 | -60.78 | 56 | <= | 56 | -257.05 |
| SR1 | 6 | TEXSUN2G18.0 3467 I | 190 | <= | 190 | -137.97 |  |  |  |  |
| SR1 | 6 | TRCY_PMP230. 4108_I | 333.8 | <= | 333.8 | -338.85 |  |  |  |  |
| SR1 | 6 | ULTR.PWR 9.0 3235 I | 20.7 | <= | 20.7 | -9.65 |  |  |  |  |
| SR1 | 6 | ULTR.PWR 9.0 3235_I |  |  |  |  | 20.7 | <= | 20.7 | -99.68 |
| SR1 | 6 | W INTEC4 115. 987 Z | 60 | <= | 60 | -60.12 |  |  |  |  |
| SR1 | 6 | WINTEC4 115. 987_Z |  |  |  |  | 60 | <= | 60 | -99.92 |
| SR1 | 6 | WODLF_TP115. 1697 Z | 58 | <= | 58 | -11.88 |  |  |  |  |
| SR1 | 6 | WODLF_TP115. 1697_Z |  |  |  |  | 58 | <= | 58 | -99.17 |
| SR1 | 8 | BAF_COG113.0 3777 I | 45 | <= | 45 | -113.6 |  |  |  |  |
| SR1 | 8 | BAF_COG113.0 3777_I |  |  |  |  | 45 | <= | 45 | -100 |
| SR1 | 8 | BALCH_1115. 3096_Z | 33 | <= | 33 | -8.85 | 33 | <= | 33 | -100 |
| SR1 | 8 | BDLARKSP69.0 36 Z | 60 | <= | 60 | -99.24 |  |  |  |  |
| SR1 | 8 | DELTAPMP230. 4344_Z | 373.3 | <= | 373.3 | -994.17 |  |  |  |  |
| SR1 | 8 | DG_PAN1 13.0 2974 I | 60 | <= | 60 | -12.68 |  |  |  |  |
| SR1 | 8 | DRUM_5 13.0 2209_I | 49 | <= | 49 | -13.68 |  |  |  |  |
| SR1 | 8 | EAGLEMT3230. 1033_I | 45.02 | <= | 45 | -300000 | 45.02 | <= | 45 | $-300000$ |
| SR1 | 8 | EASTWOO2230. 711_Z | 250 | <= | 250 | -299.62 |  |  |  |  |


| Market |  | Constraint | Left Hand Side | n-peak Bind <br> Operation | ing Constr <br> Limit | aints <br> Marginal <br> Value | Off-peak Binding Constraints   <br> Left Hand   <br> Side Operation Limit Marginal Value |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SR1 | 8 | ESRP_MWD115. 1049_I |  |  |  |  | 20 | <= | 20 | -22522.22 |
| SR1 | 8 | FRBSTNTP115. 1700 Z | 32 | <= | 32 | -66.76 |  |  |  |  |
| SR1 | 8 | GW F-PWR. 9.0 3239 I | 26.9 | < | 26.9 | -107.05 |  |  |  |  |
| SR1 | 8 | GW F_GT1 13.03189 I | 58 | <= | 58 | -66.68 |  |  |  |  |
| SR1 | 8 | IRON_MTN230. 1038_I | 16.52 | < | 16.5 | -300000 | 16.52 | <= | 16.5 | -300000 |
| SR1 | 8 | KNGSRVR2115. 3097_Z | 49 | <= | 49 | -8.74 | 49 | <= | 49 | -100 |
| SR1 | 8 | LLAGAS 115. 3624 Z | 252 | <= | 252 | -98.4 |  |  |  |  |
| SR1 | 8 | MOHAVE 500. 554 Z | 825 | <= | 825 | -100.23 |  |  |  |  |
| SR1 | 8 | SANTAFE113.0 1656 I | 45 | <= | 45 | -158.77 |  |  |  |  |
| SR1 | 8 | SANTAFE113.0 1656_I |  |  |  |  | 45 | < | 45 | -100 |
| SR1 | 8 | SEAW ESTF 9.0 3531_I |  |  |  |  | 20 | <= | 20 | -100 |
| SR1 | 8 | STANISL2115. 2643_I | 56 | <= | 56 | -21.19 |  |  |  |  |
| SR1 | 8 | TEMBLOR4115. 3344_Z | 74.9 | <= | 74.9 | -1791.59 |  |  |  |  |
| SR1 | 8 | TEXSUN2G18.0 3467 I | 190 | <= | 190 | -131.69 | 190 | <= | 190 | -138.89 |
| SR1 | 8 | TRCY_PMP230. 4109_I | 333.8 | <= | 333.8 | -325.58 |  |  |  |  |
| SR1 | 8 | ULTR.PWR 9.0 3235 I | 20.7 | <= | 20.7 | -8.61 |  |  |  |  |
| SR1 | 8 | ULTR.PW R 9.0 3235_I |  |  |  |  | 20.7 | <= | 20.7 | -100 |
| SR1 | 8 | W INTEC4 115. 987 Z | 60 | <= | 60 | -58.64 |  |  |  |  |
| SR1 | 8 | W INTEC4 115. 987_Z |  |  |  |  | 60 | <= | 60 | -100 |
| SR1 | 8 | W ODLF_TP115. 1697 Z | 58 | <= | 58 | -16.64 |  |  |  |  |
| SR1 | 7 | EAGLEMT3230. 1033_I | 45.02 | <= | 45 | -300000 | 45.02 | <= | 45 | -300000 |
| SR1 | 7 | IRON_MTN230. 1038_I | 16.52 | <= | 16.5 | -300000 | 16.52 | <= | 16.5 | -300000 |
| SR1 | 9 | EAGLEMT3230. 1033_I | 45.02 | <= | 45 | -300000 | 45.02 | <= | 45 | -300000 |
| SR1 | 9 | IRON_MTN230. 1038_I | 16.52 | <= | 16.5 | -300000 | 16.52 | <= | 16.5 | -300000 |
| SR1 | 10 | BAF_COG113.0 3777 I | 45 | <= | 45 | -112.01 |  |  |  |  |
| SR1 | 10 | BAF_COG113.0 3777_I |  |  |  |  | 45 | <= | 45 | -100 |
| SR1 | 10 | DELTAPMP230. 4344_Z | 373.3 | <= | 373.3 | -1395.63 |  |  |  |  |
| SR1 | 10 | EAGLEMT3230. 1033_I | 45.02 | <= | 45 | -300000 | 45.02 | <= | 45 | -300000 |
| SR1 | 10 | FRBSTNTP115. 1700 Z | 32 | <= | 32 | -67.81 |  |  |  |  |
| SR1 | 10 | FRBSTNTP115. 1700_Z |  |  |  |  | 32 | <= | 32 | -100 |
| SR1 | 10 | GW F-PW R. 9.0 3239 I | 26.9 | <= | 26.9 | -64.74 |  |  |  |  |
| SR1 | 10 | IRON_MTN230. 1038_I | 16.52 | <= | 16.5 | -300000 | 16.52 | <= | 16.5 | -300000 |
| SR1 | 10 | MOHAVE 500. 554 Z | 825 | <= | 825 | -100.16 | 825 | <= | 825 | -100 |
| SR1 | 10 | SANTAFE113.0 1656 I | 45 | <= | 45 | -148.27 |  |  |  |  |
| SR1 | 10 | SANTAFE113.0 1656_I |  |  |  |  | 45 | <= | 45 | -100 |
| SR1 | 10 | TEXSUN2G18.0 3467 I | 190 | <= | 190 | -138.01 |  |  |  |  |

Page 19 of 22

|  | Market | Constraint-SR2 |  <br> Left Hand <br> Side | -peak Bindi <br> Operation | ng Constra <br> Limit | ints <br> Marginal <br> Value | Left Hand Side | -peak Bindi <br> Operation | ng Constra <br> Limit | ints <br> Marginal <br> Value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SR2 | 1 | EAGLEMT3230. 1033 I | 45 | <= | 45 | -357.14 |  |  |  |  |
| SR2 | 1 | EAGLEMT3230. 1033_I |  |  |  |  | 45 | <= | 45 | -357.14 |
| SR2 | 1 | IID-SCE _BG OUT | 100 | <= | 100 | -212.28 | 100 | <= | 100 | -212.28 |
| SR2 | 1 | INTK69_N69.0 1045 I | 33 | <= | 33 | -348.44 |  |  |  |  |
| SR2 | 1 | INTK69_N69.0 1045_I |  |  |  |  | 33 | <= | 33 | -348.44 |
| SR2 | 1 | IRON_MTN230. 1038_I | 16.5 | <= | 16.5 | -357.14 | 16.5 | <= | 16.5 | -357.14 |
| SR2 | 1 | J.HINDS 230. 1041 l | 45 | <= | 45 | -400 |  |  |  |  |
| SR2 | 1 | J.HINDS 230. 1041_I |  |  |  |  | 45 | <= | 45 | -400 |
| SR2 | 1 | WND_GPT1230. 4378_I |  |  |  |  | 54 | <= | 54 | -333.33 |
| SR2 | 2 | ARCO SC 230. 375 Z | 100 | <= | 100 | -0.8 |  |  |  |  |
| SR2 | 2 | BELLOTA2230. 1288_I |  |  |  |  | 269 | <= | 269 | -7.42 |
| SR2 | 2 | BLM_EAST230. 856 Z | 24 | <= | 24 | -2.66 |  |  |  |  |
| SR2 | 2 | BLM_EAST230. 856_Z |  |  |  |  | 24 | <= | 24 | -2.65 |
| SR2 | 2 | CAL_GEN 115. 939 Z | 35.4 | <= | 35.4 | -1.75 |  |  |  |  |
| SR2 | 2 | CAL_GEN 115. 939_Z |  |  |  |  | 35.4 | <= | 35.4 | -1.75 |
| SR2 | 2 | COTTLE_B230. 4212_I | 269 | <= | 269 | -11.26 | 269 | <= | 269 | -2.15 |
| SR2 | 2 | DIVISION69.0 71 Z | 53 | <= | 53 | -0.76 |  |  |  |  |
| SR2 | 2 | DIVISION69.0 71_Z |  |  |  |  | 53 | <= | 53 | -0.76 |
| SR2 | 2 | EAGLEMT3230. 1033_I | 45.02 | <= | 45 | -300000 | 45.02 | <= | 45 | -300000 |
| SR2 | 2 | HOLGATE 115. 884_I | 82.7 | <= | 82.7 | -0.84 | 82.7 | <= | 82.7 | -0.84 |
| SR2 | 2 | HUMBOLDT BG OUT | 70 | <= | 70 | -0.79 |  |  |  |  |
| SR2 | 2 | IID-SCE _BG OUT | 100.01 | <= | 100 | -1000000 | 100 | <= | 100 | -49185.13 |
| SR2 | 2 | IID-SDGE _BG OUT | 225 | <= | 225 | -50.95 | 225 | <= | 225 | -50.89 |
| SR2 | 2 | INYO 1115. 885_I | 56 | <= | 56 | -2.46 | 56 | <= | 56 | -2.46 |
| SR2 | 2 | IRON_MTN230. 1038_I | 16.52 | <= | 16.5 | -300000 | 16.52 | <= | 16.5 | -300000 |
| SR2 | 2 | MIRIID 230. 12_I | 392.8 | <= | 392.8 | -1.29 | 392.8 | <= | 392.8 | -1.29 |
| SR2 | 2 | NAVY_II 115. 902_Z |  |  |  |  | 30 | <= | 30 | -0.34 |
| SR2 | 2 | SILVERPK _BG IN | 17 | <= | 17 | -0.15 | 17 | <= | 17 | -0.17 |
| SR2 | 2 | TABLE_MT500. 1123_Z | 1120 | <= | 1120 | -1.13 |  |  |  |  |
| SR2 | 3 | EAGLEMT3230. 1033_I | 45.02 | <= | 45 | -300000 | 45.02 | <= | 45 | -300000 |
| SR2 | 3 | IID-SCE _BG OUT | 100.01 | <= | 100 | -1000000 | 100 | <= | 100 | -49257.72 |


|  | Market | Constraint-SR2 | On- <br> Left Hand <br> Side | -peak Bindi <br> Operation | Limit | ints <br> Marginal <br> Value | Left Hand Side | -peak Bindi <br> Operation | ng Constra <br> Limit | ints <br> Marginal Value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SR2 | 3 | IRON_MTN230. 1038_I | 16.52 | <= | 16.5 | -300000 | 16.52 | <= | 16.5 | -300000 |
| SR2 | 4 | BELLOTA2230. 1288_I |  |  |  |  | 269 | <= | 269 | -1118.95 |
| SR2 | 4 | COTTLE_B230. 4212_I | 269 | <= | 269 | -1308.66 |  |  |  |  |
| SR2 | 4 | COTTLE_B230. 4212_Z | 269 | <= | 269 | -93.26 | 269 | <= | 269 | -226.06 |
| SR2 | 4 | EAGLEMT3230. 1033_I | 45.02 | <= | 45 | -300000 | 45.02 | < | 45 | -300000 |
| SR2 | 4 | HUMBOLDT _BG OUT | 70 | <= | 70 | -93.02 |  |  |  |  |
| SR2 | 4 | IID-SCE _BG OUT | 100.05 | <= | 100 | -1000000 | 100.03 | <= | 100 | -1000000 |
| SR2 | 4 | IID-SDGE _BG OUT |  |  |  |  | 225 | <= | 225 | -1750.86 |
| SR2 | 4 | IRON_MTN230. 1038_I | 16.52 | <= | 16.5 | -300000 | 16.52 | <= | 16.5 | -300000 |
| SR2 | 4 | MOHAVE 500. 554 Z | 825 | <= | 825 | -99.2 |  |  |  |  |
| SR2 | 4 | MOHAVE 500. 554_Z |  |  |  |  | 825 | < | 825 | -96.55 |
| SR2 | 4 | TABLE_MT500. 1123_Z | 1120 | < | 1120 | -118.16 |  |  |  |  |
| SR2 | 4 | TBL_MT_D230. 1200_Z |  |  |  |  | 329 | <= | 329 | -135.4 |
| SR2 | 5 | EAGLEMT3230. 1033_I | 45.02 | <= | 45 | -300000 | 45.02 | <= | 45 | -300000 |
| SR2 | 5 | IID-SCE _BG OUT | 100.01 | <= | 100 | -1000000 | 100 | < | 100 | -49257.72 |
| SR2 | 5 | IRON_MTN230. 1038_I | 16.52 | <= | 16.5 | -300000 | 16.52 | <= | 16.5 | -300000 |
| SR2 | 6 | BELLOTA2230. 1288_I |  |  |  |  | 269 | <= | 269 | -901.06 |
| SR2 | 6 | COTTLE_B230. 4212_I | 269 | <= | 269 | -1231.98 | 269 | <= | 269 | -208.81 |
| SR2 | 6 | COTTLE_B230. 4212_Z | 269 | <= | 269 | -731.5 | 269 | <= | 269 | -727.51 |
| SR2 | 6 | EAGLEMT3230. 1033_I | 45.02 | <= | 45 | -300000 | 45.02 | <= | 45 | -300000 |
| SR2 | 6 | ESRP_MWD115. 1048_I |  |  |  |  | 20 | <= | 20 | -19473.12 |
| SR2 | 6 | HUMBOLDT _BG OUT | 70 | <= | 70 | -93.25 |  |  |  |  |
| SR2 | 6 | IID-SCE _BG OUT | 100.06 | <= | 100 | -1000000 | 100.04 | < | 100 | -1000000 |
| SR2 | 6 | IID-SDGE _BG OUT | 225 | <= | 225 | -3020.97 | 225 | <= | 225 | -2738.8 |
| SR2 | 6 | IRON_MTN230. 1038_I | 16.52 | <= | 16.5 | -300000 | 16.52 | < | 16.5 | -300000 |
| SR2 | 6 | MOHAVE 500. 554 Z | 825 | <= | 825 | -94.56 |  |  |  |  |
| SR2 | 6 | MOHAVE 500. 554_Z |  |  |  |  | 825 | <= | 825 | -8.48 |
| SR2 | 6 | PLACER_2115. 2083_I |  |  |  |  | 64.7 | <= | 64.7 | -171.52 |
| SR2 | 6 | TABLE_MT500. 1123_Z | 1120 | <= | 1120 | -322.54 |  |  |  |  |
| SR2 | 6 | TBL_MT_D230. 1200_Z |  |  |  |  | 329 | < | 329 | -133.36 |
| SR2 | 7 | EAGLEMT3230. 1033_I | 45.02 | <= | 45 | -300000 | 45.02 | <= | 45 | -300000 |
| SR2 | 7 | IID-SCE _BG OUT | 100.01 | <= | 100 | -1000000 | 100 | <= | 100 | -49257.72 |

Page 21 of 22

| Market |  | Constraint-SR2 | On-peak Binding Constraints |  |  |  | Off-peak Binding Constraints |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Left Hand Side | Operation | Limit | Marginal Value | Left Hand Side | Operation | Limit | Marginal Value |
| SR2 | 7 |  | IRON_MTN230. 1038_I | 16.52 | <= | 16.5 | -300000 | 16.52 | <= | 16.5 | -300000 |
| SR2 | 8 | BELLOTA2230. 1288_I |  |  |  |  | 269 | <= | 269 | -1347 |
| SR2 | 8 | COTTLE_B230. 4212_I | 269 | <= | 269 | -1050.48 | 269 | <= | 269 | -217.28 |
| SR2 | 8 | COTTLE_B230. 4212_Z | 269 | <= | 269 | -731.46 | 269 | <= | 269 | -1402.24 |
| SR2 | 8 | EAGLEMT3230. 1033_I | 45.02 | < | 45 | -300000 | 45.02 | <= | 45 | -300000 |
| SR2 | 8 | ESRP_MWD115. 1050_I |  |  |  |  | 20 | <= | 20 | -19481 |
| SR2 | 8 | HUMBOLDT BG OUT | 70 | <= | 70 | -93.69 |  |  |  |  |
| SR2 | 8 | IID-SCE BG OUT | 100.05 | <= | 100 | -1000000 | 100.04 | <= | 100 | -1000000 |
| SR2 | 8 | IID-SDGE BG OUT | 225 | <= | 225 | -20380.05 | 225 | <= | 225 | -2730.73 |
| SR2 | 8 | IRON_MTN230. 1038_I | 16.52 | <= | 16.5 | -300000 | 16.52 | <= | 16.5 | -300000 |
| SR2 | 8 | KIFER_2115. 3878_Z | 140 | <= | 140 | -130.67 |  |  |  |  |
| SR2 | 8 | MOHAVE 500. 554 Z | 825 | <= | 825 | -67.52 |  |  |  |  |
| SR2 | 8 | MOHAVE 500. 554_Z |  |  |  |  | 825 | <= | 825 | -8.23 |
| SR2 | 8 | NEW ARK_E230. 1350_I | 734 | <= | 734 | -117.68 |  |  |  |  |
| SR2 | 8 | SANTAFE113.0 1656_I |  |  |  |  | 45 | <= | 45 | -27.33 |
| SR2 | 8 | TABLE MT500. 1123_Z | 1120 | <= | 1120 | -923.78 |  |  |  |  |
| SR2 | 8 | TBL_M T_D230. 1200_Z |  |  |  |  | 329 | <= | 329 | -133.82 |
| SR2 | 9 | EAGLEMT3230. 1033_I | 45.02 | <= | 45 | -300000 | 45.02 | <= | 45 | -300000 |
| SR2 | 9 | IID-SCE BG OUT | 100.01 | <= | 100 | -1000000 | 100 | <= | 100 | -49257.72 |
| SR2 | 9 | IRON_MTN230. 1038_I | 16.52 | <= | 16.5 | -300000 | 16.52 | <= | 16.5 | -300000 |
| SR2 | 10 | BELLOTA2230. 1288_I |  |  |  |  | 269 | < | 269 | -1118.95 |
| SR2 | 10 | COTTLE B230. 4212_I | 269 | <= | 269 | -1303.23 |  |  |  |  |
| SR2 | 10 | COTTLE B230. 4212_Z | 269 | <= | 269 | -67.77 | 269 | <= | 269 | -489.43 |
| SR2 | 10 | EAGLEMT3230. 1033_I | 45.02 | <= | 45 | -300000 | 45.02 | < | 45 | -300000 |
| SR2 | 10 | HUMBOLDT _BG OUT | 70 | <= | 70 | -91.48 |  |  |  |  |
| SR2 | 10 | IID-SCE _BG OUT | 100.05 | <= | 100 | -1000000 | 100.03 | <= | 100 | -1000000 |
| SR2 | 10 | IID-SDGE_BG OUT | 225 | <= | 225 | -2746.11 | 225 | <= | 225 | -1750.86 |
| SR2 | 10 | IRON_MTN230. 1038_I | 16.52 | <= | 16.5 | -300000 | 16.52 | <= | 16.5 | -300000 |
| SR2 | 10 | MOHAVE 500. 554 Z | 825 | <= | 825 | -94.95 |  |  |  |  |
| SR2 | 10 | MOHAVE 500. 554 Z |  |  |  |  | 825 | <= | 825 | -96.55 |
| SR2 | 10 | SANTAFE113.0 1656_I |  |  |  |  | 45 | <= | 45 | -20.75 |
| SR2 | 10 | TABLE_MT500. 1123_Z | 1120 | <= | 1120 | -122.94 |  |  |  |  |
| SR2 | 10 | TBL_M T_D230. 1200_Z |  |  |  |  | 329 | <= | 329 | -135.4 |


[^0]:    ${ }^{1}$ Note that CRR Study 1 treated ETCs as CRR options. The change of the option hedge type to an obligation hedge type for ETCs is consistent with the Conceptual Design filing. However, the MW values of the ETCs used in this sensitivity study remained the same as in CRR Study 1, whereas the Conceptual Design filing implies that the MW value will be based on actual usage rather than the contractual right.

[^1]:    ${ }^{2}$ Referred to as "Original" on the graphics.
    ${ }^{3}$ Please note that participant names have been replaced by numbers to maintain confidentiality.

