Issue Paper

Two-Tier Real-Time Uplift

October 9, 2008
Table of Contents

1. Introduction .. 3
2. Background .. 3
3. Process and Timetable ... 4
4. Two-Tier Real-Time Uplift Design Issues ... 5
4.1. Allocation of Real-Time Uplift to SCs .. 5
4.2. Determination of Real-Time Tier 1 Rate .. 7
5. Examples of Options for Two-Tier Real-Time Uplift .. 8
6. Comparison to other ISOs ...11
7. Next Steps ...12
1. Introduction

At MRTU start-up the allocation of real-time market bid cost recovery (BCR) uplift is a single tier charge allocated to metered demand. Such an allocation scheme is pure socialization based and cost causation is not accounted for which is contrary to the approach that was adopted for the IFM and RUC BCR charges where tier 1 is based on cost causation and tier 2 is based on socialization.

Market participants have expressed their desire for the development of a two-tier Real-Time Uplift charge in various stakeholder forums over the last several years. Most recently this topic has been discussed in the convergence bidding stakeholder forum due to the fact that the other two bid cost recovery uplift charges (IFM and RUC) are being redesigned as part of this effort. With this paper and further discussion, the CAISO seeks to consider all uplift charges (including any Real Time redesign) as a package that is integral to the policy design and development for convergence bidding.

FERC ordered the CAISO as part of its September 21 2006 order to develop a two-tier Real-Time uplift charge no later than three years after MRTU start-up. Real-Time Uplift was ranked as part of the Market Initiatives Roadmap effort. While it did not rank the highest of the FERC mandated market enhancements the CAISO is proposing to address it as soon as possible due to synergies with the design of the BCR Uplift charges for Convergence Bidding. However, the CAISO has not yet analyzed the requirements for implementing such a charge and depending on the complexity of the solution desired and agreed upon by stakeholders a concurrent implementation with Convergence Bidding may or may not be possible.

A number of factors may contribute to the CAISO’s need to commit, decommit, increment and decrement Generating Units in Real-Time which creates Real-Time Uplift. Some of those factors could be accounting for forecast errors, generation or transmission deratings, uninstructed deviations, congestion management and virtual transactions that clear the Day-Ahead market but are liquidated in Real-Time. It would thus be very difficult to determine exactly what action in Real-Time created what component of the Real-Time Uplift. This issue paper describes several possibilities for creating a two-tier Real-Time Uplift charge for stakeholder discussion and consideration where Tier 1 is based cost causation and Tier 2 is allocated to metered demand. The two options discussed follow the premise that 1) all deviations, including virtual demand and virtual supply create the need for inc energy and dec energy in Real-Time and are the primary cause for Real-Time uplift, or, 2) uninstructed deviations, including virtual supply, that create the need for inc energy in Real-Time are the primary cause for Real-Time uplift.

The goal is to implement two-tier Real-Time uplift that is fair and reasonable but also simple enough to implement on a time-line to be concurrent with convergence bidding.

2. Background

Under MRTU all supply resources are eligible for Bid Cost Recovery (BCR) which allows Generating and Dynamic System Resources to recover their Start-Up Costs, Minimum Load

1 The September 21,2006 MRTU FERC Order can be accessed at: http://www.caiso.com/1878/1878f9725ef80.pdf
Costs, and Energy and Ancillary services bid costs to the extent those costs are not covered by LMP and AS revenues from the market.

Generating Units and Resource Specific System Resources that are committed by the CAISO in the IFM, RUC, or RTM are eligible to recover Start-Up Costs and Minimum Load Costs as well as Bid Costs for Energy and Ancillary Services. Supply Resources that are self-committed are eligible to recover only Bid Costs for Energy and Ancillary Services. The funds needed to compensate eligible resources for their Bid Cost Recovery are collected through the IFM and RUC Tier 1 and Tier 2 Uplift charges, and RTM Uplift charge, all of which are charged to demand (with exports being exempt from RUC uplift charges.) The Tier 1 costs for BCR uplift are designed to charge the entities that created them and the Tier 2 costs are designed to recover what could not be recovered through cost causation in Tier 1 and are charged to metered demand.

The Bid Cost Recovery (BCR) uplift charges that were developed as part of the initial MRTU design process and will be in place at MRTU start-up are as follows:

- **IFM Tier 1 BCR Uplift** is charged to SCs based on the portion of their demand that is not served by self-scheduled generation and/or imports but is served by energy supplied through the market. This allocation is determined by calculating each SC’s Day-Ahead Scheduled Demand less Self-Scheduled Generation and Imports plus or minus any Inter-SC Trades of IFM Load Obligation. Tier 2 is allocated to measured demand.

- **RUC Tier 1 BCR Uplift** charge is allocated to SCs based on their Net Negative CAISO Demand Deviation (load that deviated from the Day-Ahead schedule) in a Trading Hour. Tier 2 is allocated to measured demand.

- **Real-Time Uplift** is a single tier charge that is allocated to SCs based on their metered demand.

The settlement of all BCR uplift is system wide and does not account for the location of the sources of the energy or the load.

As part of the convergence bidding design the CAISO has proposed that SCs engaged in virtual bidding will also pay a portion of these uplift charges associated with the DA (IFM) and RUC markets. These changes would not go into affect until the planned start date of convergence bidding which is one year after the start-up of MRTU. The proposed methodology for allocation to virtual transactions is described in the **January 28, 2008 Straw Proposal for Convergence Bidding Cost Allocation which can be accessed at:**

http://www.caiso.com/1f60/1f60e10811e40.pdf

3. Process and Timetable

The CAISO proposes the following schedule for this stakeholder engagement. In December the CAISO will post a Straw Proposal for changes to all three bid cost recovery uplift charges, IFM, RUC and RTM so they can be reviewed by market participants as a package. Modifications to the IFM and RUC Uplift charges are a result of virtual bids being added to billing determinant. Changes to the Real-Time uplift charge will reflect a proposal for moving from a single tier charge to a two-tier charge.

<table>
<thead>
<tr>
<th>Tentative Date</th>
<th>Milestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 9, 2008</td>
<td>Post Issue Paper</td>
</tr>
</tbody>
</table>
4. Two-Tier Real-Time Uplift Design Issues

The following sections discuss a number of design issues that will need to be resolved through the design and stakeholder process. As is the case with the other two existing IFM and RUC BCR charges there is a Tier 1 purchase rate with a determined maximum and an allocation methodology to determine each SCs obligation to pay BCR uplift. Again the Tier 1 charge is designed to allocate costs to the entities that created them.

In order to create a two-tier Real-Time uplift charge the CAISO will need develop a purchase rate with a maximum and allocation methodology for Real-Time Tier 1 Uplift. A maximum rate is necessary to ensure that the purchase rate for Real-Time uplift does not become excessively high when the billing determinant derived from SCs that are determined to be the cause of the uplift is very small.

4.1. Allocation of Real-Time Uplift to SCs

There are several options that could be considered to allocate Real-Time Tier 1 Uplift costs. These options consider both the contribution of virtual bids and physical bids to Real-Time uplift.

Option 1- Allocation based on each SCs need for either inc and dec imbalance energy in Real-Time

In the Real-Time market, both inc and dec instructed imbalance energy could give rise to bid cost shortfall, hence requiring BCR. On the other hand, it may not be possible to separately identify the specific causes for the inc and dec instructed imbalance energy. The cause of the instructed imbalance energy could stem from deviations in Real-Time resulting from physical or virtual market activity. Under this option virtual supply and virtual demand are both considered deviations along with the physical uninstructed deviations from generation and load.

In this option, we assume that the per-MW uplift costs are about the same between the inc and dec instructed imbalance energy. Therefore, both scheduling coordinators that need inc instructed energy for balancing as well as those requiring dec instructed energy for balancing could be subject to the uplift cost allocation.

Assuming that both the need for inc and dec energy contribute to bid cost shortfall, allocation of Real-Time Tier 1 Uplift could be based on an SCs net deviations across their portfolio that resulted in the need for Real-Time inc balancing energy minus deviations that resulted in need for Real-Time dec balancing energy. In this case virtual supply is considered to contribute to the
need for inc energy and virtual demand is considered to contribute to the need for dec energy. For each SC, the CAISO would calculate a signed quantity by netting over each SCs portfolio to determine the SC’s net inc or net dec imbalance energy requirement with a positive value indicating net inc and negative value indicating net dec. Therefore the calculation of the total billing determinant (total obligation to pay Real-Time Uplift) could be based on the absolute value of the following quantity:

a) the net deviation of actual load from the DA schedule plus DA virtual supply schedule minus DA virtual demand schedule

minus,

b) max (generator RT self schedule minus DA final schedule, 0) and; min (generator RT bid max minus DA final schedule, 0)

minus

c) the uninstructed deviations of generating resource

minus

d) max (import HASP self-schedule minus DA final schedule,0) and min (import HASP bid max minus DA final schedule, 0)

plus

e) max (export HASP self-schedule minus DA final schedule,0) and; min(export HASP bid max minus DA final schedule, 0)

The above imbalance energy requirement quantities for different SCs are then summed algebraically to determine the net overall imbalance energy requirement. Only those SC’s with their required real-time imbalance energy aligned with the net overall system required imbalance energy in the sense of inc or dec are allocated for Tier-1 Real-Time uplift allocation and the billing determinant for each SC is its imbalance energy requirement in absolute value.

For example, if the algebraic sum reflects a net inc energy requirement for the system, only those SCs with inc energy requirement would be allocated for Tier-1 Real-Time uplift. SCs with a net dec energy requirement would have a zero obligation for tier-1 uplift.

Option 2 – Allocation Based on Net Negative Uninstructed Deviation

Another option could be to base the allocation of Tier 1 Real-Time uplift on each SCs net negative uninstructed deviation. The calculation for net negative uninstructed deviation is a calculation that exists currently in CAISO settlements and would be a more simplistic approach. This approach would assume that the need for inc energy is the main contributor to Real-Time Uplift and would not take into account dec energy. Net Negative Uninstructed Deviation is defined as the real-time change in generation or demand associated with underscheduled Demand and overscheduled Generation which are netted for each Settlement Interval, and apply to an SCs entire portfolio and include Demand, Generation, imports and exports. Net virtual supply could be added to the calculation since virtual supply disappearing in Real-Time could require the need for additional generation to be committed in Real-Time.

Each SCs obligation would be determined based on their percentage share of the total billing determinant.

Under either Option 1 or Option 2 the charge could be allocated to SCs on an hourly basis as is the case today.
4.2. Determination of Real-Time Tier 1 Rate

This section describes some possibilities for how a Tier 1 rate could be developed for Real-Time Bid Cost Recovery Uplift. As a comparison the existing rate for IFM Tier 1 BCR Uplift is explained below.

For IFM Tier 1 Uplift SCs will be charged a rate which is the lower of:

1) Hourly net IFM Bid Cost Uplift ($) divided by the IFM Load Uplift Obligation (MW)\(^2\) or,

2) Hourly Net IFM Bid Cost Uplift($) divided by the sum of all hourly Generation in the Day-Ahead Schedule(MW) and IFM Upward AS Awards (MW).

A cap was put on the rate to insure against an excessively high rate when the billing determinant, which in this case would be Demand that is not covered by self-scheduled Generation or Imports, is small.

The allocation methodology for IFM Tier 1 Uplift is explained in Section 2 above and is allocated to SCs that have Demand in the Day-Ahead Market that is not covered by Self-Scheduled Generation or Imports or inter-sc trades of IFM Uplift. SCs will pay the Tier 1 rate multiplied by their obligation.

Based on the idea that the need for both inc and dec energy contribute to real-time uplift and following similar methodology to the IFM Tier 1 rate, SCs could be charged a Real-Time Tier 1 Uplift rate which is the lower of:

A) Hourly net RTM Bid Cost Uplift ($) divided by the RTM Load Uplift Obligation (MW) or,

B) Hourly Net RTM Bid Cost Uplift ($) divided by the sum of the absolute value of incs and decs in the real-time market.

The obligation specified in A will depend on what option the CAISO and stakeholders choose to determine that calculation. B represents the maximum purchase rate and would include the absolute value of the Instructed Imbalance Energy (IIE) portion of the inc and dec energy which would allow for a larger denominator in the case when the RTM Load Uplift Obligation specified in A above is small in order insure against a very high rate. On the other hand using the absolute value of inc and dec could result in a very small rate and therefore more uplift would have to be recovered through Tier 2.

Other ideas that could be considered for the calculation of the maximum purchase rate instead of the absolute value of incs and decs are:

The Net IFM Bid Cost Uplift divided by:

A) Net of dispatched generation (MW) that is eligible for BCR

This smaller denominator could result in an excessively high Tier 1 rate or,

B) Generator inc MW only

\(^2\) As part of the January 29, 2008 Straw Proposal for Convergence Bidding Cost Allocation the CAISO is proposing to add virtual demand obligation as a part of the denominator for this calculation to be in effect at the onset of convergence bidding.
This could result in a higher rate for Real-Time uplift and does not necessarily represent all of the generation supply that resulted in the need for uplift.

5. Examples of Options for Two-Tier Real-Time Uplift

The following examples will provide a simple illustration of the options for calculating Tier 1 Real-Time Uplift described in this issue paper. For the purpose of calculating the RTM Tier 1 uplift rate the examples will assume the maximum purchase rate as the absolute value of incs and decs in Real-Time.

Example 1 – Based on Option 1 and concept that both the need for inc and dec energy contribute to Real-Time Uplift.

Assume there are four SCs participating in the market. The Real-Time Bid Cost recovery dollar amount that needs to be allocated is $1000.

SC1: virtual transactions only
- Cleared Virtual Supply = 30
- Cleared Virtual Demand = 20
- Required Imbalance Energy = 30 – 20 = 10 MW
- SC1 requires 10MW of inc energy from the market

SC2: Physical Transactions only
- Generation:
 - DA Final Schedule = 40MW
 - RT Bid Max = 38MW; RT Dispatch Schedule = 30MW
 - Required Imbalance Energy = 40MW – 38MW = 2MW
- SC2 requires 2MW of Inc energy from the market
- SC2 also provided 8MW of dec IIE based on RT Dispatch Level (30MW) - RT Bid Max (38MW) = -8MW (dec)

SC3: Virtual and Physical Transactions
- Underscheduled load = 10
- Uninstructed Generation below Day-Ahead schedule = 10
- Virtual Supply = 15
- Virtual Demand = 10
- Required Imbalance Energy = 10MW + 10MW + 15MW – 10 MW = 25MW
- SC3 requires 25MW of Inc energy from the market

SC4: Physical load and generation only
- Load
DA Final Schedule = 50MW
RT Measured Demand = 50MW

Generation
DA Final Schedule = 10MW
RT Self Schedule = 15MW; RT Bid Max = 80MW; RT Dispatch Schedule = 55MW

Required Imbalance Energy = (50MW – 50MW) – (15MW – 10MW) = -5MW
SC4 requires 5MW of Dec energy because the RT Self-Schedule is > DA Self-Schedule
SC4 also provided 40MW of inc IIE because RT Dispatch Level (55MW) – RT Self Schedule (15MW) = 40MW

By adding the signed quantities of required market imbalance energy associated with the four SCs, we obtain the minimum required balancing market energy for the system.
10MW + 2MW +25MW – 5MW = 32MW

The above quantity is positive, indicating the minimum required balancing market energy is inc type. 10MW + 2MW + 25MW = 37 MW represents the total billing determinant for RTM Tier 1 Uplift which is based on SC1, SC2 and SC3 requiring inc energy from the market. Since SC4 requires dec type of balancing energy while the entire system required inc type of balancing energy, tier-1 billing determinant for SC1 is zero.

Now we will calculate the purchase rate for RTM Tier 1 Uplift. The rate would be calculated as the maximum of either the total RTM Uplift Obligation which equals 37 MW
Or, the absolute value of all inc and decs which equals 48MW. Since only SC2 and SC4 provided IIE we obtained the 48MW by taking the absolute value of the IIE for those two SCs.
In this case the rate would be $1000/48MW = $20.83
The $1000 of uplift would be allocated as follows:

<table>
<thead>
<tr>
<th></th>
<th>MW Obligation</th>
<th>Rate</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC1</td>
<td>10</td>
<td>$20.83</td>
<td>$208.33</td>
</tr>
<tr>
<td>SC2</td>
<td>2</td>
<td>$20.83</td>
<td>$41.67</td>
</tr>
<tr>
<td>SC3</td>
<td>25</td>
<td>$20.83</td>
<td>$520.83</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>$770.83</td>
</tr>
</tbody>
</table>

In this case $770.83 would be recovered through Tier 1 Uplift and the remainder would be recovered through Tier 2 Uplift by allocating the costs to metered demand.

Example 2 – Based on Option 2 and the concept that net negative uninstructed deviation and net virtual supply is the contributor to Real-Time Uplift.
Assume the same four SCs with the same portfolio as Example 1. In this case the CAISO would use net negative uninstructed deviation as the billing determinant to determine what SCs will pay RTM Tier 1 Uplift.
SC1: virtual transactions only
Cleared Virtual Supply = 30
Cleared Virtual Demand = 20
= 30 – 20 = 10 MW
Since SC1 has a net negative uninstructed deviation of 10MW based on net virtual supply

SC2: Physical Transactions only
Generation:
 DA Final Schedule = 40MW
 RT Bid Max = 38MW; RT Dispatch Schedule = 30MW
SC2 has a net negative uninstructed deviation of 0 MW since we will assume this generator delivered what was dispatched.
SC2 also provided 3MW of dec IIE based on RT Dispatch Level (30MW) - RT Bid Max (38MW) = -8MW (dec)

SC3: Virtual and Physical Transactions
Underscheduled load = 10
Uninstructed Generation below Day-Ahead schedule = 10
Virtual Supply = 15
Virtual Demand = 10
SC3 has a net negative uninstructed deviation of 10MW+10MW+15MW – 10MW = 25MW

SC4 – Physical load and generation only
Load
DA Final Schedule = 50MW
RT Measured Demand = 50MW
Generation
DA Final Schedule = 10MW
RT Self Schedule = 15MW; RT Bid Max = 80MW; RT Dispatch Schedule = 55MW
SC4 has a net negative uninstructed deviation of 0 since we will assume the generator delivered what was dispatched.
SC4 also provided 40MW of inc IIE because RT Dispatch Level (55MW) – RT Self Schedule (15MW) = 40MW
The total billing determinant would be 10MW + 25MW = 35MW based on the net negative uninstructed deviations of SC1 and SC3. SC2 and SC4 would have an obligation of 0 since they had no net negative uninstructed deviations.

If we again assume for this example the maximum rate is based on the absolute value of IIE inc and dec energy the rate = $1000/ 48MW = $20.83The $1000 of uplift would be allocated as follows:

<table>
<thead>
<tr>
<th>MW Obligation</th>
<th>Rate</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC1</td>
<td>10MW</td>
<td>$20.83</td>
</tr>
<tr>
<td>SC3</td>
<td>25MW</td>
<td>$20.83</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$729.17 would be allocated through RTM Tier 1 Uplift and the remaining $270.83 would be recovered through Tier 2 RTM Uplift.

6. Comparison to other ISOs

The table below summarizes how other ISO’s are allocating Real-Time uplift costs to their market participants. For MISO, New England ISO and PJM the Real-Time Bid Cost Recovery includes costs for RUC and Real-Time in the same charge. For the CAISO RUC and Real-Time BCR Uplift are broken out into two separate charges.

<table>
<thead>
<tr>
<th>Allocation of Real-Time BCR Uplift</th>
<th>NY ISO</th>
<th>MISO</th>
<th>PJM</th>
<th>NE ISO</th>
</tr>
</thead>
<tbody>
<tr>
<td>No costs allocated to virtual bids unable determine how costs (if any) are allocated for physical transactions.</td>
<td>Allocated in three buckets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) Units committed for constraint management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Costs are allocated to all deviations including virtual supply and demand. Deviations can be netted across portfolio and market participants can make changes to schedules up to 4 hours prior to operating hour and net those changes against deviations to reduce obligation for uplift.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) Units committed due to Intra-Hour changes to provide ramp and headroom capability.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Allocated to metered demand</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3) Schedule changes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Allocated to uninstructed deviations and net virtual</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costs are allocated based on deviations both negative and positive including virtual demand and virtual supply. Virtual transactions can net against physical transactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Same as PJM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7. Next Steps

The CAISO seeks stakeholder input in the form of written comments on options presented in this issue paper by October 31, 2008 to Margaret Miller at mmiller@caiso.com. The CAISO will review the existing Straw Proposal for Convergence Bidding Cost Allocation dated January 29, 2008 regarding changes to IFM and RUC BCR Uplift charges, make modifications if necessary, and post a revised “Straw Proposal for all BCR uplift charges including Two-Tier Real-Time Uplift in December of 2008.