

Flexible Ramp Product discussion

Guillermo Bautista Alderete Abhishek Hundiwale Market Analysis and Forecasting

Market Surveillance Committee Meeting General Session February 11, 2022

The minimum FRP requirement for ISO area has driven up the frequency of nonzero prices for ISO area

Less than 1 percent of the time, FRP real time dispatch prices have been nonzero in ISO area

Likewise, prices in EIM system-wide area have been largely zero

FRP prices for ISO area have been in the low range

This sample only reflects FRP Prices>0

EIM system-wide area prices for FRP have also been largely in the low range

Uncertainty requirement vs effective FRP requirement NIC/NEC is a key piece in the price formation puzzle

NIC/NEC will effectively reduce the requirement an individual area has to meet. Areas with large transfer capabilities $(FRUR_j < NIC_j)$ will not have FRP requirements driving local procurement

Existing transfer capabilities create regional areas

Effective requirement for ISO area driving the procurement is largely reduced with the consideration of import capability

Import capability for ISO and EIM areas increased with participation of new EIM areas, increasing the likelihood to have no effective requirements for ISO and EIM areas

Effective requirement for ISO area driving the procurement is largely reduced with the consideration of import capability

The frequency of an effective FRP requirement greater than 0 MW varies by EIM area based on their import capability

Month	AZPS	BANC	CISO	IPCO	LADWP	NEVP	NWMT	PACE	PACW	PGE	PNM	PSEI	PWRX	SCL	SRP	TIDC
Feb-20	46.7	60.1	47.1	80.9		2.5		27.5	65.1	62.7		57.9	40.2			
Mar-20	38.1	61.3	29.7	86.2		0.9		22.6	69.9	74.3		58.8	19.8			
Apr-20	41.8	95.2	21.5	89.1		5.9		42.8	88.4	39.8		73.7	20.5	31.3	56.6	
May-20	11	95.2	24.4	86.6		8.3		49.5	90	34.9		88.7	15	35.1	9	
Jun-20	11.7	97	29.4	69.5		6.8		40.9	98.8	15.6		97.6	14.5	22.9	5	
Jul-20	19.6	98.9	49.5	73.6		5.8		29.3	99.2	14.9		96.6	3.8	23.8	10.2	
Aug-20	8.5	95.7	66.3	72.3		11.6		12.7	95.8	13.4		96	7.7	30.2	3.8	
Sep-20	5.9	98.9	44.7	91.2		4.8		11.8	91.6	30.3		95.2	24.2	27.7	4.5	
Oct-20	9.5	92.3	50.3	92.2		3.4		8.1	92.8	41		92	37.1	33.3	4	
Nov-20	2.8	86.6	93.4	83.3		3.8		16.7	86.4	62.2		91.8	36.3	38.8	3.7	
Dec-20	3.8	92.5	98.6	95.9		4.5		20	91.6	79.3		96.6	17.9	39.2	3.6	
Jan-21	3.3	92	93.6	95.3		2.9		25.3	90.8	85.4		92.5	34.3	41.9	2.1	
Feb-21	10.1	79.4	96.9	81.5		3.5		33.4	89.9	87.4		86.7	31.8	40.6	18.5	
Mar-21	2.9	82	99.5	92.5		4		34.6	88.9	81.4		93.5	25.5	27.1	3.7	33.7
Apr-21	1.8	22.1	96.1	98.9	3.7	2.6		25.8	93.2	61.6	36.4	95.6	14.2	11.5	3.4	83.2
May-21	3	3.9	89.2	98.4	1.3	2.2		18.2	87.1	67.7	71.8	90.9	29.8	8.5	1.4	90
Jun-21	3.3	4.3	92.7	98.1	1.5	2.6	5	10.3	91.3	36.6	51	73.2	25.1	14	13.8	84.9
Jul-21	7	10.7	88.2	98.6	2.1	3	8.3	13.3	71.8	24.5	23.2	46	19.3	5.7	17.3	89.6
Aug-21	4.6	7.6	81.7	99.5	1.8	2.2	12.9	6.4	84.6	30.5	23	43.2	26.3	5.3	30.2	91.3
Sep-21	4.2	9	89.2	99	1.7	1.1	49.2	5.3	44.3	22.4	31.3	30.9	20.1	1.9	7	89.8
Oct-21	1.2	13.1	90.5	96.5	3	1.4	86.7	23.5	76.7	31.1	53.4	34.4	33.5	6.6	4.3	81.1
Nov-21	1.5	12.6	92.2	96.1	1.5	1.1	13.1	12	85.8	51	54.1	56.9	56.3	8.7	7.6	74
Dec-21	2.5	7.2	93.5	98.9	3.8	2.3	8.3	15.6	94.5	37.7	37.3	52.5	17.5	7.1	11.1	81.9
Jan-22	2.8	10.2	89.3	97.3	3.1	3	3.2	20.6	90.9	33.3	51.1	54	20.2	5.4	4.7	78.2

The frequency of FRP FMM prices greater than \$0 have been consistently low

Month	AZPS	BANC	CISO	EIM	IPCO	LADWP	NEVP	NWMT	PACE	PACW	PGE	PNM	PSEI	PWRX	SCL	SRP	TIDC
Feb-20	1	0	0	0.8	0		0.5		0	0.1	0.1		0.6	0.5			
Mar-20	1.4	0	0	1.8	0		0.2		0.1	0.2	0.2		0	1.4			
Apr-20	0.1	0	0.2	0.2	0		0.8		0	0	0		0.1	0.2	0	4.9	
May-20	0.8	0	0.1	0.4	0.1		2.4		0.1	0	0.2		0	0.7	0	0.1	
Jun-20	0.2	0	0	1	0.3		2.4		0.1	0.1	0.6		0.4	1.1	0	0.5	
Jul-20	0	0	0.1	2	0.1		4.4		0.2	0.1	4.2		0.6	1.8	0.1	0.7	
Aug-20	0.1	0.4	1.1	2	0.2		7.3		0.4	0.2	1.5		0.7	2	0	1.6	
Sep-20	0.2	0.2	0.5	1.7	0		2.5		0.2	0.3	1.4		0.2	0.6	0.1	1	
Oct-20	1.2	0.2	0.4	2.2	0		1.6		0.5	0.2	0.7		0.3	0.9	0.1	1.8	
Nov-20	0.5	0	10.2	1	0.1		0.8		0	0.1	1.5		0.1	0.5	0.2	0.7	
Dec-20	0.3	0.1	4.5	1	0		0		0	0.1	0.2		0	0.4	0.2	0.3	
Jan-21	0.3	0	4.2	0.4	0		0.1		0.1	0.1	0.3		0	0.3	0	0.2	
Feb-21	0.6	0	7.7	0.1	0.1		0.3		0.1	0.1	0.4		0.1	0.1	0.1	8.9	
Mar-21	0.3	0.1	16.6	0.3	0.1		0.7		0.2	0.2	0.3		0.4	0.3	0.1	0.5	0.7
Apr-21	0	0	11.4	0.3	0	0.1	0.3		0.1	0.1	0.4	6.8	0.1	0.1	0	0.5	0.3
May-21	0.7	0	3.3	0.6	0	0.1	0.9		0.1	0.3	0.3	0.1	0.5	0.5	0	0.2	0.2
Jun-21	0	0	2.9	0.2	0	0.1	1.3	0.8	0.4	0	1.5	0.4	0.9	0.3	0	1	0
Jul-21	0.1	0.1	2.3	0.1	0.3	0.1	0.8	3	0.3	0.1	1.1	0.5	0.2	0.2	0.1	2.9	0.1
Aug-21	0.2	0	2	0.4	0.6	0	0.6	1.2	0.1	0.1	1.5	0.1	0.2	0.5	0	2.8	0.2
Sep-21	0.3	0	4.9	0.4	0.1	0	0.4	23.8	0.3	0.1	0.8	0.2	0	0.4	0.2	1.8	0.1
Oct-21	0	0	10.8	0.5	0	0.3	0.5	44.3	0.1	0	0.8	0.3	0.2	0.9	0.1	0.3	0.3
Nov-21	0.5	0	10.2	1.7	0	0.1	0	1.4	0.1	0.6	0.2	0.3	0.2	1.7	0.1	1.7	0
Dec-21	0	0	6.9	1.1	0	0.3	0.1	1.9	0.6	0.1	0.4	0.3	0.2	1.4	0.1	0.2	0
Jan-22	0	0	9.3	1.2	0.2	0	0	0.5	1.8	0.3	0.3	0.2	0	1.4	0	0.2	0.1

The magnitude of FRP procurement for ISO areas has seen a moderate increase

RTD procurement for ISO area remains low

🍣 California ISO

Original FRP Implementation – November 1, 2016 flexible ramping up (assume all BAA pass flex test)

Individual EIM area requirement constraint

EIM System-wide area requirement constraint

Original formulation posed some inefficiencies

- The surplus variables were unbounded, so it could result in clearing beyond what is deliverable
 - We implemented an upper bound to each area procurement $FRUR_j(t) + NEC_j(t)$
- The surplus variables did not have upper bound
 - We introduced an upper bound
 - This had unintended impacts on price formation
 - Discussed it with the MSC in a 2018 session
- Brand-new formulation implemented in April 2018

Current formulation for FRP procurement

FRP Procurement

$$FRUR_{j}(t) - NIC_{j}(t) \leq \sum_{i \in S_{FRC} \cap BAA_{j}} FRU_{i}(t) + \gamma_{j}(t)FRUS_{j}(t) \leq FRUR_{j}(t) + NEC_{j}(t)$$

- It's upper and lower bounded by uncertainty requirements
- Requirements are adjusted to account for NIC/NEC
- Requirement can be met with actual ramp and surplus variables
- Surplus variables for each EIM area may or may not contribute and are modelled with binary variables γ_j(t) = {0,1}

The surplus variables are defined by how local requirement is met

• When an area is able to meet its requirement with its local capacity, the surplus variable is not active

$$FRUR_{j}(t) - NIC_{j}(t) - \sum_{i \in S_{FRC} \cap BAA_{j}} FRU_{i}(t) \le 0 \to \gamma_{j}(t) = 0$$

• When an area is NOT able to meet iys requirement with its local capacity, the surplus variable is active

$$If FRUR_{j}(t) - NIC_{j}(t) - \sum_{i \in S_{FRC} \cap BAA_{j}} FRU_{i}(t) > 0 \rightarrow \gamma_{j}(t) = 1$$

The surplus variable is also limited to not take higher values than needed to meet the local requirement

$$FRUS_j(t) \le FRUR_j(t) - NIC_j(t) - \sum_{i \in S_{FRC} \cap BAA_j} FRU_i(t)$$

• The local surplus variables may or may not be active to contribute to the system-wide requirement

$$\sum_{i \in S_{FRC}} FRU_i(t) + \sum_{j \in EIM} \gamma_j(t) FRUS_j(t) + FRUS_{EIM}(t) \ge FRUR_{EIM}(t)$$

In November 2020, we introduced a minimum requirement for ISO area in FMM

$$\sum_{i \in S_{FRC} \cap BAA_{j}} FRU_{i}(t) + FRUS_{j}(t) \ge DF * FRUR_{j}(t)$$

Minimum requirement factor

What are the pricing implications of this formulation?

- Areas with NIC/NEC larger than the uncertainty requirement will effectively have no requirements to meet, and will have no surplus variables contributions
- Any area can procure more than its local requirement to meet the system wide area requirement
- An area that meets its local requirement will not have a variable surplus which will not contribute to price in the system-wide area
- Any surplus variable used to meet local requirements will contribute to meet the system-wide area requirement
- The flex price for a resource in a local area will be the nested price of the local area plus the system-wide area price
- For an area that relies on its surplus variable to meet its local requirement, the surplus variable can be relaxed only up to meeting local need; it cannot be further used to meet EIM requirements

July 9, 2021 resource sufficiency results

Bid Range Capacity Failure

Flex Ramp Sufficiency Failure

Trade Date	HE	Interval	BAA_NAME	EDR	TRADE DT S	EDR TRADE HR S	Interval	Baa name
7/9/2021	19	3	CISO			16	1	
7/9/2021	19	4	CISO		7/0/2021	10		
7/9/2021	19	1	BANC		//9/2021	1. 10	2	
7/9/2021	19	2	BANC		7/9/2021	. 19	4	CISO
7/9/2021	19	1	SRP		7/9/2021	. 20	1	NEVP
7/9/2021	20	1	BANC		7/9/2021	21	. 1	NWMT
7/9/2021	20	1	SRP		7/9/2021	21	1	CISO
7/9/2021	20	2	SRP		7/0/2021	21		
7/9/2021	21	1	SRP		//9/2021	. 21	. 2	
7/9/2021	22	1	NEVP		7/9/2021	21	. 3	CISO
7/9/2021	22	1	SRP		7/9/2021	. 21	. 4	CISO
7/9/2021	22	2	SRP		7/9/2021	22	. 1	SRP
7/9/2021	23	1	SRP		7/9/2021	22	1	CISO
7/9/2021	23	2	SRP		7/0/2021	22	2	SPD
7/9/2021	23	3	SRP		7/9/2021	. 22	. 2	
7/9/2021	23	1	AZPS		7/9/2021	. 22	3	SRP
7/9/2021	23	2	AZPS		7/9/2021	23	1	SRP
7/9/2021	23	3	AZPS		7/9/2021	23	2	SRP

FMM BAA prices for July 9 shows only a few EIM areas with non-zero flex ramp prices

Gathering prices by regions allows for a simpler trend across areas

Procurement and prices for flexible ramp shows California is being short of capacity with nonzero flex prices

FMM energy prices reflected tight supply conditions for both California and DSW areas, tracking flex trends

Why FMM flex prices did not reflect tight supply conditions across the full EIM area?

Flex ramp procurement was largely driven by EIM area requirements

	Uncertainty	Effective	Min Req	Procurement	Relaxation	Flex Price	Energy
BAA	Req (MW)	Req (MW)	(MW)	(MW)	(MW)	(\$)	Price (\$)
AZPS	169	0	0	0	0	0	762
BANC	51	51	0	196	0	0	1,000
CISO	1,810	925	925	581	344	78	855
IPCO	149	0	0	0	0	0	312
LADWP	191	0	0	0	0	0	751
NEVP	303	0	0	30	0	0	731
NWMT	78	0	0	19	0	0	192
PACE	377	0	0	250	0	0	442
PACW	117	0	0	102	0	0	335
PGE	158	0	0	148	0	0	85
PNM	183	0	0	0	0	0	714
PSEI	91	0	0	130	0	0	113
PWRX	161	0	0	161	0	0	53
SCL	19	0	0	78	0	0	116
SRP	124	0	0	0	0	0	761
TIDC	9	0	0	0	0	0	960
EIM	2,038	2,038	0	1,694	344	0	

Price formation under current formulation

For all j in S_{FRC} ={*AZPS, BANC, IPCO, LADWP, NEVP, NWMT, PACE, PACW, PGE, PNM, PSEI, PWRX, SCL, SRP, TIDC*}

$$\begin{aligned} \gamma_j(t) &= 0, \text{ thus } FRUS_j(t) \text{ not active,} \\ FRU_i(t) \geq 0, \\ \sum_{i \in S_{FRC}} FRU_i(t) = 1113 \end{aligned}$$

For
$$j = CISO$$

 $\gamma_j(t) = 1$, thus $FRUS_{j=CAISO}(t)$ active
 $\sum_{i \in CISO} FRU_i(t) = 581 < 925$,

 $FRUS_{CISO} = 344$

250 200 150 100 8elaxation 50 0 0 500 1000 1500 2000 Upward Ramp(MW)

FRU CISO demand curve

For EIM

 $1113 + 581 + 344 + FRUS_{EIM} \ge 2038$ thus $FRUS_{EIM}=0$, EIM price=0

Why TID, LADWP, IPCO, AZPS, PNM and SRP procured 0 MW of flex ramp to the system?

- These areas had exhausted their supply bid stacks
- They also had an effective FRP requirement of 0 MW
- Their surplus variables are not active
- There is no opportunity cost to price FRP
- There is no need to relax the FRP demand curve since requirement is 0 MW
- Thus their FRP prices are \$0

Flex ramp prices were also \$0 in multiple RTD intervals of July 9 during peak hours

Likewise, RDT FRP procurement was largely driven by EIM requirements

	Uncertainty	Effective req	Procurement	Relaxation	FRP Price	Energy Price
BAA	Req (MW)	(MW)	(MW)	(MW)	(\$)	(\$)
AZPS	45	0	0	0	0	994
BANC	14	0	0	0	0	1001
CISO	273	0	127	0	0	994
IPCO	37	0	0	0	0	994
LADWP	69	0	0	0	0	994
NEVP	99	0	0	0	0	994
NWMT	23	0	0	0	0	994
PACE	86	0	0	0	0	960
PACW	30	0	0	0	0	151
PGE	28	0	0	0	0	151
PNM	53	0	0	0	0	994
PSEI	21	0	0	0	0	65
PWRX	47	38	143	0	0	65
SCL	5	5	78	0	0	65
SRP	36	0	0	0	0	994
TIDC	3	0	0	0	0	997
EIM	348	348	348	0	0	

RTD FRP prices were \$0 across the EIM footprint

- Effective requirements were mostly 0 MW for the majority of EIM individual areas
- EIM area requirement is the main driver for procurement
- FRP awards meet EIM requirement but were not deliverable from a ISO's reference

NAME	BAA	RTD FRP Award	Reason
Gen 001	ВСНА	143	PNW award
Gen 002	CISO	27	Internal Congestion
Gen 003	CISO	100	Energy Limit
Gen 003	SCL	78	PNW award

FRP deliverability

- Deliverability was one of the main reasons identified impacting FRP efficacy
- FRP enhancements will rely on new formulation to tackle FRP deliverability
- FRP enhancements scheduled for Fall 2022
- ISO has updated analysis about FRP deliverability

On July 9, 2021 FRP was partially deliverable due to either economics, congestion or resource constraints

Limited FRP deliverability is a more persistent issue beyond the critical summer days

