

Contingency modeling enhancements discussion

Existing CRR Revenue Inadequacy

Bradford Cooper Manager, Market Design & Regulatory Policy

Market Surveillance Committee Meeting General Session February 11, 2016

Current CRR Revenue Inadequacy

Current causes of revenue inadequacy

- Difference in limits enforced in CRR market vs. DAM
- Difference in network topology in CRR market vs. DAM
 Unexpected or non-modeled outages
- New nomograms introduced

All current issues are related to base case and preventive constraints.

Congestion revenue rights market revenue inadequacy without including auction revenues

CRR revenue adequacy does not include monthly and annual auction avenues.

Revenue Adequacy

Congestion revenue rights market revenue inadequacy including auction revenues

With CME implementation, we permanently add a new type of constraint (preventive-corrective constraint) to the DAM.

- New complex constraint in DAM
- Evaluates a new case with a different topology and different limits.
- Enforces different limits in post-contingency cases.
- We know these topologies and limits at the time we establish the constraint (prior to CRR market). How to model it in the CRR market?

Contingency modeling enhancements discussion

CRR Alternatives Discussion Paper

Perry Servedio Senior Market Design and Regulatory Policy Developer

Market Surveillance Committee Meeting General Session February 11, 2016

What is CME? Preventive-corrective model

		Weak-pr	eventive	model e	nergy in bas	e case		
Generator	P ⁰	λ ⁰	${\sf SF^0}_{\sf AB}$	$\mu^{0}{}_{AB}$	LMP	Bid Cost	Revenue	Profit
G1	700	\$50	1	-\$5	\$30	\$21,000	\$21,000	\$0
G2	250	\$50	0	-\$5	\$50	\$12,500	\$12,500	\$0
G3	250	\$50	0	-\$5	\$50	\$8,750	\$12,500	\$3,750
		Correc	tive capa	city in o	contingency	kc=1		
Generator	ΔP ¹	λ1	SF ¹ _{AB}	$\mu^{1}{}_{AB}$	LMCP ¹	Bid Cost	Revenue	Profit
G1	-350	\$15	1	\$-15	\$0	\$0	\$0	\$0
G2	200	\$15	0	\$-15	\$15	\$0	\$3,000	\$3,000
G3	150	\$15	0	\$-15	\$15	\$0	\$2,250	\$2,250

Congestion Revenue & Corrective Capacity Revenue

Congestion Revenue & Corrective Capacity

LMP's resulting revenue breaks into 3 components.

LMP_i flow related revenue =

Congestion Revenue & Corrective Capacity Congestion Rent from Energy Schedules

No ED cost

Congestion Revenue & Corrective Capacity Example: isolate congestion to kc case

Prev	entive-correc	ctive model e	energy in	base ca	se
Generator	P ⁰	λ ⁰	SF ⁰ AB	μ^0_{AB}	LMP
G1	390	\$35	1	\$0	\$30
G2	0	\$35	0	\$0	\$35
G3	210	\$35	0	\$0	\$35
	Corrective ca	pacity in co	ntingency	kc=1	
Generator	ΔP ¹	λ1	SF ¹ _{AB}	μ^{1}_{AB}	LMCP ¹
G1	-40	\$5	1	-\$5	\$0
G2	20	\$5	0	-\$5	\$5
G3	20	\$5	0	-\$5	\$5

Congestion Revenue & Corrective Capacity Congestion Rent from Energy Schedules

CRR Alternatives

CRR Alternatives Overview

We organize the options into three paradigms.

CRR Alternatives

Minimal Implementation Paradigm

- Option 1(a): no change
- **Option 1(b):** enforce N-1-1 limits in a strong preventive fashion in the CRR model

CRR Alternatives Option 1(b) auction simulation

Simulated February 2016 Auction

- Total MW auctioned dropped by 4,474 MW
 - Off-peak
 - Auction decreased from 33,168MW to 30,957MW
 - 16.9% of submitted bids changed from original awards
 - On-peak
 - auction decreased from 45,136MW to 42,873MW
 - 15.4% of submitted bids changed from original awards
- Total auction revenues dropped by \$730,107
 - Off-peak: 15.9% paid \$96,531 more, 16.3% paid \$249,929 less
 - On-peak: 14.8% paid \$631,706 more, 15.8% paid \$1,208,415 less

• Settle CRR as today which ends up looking like this with the new preventive-corrective model:

 $CRR Payment = CRR MW_{AB} \times \left(MCC_{B}^{k} - MCC_{A}^{k} + MCC_{B}^{kc} - MCC_{A}^{kc}\right)$

 Create new "CCRR" to rescind revenue in excess of available transmission capability.

 $CCRR Payment_{BA} = CCRR MW_{BA} \times (MCC_{A}^{kc} - MCC_{B}^{kc})$

CRR Alternatives CCRR Paradigm - <u>Allocation</u>

- Weighted Least Squares allocation of CCRR
 - Total end result not much different
 - Consistent with today
 - Distributed allocation
 - Perhaps easier to implement
- Pro-rata allocation of CCRR to CRR holders
 - Involves new post-process

CRR Alternatives CCRR Paradigm – <u>Auction</u>

- **Option 2(a)** Separate bids for simultaneous auction of CRR and CCRR,
- Option 2(b) Single bid for auction of CRR and CCRR, and
- **Option 2(c)** Single bid for auction of CRR and sequential allocation of CCRR pro-rata.

Use separate bids:

- Bid separate for CRR and CCRR
- Auction uses bids to maximize revenue while respecting both k and kc constraints

Participant	CRR Ask (MW)	CRR Bid (\$/MW)	CRR Award (MW)	Auction Clearing Price	DAM CRR Settlement
Х	600 CRRAB	\$20	600 MW CRRAB	¢10.000	\$12,000.00
	350 CCRRba	-\$15	350 MW CCRRBA	\$19 CKKAB \$15 CCDD ₂	-\$5,250.00
Y	600 CRRAB	\$19	100 MW CRRAB	-DIJ CORRBA	\$2000.00
	350 CCRRba	-\$16	0 MW CCRRBA		\$0.00

Use single bid:

- First auction iteration clears CRRs
- Run second auction with post-contingency topology and kc limit.
- First auction iteration award minus second auction iteration award clears CCRRs

	Participant	CRR Ask (MW)	CRR Bid (\$/MW)	CRR Award (MW)	Auction Clearing Price	DAM CRR Settlement	
	Х	600	\$20	600 MW CRRAB		\$12,000.00]
				250 MW CCRRba		-\$3,750.00	
	Y	600	\$18	100 MW CRRAB	\$10 CKKAB	\$2,000.00	
C				100 MW CCRRBA		-\$1,500.00	Pag

21

- Use single bid to clear CRR auction as today
- Allocate CCRR pro-rata

Participant	CRR Ask (MW)	CRR Bid (\$/MW)	CRR Award (MW)	Auction Clearing Price	DAM CRR Settlement
Х	600	\$20	600 MW CRRAB		\$12,000.00
			300 MW CCRRBA	¢10 CDD	-\$4,500.00
Y	600	\$18	100 MW CRRAB	DIO ORRAB	\$2,000.00
			50 MW CCRRBA		-\$750.00

CRR Alternatives CCRR Paradigm – <u>Auction</u> – Option 2(c)

Pro-rata formulation:

 $MWCCRR_{BA,X} = MWCRR_{AB,X} \times \alpha^{kc}$

Where,

$$\alpha^{kc} = \max\left\{0, \frac{\sum_{p} \left(SF_{l,src(p)}^{kc} - SF_{l,snk(p)}^{kc}\right) \cdot CRR_{p} - F_{l}^{kc,max}}{\sum_{p} \left(SF_{l,src(p)}^{kc} - SF_{l,snk(p)}^{kc}\right) \cdot CRR_{p}}\right\}$$

 $CRR_p = CRRs$ awarded

p = index of CRR awards

X = index of market participants

CRR Alternatives CRR^k/CRR^{kc} Paradigm

 Create a CRR^k product that only settles on the difference in congestion components associated with the k constraint

 $CRR^{k} Payment = CRR^{k}MW_{AB} \times (MCC_{B}^{k} - MCC_{A}^{k})$

 Create a CRR^{kc} product that only only settles on the difference in congestion components associated with the kc constraint.

$$CRR^{kc} Payment = CRR^{kc}MW_{AB} \times (MCC_B^{kc} - MCC_A^{kc})$$

CRR Alternatives CRR^k/CRR^{kc} Paradigm – <u>Allocation</u>

- Weighted Least Squares allocation of CRR^{kc}
 - Total end result not much different
 - Distributed allocation
 - Consistent with today
 - Perhaps easier to implement
- Pro-rata allocation of CRR^{kc} to CRR holders
 - Involves a new post-process

CRR Alternatives CRR^k/CRR^{kc} Paradigm – <u>Auction</u>

- Option 3(a) Separate bids for allocation/auction of CRR^k and CRR^{kc}
- Option 3(b) Single bid for allocation/auction of CRR^k and CRR^{kc}
- Option 3(c) Single bid for auction of CRR^k and sequential allocation of CRR^{kc} pro-rata
- **Option 3(d)** Single bid for auction of CRR^k only

CRR Alternatives CRR^k/CRR^{kc} Paradigm – <u>Auction</u> – Option 3(a)

Use separate bids:

- Bid separate for CRR^k and CRR^{kc}
- Auction uses bids to maximize revenue while respecting both k and kc constraints

Participant	CRR Ask	CRR Bid	CRR Award	Auction	DAM CRR
Farticipant	(MW)	(\$/MW)	(MW)	Clearing Price	Settlement
Х	600 CRR ^k	\$5	600 MW CRR ^k		\$3,000.00
	350 CRR∞	\$15	0 MW CRR⊧∞	\$4 CRR⊧	\$0.00
Y	600 CRR ^k	\$4	100 MW CRR ^k	\$16 CRR∞	\$500.00
	350 CRR ^{kc}	\$16	350 MW CRR ^k °		\$5,250.00

CRR Alternatives CRR^k/CRR^{kc} Paradigm – <u>Auction</u> – Option 3(b) Bid 700 MW CRR

Use single bid:

- One auction enforces k limits, clears CRR^k
- Separate auction enforces kc limits with kc topology, clears CRR^{kc}

Participant	CRR Ask (MW)	CRR Bid (\$/MW)	CRR Award (MW)	Auction Clearing Price	DAM CRR Settlement
Х	600	\$20	600 MW CRR ^k		\$3,000.00
			350 MW CRR ^{ko}	¢19.000	\$5,250.00
Y	600	\$18	100 MW CRR ^k	\$10 UKK	\$500.00
			0 MW CRR ^k ℃		\$0.00

CRR Alternatives CRR^k/CRR^{kc} Paradigm – <u>Auction</u> – Option 3(c)

- Use single bid to clear CRR auction as today, this clears the CRR^k
- Allocate CRR^{kc} pro-rata

Participant	CRR Ask (MW)	CRR Bid (\$/MW)	CRR Award (MW)	Auction Clearing Price	DAM CRR Settlement
Х	600	\$20	600 MW CRR ^k		\$3,000.00
			300 MW CRR ^k ℃	¢19.000	\$4,500.00
Y	600	\$18	100 MW CRR ^k	\$10 CKK	\$500.00
			50 MW CRR∞		\$750.00

CRR Alternatives CRR^k/CRR^{kc} Paradigm – <u>Auction</u> – Option 3(c)

Pro-rata formulation:

 $MWCRR^{kc}_{AB,X} = MWCRR^{k}_{AB,X} \times \alpha^{kc}$

Where,

$$\alpha^{kc} = \frac{\min\left(F_l^{kc,max}, \sum_p (SF_{l,src(p)}^{kc} - SF_{l,snk(p)}^{kc}) \cdot CRR_p^k\right)}{\sum_p (SF_{l,src(p)}^{kc} - SF_{l,snk(p)}^{kc}) \cdot CRR_p^k}$$
$$CRR_p^k = CRR^k \text{ awarded}$$
$$p = \text{ index of CRR awards}$$
$$X = \text{ index of market participants}$$

Next Steps

Next Steps

Date	Event
Wod 2/10/16	Stakeholder comments due on CRR Alternatives
Ved 2/13/10	Discussion Paper
Wed 2/24/16	Prototype Technical Analysis Results posted
Wed 3/8/16	Stakeholder meeting
Wed 2/16/16	Stakeholder comments due on Prototype Technical
Wed 3/10/10	Analysis Results
Wed 3/23/16	Publish fourth revised straw proposal
Wod 2/10/16	Stakeholder comments due on CRR Alternatives
vveu 2/19/10	Discussion Paper
Wed 2/24/16	Prototype Technical Analysis Results posted
Wed 3/8/16	Stakeholder meeting

Please submit comments to initiativecomments@caiso.com

Questions

