Hybrid Resources discussion

Gabe Murtaugh
Senior Infrastructure & Regulatory Policy Developer

Market Surveillance Committee Meeting
General Session
May 29, 2020
Definitions

• Co-located Resources – Multiple Resource IDs behind a single point of interconnection
 – Each resource is modeled and submits bids to the ISO independently
 – ISO will model state of charge, VER forecasts, heat rates independently as appropriate

• Hybrid – Single Resource IDs, with multiple mixed-fuel components behind a single point of interconnection
 – ISO receives one bid curve from the hybrid resource which should include any internal optimization
 – Resource should always be able to respond to any dispatch instruction from the ISO
Hybrid resources will be subject to the same market principles as other resources

- Hybrid resources will bid a single bid curve into the DA and RT markets
- Hybrid resources are required to respond to dispatch instructions from the ISO
 - Hybrids must manage state of charge and variable output from any/all underlying components
- Hybrids will not be classified as VER resources
 - ISO plans to use the NGR model for most hybrids
 - ISO will continue to collect MET station and forecast data for hybrids
- The proposal develops a ‘dynamic limit’ tool to alert the ISO when generation is unavailable
 - ISO needs to know when total output is reduced due to less variable output or from resources charging without visibility for dispatch
 - These may be updated every five minutes
New tools will be required in order for hybrid resources to operate and perform in the market

• Hybrid resources will have many of the same challenges as existing resources
 – Variable generation capability for certain hybrid components
 – State of charge for storage components

• **Dynamic limits** will be established for storage resources
 – Hybrid resources will have the ability to manage variable output through a ‘dynamic limit tool’
 – This tool will be based on similar technology that the ISO already uses for variable energy resources

• **Dynamic limits** will be submitted by the SC to the ISO
 – Data is provided for 5-minute intervals
 – Data for 3 hours of duration will be submitted

• No requirement to submit limits for all intervals
Co-located resources will no longer be subject to the current constraint restricting P_{max} values

- The ISO constrains co-located resources today
 \[\sum P_{\text{max}} < \text{POI} \]
- Proposal relaxes this rule and implements an aggregate capability constraint (ACC)
 - Constraint precludes the total generation from co-located resources to the POI limits
 - This constraint will be implemented for energy only in fall 2020
 - A full implementation (inclusive of AS) will be developed in fall 2021
- Resources will be priced behind the point of interconnection, rather than behind the interconnection
The aggregate capability constraint initially implemented will limit total energy dispatch

\[
MAX \left[0, \sum_{i \in S} (EN_i) \right] \leq UL
\]

\[
MIN \left[0, \sum_{i \in S} (EN_i) \right] \geq LL
\]

Where:

- \(i \) Resource
- \(S \) Set of co-located resources
- \(EN \) Energy schedule
- \(UL \) Upper limit
- \(LL \) Lower limit
The aggregate capability constraint eventually implemented will include ancillary services

\[
\text{MAX} \left[0, \sum_{i \in S} (EN_i + RU_i + SR_i + NR_i + FRU_i) \right] \leq UL \\
\text{MIN} \left[0, \sum_{i \in S} (EN_i + RD_i + FRD_i) \right] \geq LL
\]

Where:
- RU Regulation up award
- RD Regulation down award
- SR Spinning reserve award
- NR Non-spinning reserve award
- FRU Flex ramp up award
- FRD Flex ramp down award
The pricing inconsistencies for co-located resources is a concern for the ISO

- Resources could be receiving high prices but not be dispatched at Pmax
- This results in an incentive for resources to produce beyond instructions from the ISO dispatch
- ISO is proposing safeguards to ensure output is consistent with dispatch
 - All co-located resources will be required to follow dispatch instructions
 - Co-located resources that do not follow dispatch instructions may lose eligibility to use the aggregate capability constraint and would revert back to the current methodology where $\Sigma P_{Max} \leq POI$
 - Resources will continue to be required to have physical or electronic controls at interconnection to limit flows to contract levels
 - The shadow price will not be applied to co-located resources
- ISO exceptional dispatch tools do not include POI constraints
 - ISO is requiring that all co-located resources be operated by the same scheduling coordinator, so that exceptional dispatch instructions will never exceed POI constraints
- May update operating controls to accommodate for this in the future
Timeline for hybrid policy

<table>
<thead>
<tr>
<th>Date</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 29</td>
<td>Post second RSP, Final for co-located resources</td>
</tr>
<tr>
<td>May 29</td>
<td>Market Surveillance Committee meeting</td>
</tr>
<tr>
<td>July 22</td>
<td>Board of Governors meeting for co-located</td>
</tr>
<tr>
<td>July 29</td>
<td>Publish draft final proposal</td>
</tr>
<tr>
<td>Oct 6</td>
<td>Publish final proposal</td>
</tr>
<tr>
<td>Nov 18</td>
<td>Board of Governors meeting</td>
</tr>
<tr>
<td>Fall 2020</td>
<td>Implementation of co-located constraint (Energy only)</td>
</tr>
<tr>
<td>Fall 2021</td>
<td>Remaining implementation for hybrid policy</td>
</tr>
</tbody>
</table>
Stakeholder feedback asked for specifics to protect ITC credit and a new tool for the non-VER components

- ITC credit is essential for funding storage projects
 - It is important that these resources have a mechanism to not charge from the grid
 - DMM noted it is best to do this economically
- Tool to allow storage to make up the difference between solar output and forecasts
- Track SOC for hybrid resources, for monitoring
- Make it easier to transition from a hybrid resource to a co-located resource
- Do not bifurcate the solution over two years
- Move swiftly to develop a market solution
Investment tax credit for storage located at the same site as existing solar resources

• ITC is awarded to co-located storage projects
 – Tax credit may generally be up to 30% of the cost of annualized capital costs for a storage project, paid during the initial 5 years of operation
 – Credit phases out over 5-year period: credit is 100% in year one, 80% in year 2, 60% in year 3...
 – Model for the tax credit is that these resources charge from on-site solar and deliver energy during the peak
 – ITC clawed back when storage charges from grid
 – ITC clawed back completely if the storage resource charges more than 25% from grid
 – ITC may include a 10-20% “developer premium”
Investment tax credit - Example

- Suppose a co-located storage project costs $30 million
 - Storage can produce +/- 25 MW and store 100 MWh
- ITC credit is $10 million
- Modelling implies that the resource cycles once per day
 - 100 MWh * 365 = 36.5 TWh/year
- Assume 10% charging from the grid
 - Resource loses $1 million from 3.7 TWh, or $270/MWh
- The costs reduce by 20% each year, because of decreasing credit amount
There are a number of ways that resources could achieve no/limited charging from the grid

- A new (un-proposed) mechanism explicitly preventing such dispatch
- Storage resources could self-schedule to ensure that charge only occurs when solar is online
 - Self-schedules could be placed in the real-time market after receiving day-ahead awards from economic bidding
- Use of the minimum and maximum end of hour state of charge parameters (ESDER 4 feature for storage)
 - Storage can specify what the state of charge will be at the end of the hour, but this may not ensure that there is no grid charging
- Economic bids
 - Prices in the markets today imply that charging would happen generally during solar hours
 - If the actual loss from the ITC is $160/MWh (in year 3), then a resource could bid into the RT market with a ~$190/MWh price spread
Current proposal requires co-located resources follow dispatch instructions, even when paired with VERs

- VER resources today are allowed to generate ‘as capable’ unless they receive a downward dispatch or operator instruction from the ISO
- Storage resources are not required to follow dispatch
- Co-located resources would be treated the same way
- Request from stakeholders: allow storage resources to generate/charge the difference between VER output and forecast
 - Market does not make allowances for non-VER resources to not follow dispatch today