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Introduction

This memo addresses the following three propositions by solving a simple analytical model of the two
settlement (IFM-DA/RT) market where suppliers have market power day ahead, but are mitigated in real
time. Virtual bidders play a crucial role. In sum, it is possible for RT market power mitigation to
mitigate DA market power completely (under restrictive assumptions concerning symmetry of supply in
RT and DA)--but if DA supply elasticity is greater than RT supply elasticity, the mitigation of DA market
power is incomplete and some market power is exercised. This memo documents the basic model and
some variants, and some simulation results.

Simplifying assumptions are made for purposes of ease of exposition:

1. the RT market is perfectly forecast day-ahead,

2. suppliers in the DA market only optimize against their DA marginal cost curve and don’t consider
how their DA supply will affect RT marginal costs,

3. DARUC s disregarded (or, equivalently, RUC decisions don’t change supply decisions in the RT
market)

4. mitigation is perfect (offers are set equal to marginal cost exactly).

5. all oligopolists are identical (have the same cost functions)

However, the first assumption is not anticipated to change the basic results. Meanwhile the Appendix
shows that the basic qualitative results (Proposition 1 and 2) don’t change if the second assumption is
altered. RUC could significantly change the results if the units that are RUC'd are the optimal units to
dispatch if all demand was met at the mitigated price in the day-ahead market. The result is that the RT
offer curve would follow the DA marginal costs, and the market outcomes would be the same as
Proposition 1 below (all market power mitigated). If mitigation is not perfect, market power could
persist if RT mitigated offers are above marginal cost. Finally, assumption 5 is not anticipated to
qualitatively change the results (for instance, if there are some smaller fringe suppliers).

The propositions are as follows:

Proposition 1: Under perfect arbitrage (virtual bidding) and a monopoly or oligopolistic suppliers, if the
IFM supply (MC) curves are the same as the RT supply demand curves, then mitigating just the RT
market will result in the competitive solution in both markets. (This assumes that monopolist does not
anticipate how its IFM decision will affect the amount of virtual supply —i.e., Cournot.) Demand
elasticities don’t affect this result.



Proposition 2: Under perfect arbitrage (VB) and a monopoly or oligopolistic suppliers, if the RT supply
curve is less elastic than the IFM supply curve, then mitigating just the RT market will still allow some
residual market power to be exercised in the DA market.

Proposition 3: However, the mark up in the latter case will be less than if either (a) there is no mitigation
in either market, or (b) if the monopolist anticipates how arbitrage and RT prices will change if it
changes IFM supply. Case (b) is sometimes referred to as a “closed loop monopoly” rather than a
Cournot solution.

These propositions are illustrated below for linear supply and demand assumptions. The upshot is that
RT mitigation is not enough to prevent market power in the IFM if RT supply is less elastic than IFM
supply, but it helps. (Lower elasticity in real time is expected since long start units cannot change their
status in the short run/RT.) What happens is that the monopolist or oligopolist restricts supply in the
IFM, so that prices are higher in the IFM, enticing some virtual supply to be provided DA. As a result,
there is RT production, and the mitigated but less elastic supply curve in the RT sets a higher price than
would be the case if the IFM was competitive. Market power in the IFM results in IFM supply restriction
and increased (and inefficient) production in the RT market, raising prices in both markets, and lowering
consumption.

First, | show these propositions for the case of a single firm (monopoly) in the IFM, then | generalize the
model to the oligopoly case.

Example 1: Monopoly in the IFM
Notation:
gi=Total IFM production by the monopolist
g,=Total incremental production in RT by the monopolist
vs; = virtual supply in IFM (settled as virtual demand in RT)
d;=quantity demanded in IFM, equal to g1 + vs;
d,=incremental quantity demanded in RT, equal to g - vs;
P1(d1) = P1o — B1*d1 = IFM demand curve
P2(d2|d1) = P1o— B1*d1 — By*d, = RT demand curve (B,>B; if less elastic than in IFM)
MCi(g1) = MCy,o + C1*g1 = IFM marginal cost curve

MC,(g2]|g1) = MCy, + C1*g1 + Co*g, = RT marginal cost curve (C2>Cy if RT supply less elastic than in
IFM)

There are 5 unknowns (generation and load in each market, and IFM virtual supply) and 5 equations ((1)-
(5)) as follows that give the market equilibrium:

IFM (market 1): served by a monopolist subject to elastic demand and virtual supply (which the
monopolist is Cournot against). Monopolist maximizes its DA profit, equal to revenue minus IFM cost:
P1(d1)*g1 — (MC1o*g1+C1*g1%/2), subject to its recognition that load equals its supply plus virtual supply



(d1= g1 + vs1). (This is a naive monopolist who doesn’t anticipate how IFM decisions affect its RT costs;
see the Appendix for a more general model where the monopolist anticipates that if it supplies more
DA, its MC in the RT market will increase. The results are not qualitatively different). The first order
condition for profit maximization is:

Marginal Revenue = Py’(d1)*g1 + P1 = MCi(g1) (1)
Market clearing in IFM:
di=gi+vs: (2)
No arbitrage condition (efficient virtual bidding), implying that IFM and RT prices are equal:
P1(d1) = P2(d2]d1) (3)
RT mitigated market solution results in price = marginal cost:
P2(d2|d1) = MCyo + Ci*g1 + Co*gx  (4)
Market clearing in RT:
do=gr—vs: (5)

We could use algebra to define g3, g, d1, d2, and vs; as explicit functions of the parameters. One
immediate result is that no arbitrage (3) means that d, = 0, g; = vs;, and the demand price elasticity
(represented by coefficient B,) in RT doesn’t matter. (With uncertainty of supply or demand in real
time, though, this would not be generally true.)

Here’s an example. | solve (1)-(5) with the following parameters.

Demand P = 100
Bl = 1
Bz = 1.3
Supply MCyo = 10
C1 = 1.5
C= 1.8

So the incremental supply curve in RT is 20% steeper than the IFM supply (marginal cost) curve.

The solution is:

di d; g g Vs
34.52 0.00 22.19 12.33 12.33

With price in both DA and RT equal to $65.48/MWh. If instead the IFM was perfectly competitive, then
the solution would be:

Which has a lower price (64 $/MWh) and higher market surplus. This illustrates Proposition 2. These
two solutions are shown graphically below.
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Note that RT supply starts from the point on the IFM supply curve
corresponding to g1. Similarly, RT demand starts from the point on the IFM
demand curve corresponding to d1. RT lines are steeper in both cases.

Proposition 1 is illustrated by setting B;=B,=1, and C;=C,=1.5 (same IFM and RT elasticities). Then the
solution is:

di dz g1 g Vs
36 0 21.6 14.4 14.4

Which is the same quantity, price (564), and market surplus as the competitive solution.

Proposition 3 is illustrated by the following profit maximizing (maximal market power) solution in which
the monopolist recognizes that it should produce everything in the IFM (which is cheaper than
producing in RT) and nothing in the second period. Then:

di d2 g g Vs
24.325 0.000 24.324 0.000 0.000

Which yields a price of 73.2 $/MWh, and much less efficiency (see the figure below). So comparing this
with the previous solutions, the RT mitigation succeeds in moving the market much closer to the
competitive solution (i.e., mitigated in both markets), but there is residual market power.
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To the extent that the RT supply elasticity is less than the IFM, the solution will approach the maximal
market power solution, and diverge from the competitive solution. For instance, if the RT supply
elasticity was one-half the IFM elasticity (increasing C; to 3), the equilibrium price increases to
68.7S/MWh (compared to the competitive level of $64 and the maximal market power level of $73.2.)

Example 2: Oligopoly in the IFM

Assume there are n oligopolists. Notation is as follows:

gi1=Total IFM production by oligopolists. gii is production by oligopolist i

g.=Total incremental production in RT by oligopolists, and g,i is production by oligopolist i
vsy = virtual supply in IFM (settled as virtual demand in RT), as in monopoly model
d;=quantity demanded in IFM, equal to Z g1i + vs:

d,=incremental quantity demanded in RT, equal to % g2 - vs:

P1(d1) = P1o— B1*d1 = IFM demand curve

P2(d2|d1) = P1o— B1*d1 — By*d, = RT demand curve (B,>B; if less elastic than in IFM)

MCi(g1i) = MCyo + n*C1*g1i = IFM marginal cost curve (assume same all i)



MCa(gai| g1i) = MCio + n*C1*g1i + n*C2* g2 = RT marginal cost curve (C>>C; if supply less elastic than
in IFM) (assume same all i)

There are 5 unknowns and 5 equations ((1’)-(5’)) as follows that give the market solution. Solving these
is made easier if we assume that by symmetry all g1 = g1/n, and g2 = g2/n. The five equations are
developed below.

IFM (market 1): served by n Cournot oligopolists subject to elastic demand and the quantities provided
by virtual supply and other physical suppliers (both assumed to be fixed by the Cournot oligopolist). The
oligopolist chooses its g1 to maximize revenue minus cost P1(d1)*g:i — (MCio gai + n*C1*g12/2), while
recognizing that d; = X g1 + vs1. The resulting first order condition is:

Marginal Revenue = Py'(d1)*g1i+ P1 = MCy(gu), for all i (1)
Market clearing in IFM:
di=Zigi+vs: (2')
No arbitrage condition (efficient virtual bidding) => IFM and RT prices are equal:
P1(d1) = Pa(d2|d1) (3)
RT mitigated market solution is price = marginal cost for all i
P,(d2|d1) = MCa(g2i| gui), for all i (47)
Market clearing in RT:
d2=Zi gai- vs1 (57)

We could use algebra to define gli, g2i, di, da, and vs; as explicit functions of the parameters, but it is a
bit messy, so just some sample numerical results are shown. One immediate result is that no arbitrage
condition (3) means that d, = 0, g2 = vs1/n, and the demand price elasticity in RT (represented by
coefficient B,) doesn’t matter. (With uncertainty, this would not be generally true.)

Here is an example. | solve (1’)-(5’) with the following parameters.

Demand P = 100
Bl = 1
Bz = 1.3

Supply MCyo = 10
C1 = 1.5
C= 1.8

Firms n= 3

So the incremental supply curve in RT is 20% steeper than the IFM supply curve.

The solution is:

di d2 g g Vs
35.337 0.000 29.816 5.521 5.521



With price $64.66/MWh.

If instead the IFM was perfectly competitive, then the solution would be (as before):

di dz g g Vs
36 0.00 36 0 0

Which has a lower price (64 S/MWh) and higher market surplus. This illustrates Proposition 2 for the
oligopoly case. Note that the oligopoly (n=3) markup is $0.66, which is about 45% of the monopoly
marketup.

Proposition 1 for the oligopoly (n=3) case is illustrated by setting B;=B,=1, and C;=C,=1.5 (same IFM and
RT elasticities). Then the solution is:

di dz g g Vs,
36.000 0.000 29.455 6.545 6.545

Which is the same quantity, price (564), and market surplus as the competitive solution.

Proposition 3 is illustrated by the following profit maximizing (no mitigation of market power) solution in
which the oligopolists recognize that they should produce everything in the IFM (which is cheaper) and
nothing in the second period. Then:

di d2 g g Vs
31.77 0.000 31.76 0.0 0.0

Which yields a price of 68.2 $/MWh, and much less efficiency. So in this case, a comparison of this
unmitigated solution with the previous RT mitigation solution (immediately above) shows that RT
mitigation succeeds in moving the market much closer to the competitive solution (i.e., mitigated in
both markets), but there is residual market power.

To the extent that the RT supply elasticity is less than the IFM, the solution will approach the maximal
market power solution even if RT mitigation is in place, and diverge from the competitive solution. For
instance, if the RT supply elasticity was one-half the IFM elasticity (C; = 3), the equilibrium price
increases to 66.045/MWh (compared to the competitive level of $64 and the no mitigation market
power level of $68.23.) It turns out that, like the monopoly case, demand elasticities in RT don’t affect
the solution.

For n=3, the use of RT mitigation reduces the mark-up to 16% of the unmitigated value (for C;=1.8, 20%
reduction in supply elasticity) or 48% (for C; = 3, half the supply elasticity). These reductions are almost
exactly the same as for the monopoly case (14% and 46% respectively). So the fact that the markets are
oligopolistic rather than monopolistic doesn’t appreciably change the percentage that market power-
driven mark-ups are reduced relatively to unmitigated levels.

APPENDIX: Generators Anticipate Effect of DA Supply Decisions on RT Costs

What if each supplier optimizes over both markets at once, recognizing that producing more in period 1
will increase her cost in period 2?

Choose {g1i,g2i} in order to maximize profit over both periods:
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{P1(d1)*g1i — (MC1o g1i + N*C1*g1i/2)} + {P2*g2i — [(MC1o + n*C1*g1i)g2i + N*Cr* g2 %/2]}

Note that P, is exogenous in this profit expression, which is equivalent to mitigation of RT prices,
because it results in price being set equal to i’s marginal cost (the second first order condition below).
The first order conditions are:

Marginal Revenue DA = Py’(d1)*gui+ P1 = MCy(ga) + n*Ci*g, alli  (1”)
P2 = Py(d2|d1) = MCa(g2i| gui), all i (4')

So condition (1’) has changed to condition (1”); now the producer is equating marginal revenue in the
first period with the marginal cost that would occur if it supplied all g1 + g2 in the first period, rather
than just g, not its first period marginal cost of just supplying gii. If there is a positive second period
supply, this implies that the perceived marginal cost of supply in the first period increases, which
motivates the firm to sell even less in the first period than it would in the original model, which will
ultimately increase the first price further, and, if C;>Cy, increase costs by increasing second period
production whose marginal cost is greater than if the same production occurred in period 1. Condition
(4) is unchanged (price equals marginal cost in the second period)

Simulations (solving (1”),(2’)-(5’)) with the same parameters as considered in the body of this memo
result in the following comparison with the original model results:

(a) Same results (no market power in DA) if supply elasticity is the same in both RT and DA
(b) More market power in DA if supply elasticity is more in DA

As an illustration, here is the example as before, but solving (1”),(2’)-(5’) rather than (1’)-(5’) with the
following parameters.

Demand P, = 100
Bl = 1
B, = 1.3

Supply MCyo = 10
C= 1.5
C= 1.8
Firms n= 3

So the incremental supply curve in RT is 20% steeper than the IFM supply curve.

The solution is:

di d; g g Vs
33.861 0.000 16.040 17.822 17.822

with price $66.13/MWh. So the price is higher than the $64.66 price in the original model in which the
supplier doesn’t consider impact on second period marginal cost of first period decision, while three
times as much virtual supply is being provided in the DA market (so there is three times as much RT
generation). Thus, more market power is being exercised under this model.



