March 29, 2021

The Honorable Kimberly D. Bose
Secretary
Federal Energy Regulatory Commission
888 First Street, NE
Washington, DC 20426

Re: California Independent System Operator Corporation
Docket No. ER15-861-___
Energy Imbalance Market – Second Quarter 2019
Available Balancing Capacity Report

Dear Secretary Bose:

The California Independent System Operator Corporation (CAISO) hereby submits its quarterly informational report for the second quarter of 2019 (April 1 to June 30, 2019) on the Available Balancing Capacity (ABC) enhancement for the western Energy Imbalance Market (EIM). The quarterly informational report is to provide the Commission with information on the performance of the ABC enhancement and to provide the same information the CAISO provides in its monthly informational reports submitted during an EIM entity’s first six-month transition period.

Consistent with the Commission’s directive in the December 17, 2015 order, the CAISO will continue to file such quarterly reports for at least the first year after implementation of the ABC enhancement, or until the Commission finds the quarterly informational reports are no longer needed.

Please contact the undersigned with any questions.

Respectfully submitted

By: /s/ John Anders
Roger E. Collanton
General Counsel
John Anders
Assistant General Counsel
California Independent System Operator Corporation
250 Outcropping Way
Folsom, CA 95630
Tel: (916) 608-7182
Fax: (916) 608-7222
amckenna@caiso.com
Energy Imbalance Market

April 1 – June 30, 2019

Available Balancing Capacity Report

November 24, 2020
Table of Contents

I. Background .. 3
II. Highlights .. 4
III. Available Balancing Capacity .. 5
 A. Available Balancing Capacity Submitted to the Market .. 5
 B. Resources Supporting Available Balancing Capacity ... 14
 C. Available Balancing Capacity and Power Balance Constraint Infeasibilities 18
IV. EIM Performance .. 29
 A. Prices ... 29
 B. Frequency of Power Balance Constraint Relaxation ... 35
 C. Balancing and Sufficiency Test Failures ... 43
 D. Flexible Ramping Constraint Infeasibilities .. 52

I. Background

On December 17, 2015, the Federal Energy Regulatory Commission (Commission) approved the California Independent System Operator Corporation’s (CAISO) proposed tariff revisions to comply with the Commission’s July 20, 2015 order in FERC Docket No. ER15-861-006.\(^1\) The CAISO’s proposed tariff provisions enhanced the western Energy Imbalance Market (EIM) functionality so that the market systems automatically recognize and account for capacity an EIM entity has available to maintain reliable operations in its own balancing authority area (BAA), but has not been bid into the EIM.\(^2\) This enhancement is referred to as the Available Balancing Capacity (ABC) enhancement. The CAISO implemented the ABC enhancement on March 23, 2016.

Consistent with the CAISO’s commitments made in this proceeding, the Commission directed the CAISO to prepare and file with the Commission quarterly informational reports for at least the first year after implementation of the ABC enhancement, and until the Commission finds the quarterly informational reports are no longer needed.\(^3\) The quarterly informational reports are to provide information on the performance of the ABC enhancement and to include the same information the CAISO provides in its monthly informational reports submitted during an EIM entity’s first six-month transition period.\(^4\)

\(^2\) December 17 Order at P 1.

\(^3\) December 17 Order at P 99

\(^4\) December 17 Order at P 39.
II. Highlights

- The CAISO implemented the ABC enhancement on March 23, 2016. During the second quarter of 2019, BANCSMUD was undergoing the transitional period for price discovery as a new EIM entity.

- This report covers the following EIM entities: Pacificorp West (PAC West), Pacificorp East (PAC East), NV Energy, Arizona Public Service (APS), Idaho Power Corporation (IPCO), Puget Sound Energy (PSE), Powerex (PWRX), Portland General Electric (PGE), and Balancing Authority of Northern California, Sacramento Municipal Utility District (BANCSMUD).

- The Powerex, NV Energy, PSE and BANCSMUD BAAs submitted ABC in nearly all intervals of the second quarter of 2019; this contrasts with the lower frequency of ABC submitted by other EIM entities.

- The EIM dispatched ABC, in either upward or downward direction infrequently, as high as 5.5 percent for the NV Energy BAA, but as low as zero percent in other EIM BAAs.

- The NV Energy and APS BAAs used as many as six different resources to support their ABC submissions.

- Overall, the impact of ABC was low, based on the relative low frequency of scheduling and availability when power constraint infeasibilities were observed.
III. Available Balancing Capacity

A. Available Balancing Capacity Submitted to the Market

Each EIM entity can identify and set the amount of ABC they will make available to the CAISO and the resources supporting this capacity through its EIM entities resource plan. The EIM entity submits this capacity to the CAISO on an hourly basis, and it is available for both the Fifteen-Minute Market (FMM) and the five-minute Real-Time Dispatch (RTD). The figures in this section show the ABC made available in each of the EIM BAAs. IPCO did not submit any ABC bids in the second quarter of 2019 thus is not included graphically below.

For each BAA, there are two plots to show the amount of ABC dispatched in the FMM and RTD, separately. The blue bars indicate positive values and illustrate the upward ABC made available by the EIM entity; the green bars indicate negative values and illustrate the downward ABC made available. Red markers indicate the instances where the ABC was dispatched in either the upward or downward direction.

Figure 1: Submitted and Dispatched ABC in the PAC West BAA – FMM
Figure 2: Submitted and Dispatched ABC in the PAC West BAA – RTD

Figure 3: Submitted and Dispatched ABC in the PAC East BAA – FMM
Figure 4: Submitted and Dispatched ABC in the PAC East BAA – RTD

Figure 5: Submitted and Dispatched ABC in the NV Energy BAA – FMM
Figure 6: Submitted and Dispatched ABC in the NV Energy BAA – RTD

Figure 7: Submitted and Dispatched ABC in the APS BAA – FMM
Figure 8: Submitted and Dispatched ABC in the APS BAA – RTD

Figure 9: Submitted and Dispatched ABC in the PSE BAA – FMM
Figure 10: Submitted and Dispatched ABC in the PSE BAA – RTD

Figure 11: Submitted and Dispatched ABC in the PWRX BAA – FMM
Figure 12: Submitted and Dispatched ABC in the PWRX BAA – RTD

Figure 13: Submitted and Dispatched ABC in the PGE BAA – FMM
Figure 14: Submitted and Dispatched ABC in the PGE BAA – RTD

Figure 15: Submitted and Dispatched ABC in the BANCSMUD BAA – FMM
Table 1 summarizes the percentage of intervals in which each EIM entity submitted ABC to the EIM. The NV Energy, PSE, and PWRX BAAs submitted upward and downward ABC nearly all or all of the time during the second quarter of 2019 to the EIM.

Table 1: Frequency of ABC Submitted to the EIM

<table>
<thead>
<tr>
<th>Balancing Authority Area</th>
<th>Upward Capacity</th>
<th>Downward Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAC West</td>
<td>5.21%</td>
<td>1.88%</td>
</tr>
<tr>
<td>PAC East</td>
<td>19.34%</td>
<td>18.08%</td>
</tr>
<tr>
<td>NV Energy</td>
<td>99.55%</td>
<td>99.59%</td>
</tr>
<tr>
<td>APS</td>
<td>42.3%</td>
<td>31.1%</td>
</tr>
<tr>
<td>PSE</td>
<td>99.58%</td>
<td>98.38%</td>
</tr>
<tr>
<td>IPCO</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>PGE</td>
<td>0.09%</td>
<td>0%</td>
</tr>
<tr>
<td>PWRX</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>BANCSMUD</td>
<td>96.49%</td>
<td>97.27%</td>
</tr>
</tbody>
</table>

Table 2 shows the frequency of each EIM entity’s dispatched ABC, when the EIM entities made ABC available, for both the FMM and RTD. Overall, the CAISO dispatched ABC very infrequently with a maximum dispatch of 5.5 percent of submitted
upward capacity by NV Energy in RTD.

Table 2: Frequency of EIM Dispatched ABC in the FMM and RTD

<table>
<thead>
<tr>
<th>Balancing Authority Area</th>
<th>Upward Capacity FMM</th>
<th>Upward Capacity RTD</th>
<th>Downward Capacity FMM</th>
<th>Downward Capacity RTD</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAC West</td>
<td>0%</td>
<td>0.15%</td>
<td>0%</td>
<td>0.20%</td>
</tr>
<tr>
<td>PAC East</td>
<td>0.06%</td>
<td>0.67%</td>
<td>0.02%</td>
<td>0%</td>
</tr>
<tr>
<td>NV Energy</td>
<td>3.76%</td>
<td>5.5%</td>
<td>1.14%</td>
<td>1.88%</td>
</tr>
<tr>
<td>APS</td>
<td>0.79%</td>
<td>0.26%</td>
<td>1.00%</td>
<td>0.04%</td>
</tr>
<tr>
<td>PSE</td>
<td>0.07%</td>
<td>0.15%</td>
<td>0%</td>
<td>0.04%</td>
</tr>
<tr>
<td>IPCO</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>PGE</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>PWRX</td>
<td>0.34%</td>
<td>0.07%</td>
<td>0.34%</td>
<td>0.24%</td>
</tr>
<tr>
<td>BANCSMUD</td>
<td>0.22%</td>
<td>0.33%</td>
<td>0.07%</td>
<td>0.23%</td>
</tr>
</tbody>
</table>

B. Resources Supporting Available Balancing Capacity

The figures in this section show the number of different resources supporting the ABC the EIM entities submitted to the FMM and RTD. Because IPCO did not submit any ABC bids in the second quarter of 2019, it is not included graphically below. The Powerex and NV Energy BAAAs had a larger pool of resources to support the ABC.
Figure 18: Number of Resources Supporting the Submitted ABC in the PAC East BAA

Figure 19: Number of Resources Supporting the Submitted ABC in the NV Energy BAA
Figure 20: Number of Resources Supporting the Submitted ABC in the APS BAA

Figure 21: Number of Resources Supporting the Submitted ABC in the PSE BAA
Figure 22: Number of Resources Supporting the Submitted ABC in the PWRX BAA

Figure 23: Number of Resources Supporting the Submitted ABC in the PGE BAA
C. Available Balancing Capacity and Power Balance Constraint Infeasibilities

The purpose of the ABC enhancement is to make capacity available that otherwise would not be visible to the EIM. The primary objective in making such capacity available is that the EIM can recognize and access that capacity when the conditions warrant its use, namely when the EIM is running out of capacity made available through economic bids. The ABC is capacity stacked above economic bids, but below the power balance constraint relaxation penalty price. When the market is tight in supply and it has exhausted all effective economic bids, the market clearing process will access the ABC. If there is sufficient ABC, the EIM will relax the power balance constraint to clear the market. As such, the market clearing process uses the ABC to resolve the power balance infeasibility. If instead the ABC identified is not sufficient to cure the infeasibility, the ABC may be exhausted and there may still be the need to relax the power balance constraint in order to clear the EIM.

The figures in this section show the amount of ABC bids submitted in the FMM and RTD, along with the power balance constraint infeasibilities, separately. A graph for IPCO during FMM is not included below because there were no FMM power balance constraint infeasibilities during that time, and they did not submit any ABC bids.
Figure 25: Submitted ABC and Power Balance Constraint Infeasibilities in the PAC West BAA – FMM

Figure 26: Submitted ABC and Power Balance Constraint Infeasibilities in the PAC West BAA – RTD
Figure 27: Submitted ABC and Power Balance Constraint Infeasibilities in the PAC East BAA – FMM

Figure 28: Submitted ABC and Power Balance Constraint Infeasibilities in the PAC East BAA – RTD
Figure 29: Submitted ABC and Power Balance Constraint Infeasibilities in the NV Energy BAA – FMM

Figure 30: Submitted ABC and Power Balance Constraint Infeasibilities in the NV Energy BAA – RTD
Figure 31: Submitted ABC and Power Balance Constraint Infeasibilities in the APS BAA – FMM

![Graph showing submitted ABC and Power Balance Constraint Infeasibilities in the APS BAA – FMM]

Figure 32: Submitted ABC and Power Balance Constraint Infeasibilities in the APS BAA – RTD

![Graph showing submitted ABC and Power Balance Constraint Infeasibilities in the APS BAA – RTD]
Figure 33: Submitted ABC and Power Balance Constraint Infeasibilities in the PSE BAA – FMM

Figure 34:Submitted ABC and Power Balance Constraint Infeasibilities in the PSE BAA – RTD
Figure 35: Submitted ABC and Power Balance Constraint Infeasibilities in the IPCO BAA – RTD

Figure 36: Submitted ABC and Power Balance Constraint Infeasibilities in the PGE BAA – FMM
Figure 37: Submitted ABC and Power Balance Constraint Infeasibilities in the PGE BAA – RTD

Figure 38: Submitted ABC and Power Balance Constraint Infeasibilities in the PWRX BAA – FMM
Figure 39: Submitted ABC and Power Balance Constraint Infeasibilities in the PWRX BAA – RTD

Figure 40: Submitted ABC and Power Balance Constraint Infeasibilities in the BANCSMUD BAA – FMM
Based on the data provided in the figures above, Table 3 shows the frequency of intervals in which the EIM entities did not make any ABC available to the EIM, which caused the power balance constraint to relax. Specifically, the data in Table 3 provides the percentage amount of over-supply infeasibilities where downward ABC was needed, and under-supply infeasibilities where upward ABC was needed. For instance, for the PAC West BAA, the metric for the RTD for undersupply was 100 percent, indicating that in all intervals when an infeasibility was observed in the RTD, the EIM entity did not submit any ABC to the EIM.

Table 3: Frequency of Power Balance Infeasibilities When no ABC was Available in the Market

<table>
<thead>
<tr>
<th>BAA</th>
<th>Over-supply</th>
<th>Under-supply</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FMM</td>
<td>RTD</td>
</tr>
<tr>
<td>PAC West</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>PAC East</td>
<td>0%</td>
<td>100%</td>
</tr>
<tr>
<td>NV Energy</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>APS</td>
<td>82.35%</td>
<td>79.05%</td>
</tr>
<tr>
<td>PSE</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>IPCO</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>PGE</td>
<td>0%</td>
<td>100%</td>
</tr>
<tr>
<td>PWRX</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>BANCSMUD</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Through its evaluation of the ABC performance, the CAISO has observed two additional scenarios that can occur in the EIM:

1. Use of ABC related to resource constraints: The CAISO market optimization software recognizes the resource constraints and characteristics of capacity identified as ABC, just as it does of any other participating capacity in the market. Therefore, at times the market is constrained from utilizing the identified capacity due to the operational characteristics of the resources identified as such. The CAISO has observed that in several instances when the power balance constraint was relaxed, the ABC identified by the EIM entity was not sufficient to resolve the power balance infeasibility because of the operational ramp limitations of the resources. In some cases, the resources ramp rate may be very limited because of the resource’s operating point at any given point in time. In other cases, the resource is not available because in that particular interval the resource must cross a forbidden region first in order to access the ABC and that may take several market intervals, thereby preventing the market optimization software from utilizing the identified capacity. In some instances, a resource is required to cross the operational range where the ABC is defined, and given its ramp rate, the only way for the resource to reach an expected operating point is by dispatching it within the operating region with ABC.

2. Use of ABC related to congestion management: The CAISO market systems release the ABC in the scheduling run based on the scheduling run’s assessment of system conditions. However, the CAISO schedules and prices resources in the CAISO markets. The ABC is considered as part of the market clearing process in the pricing run. The pricing run will optimize the entire EIM BAA, which is the combination of all BAAs that participate in the EIM, including the CAISO’s BAA. The market software will simultaneously consider the ABC in clearing the least-cost congestion management solution based on resource constraints and system conditions it observes. Consequently, in some instances when the market clearing process released the ABC in the EIM BAA it was necessary to release the capacity to address congestion in either the EIM or elsewhere in the system. The ABC is considered as part of the single market optimization for the entire EIM BAA, the need to re-dispatch resources to manage congestion efficiently would have resulted in the re-allocation of resources such that the ABC would need to be released to ensure the EIM could operate its system reliably.

However, because the CAISO aims to ensure the EIM BAA can operate its system reliably with the use of the ABC it identifies, the CAISO enforces a constraint that ensures that when the market clearing process clears ABC, it stays within the EIM entity BAA. While the CAISO is not able to isolate the electrons, the constraint ensures that EIM does not
export the ABC to another BAA to the detriment of the specific EIM BAA by ensuring that the exports from the EIM BAA are net of the ABC released in an EIM entity BAA.

IV. EIM Performance

This section provides the information the CAISO previously provided in its monthly informational reports submitted during an EIM entity’s first six-month transition period.

A. Prices

The figures in this section show the EIM load aggregation point (ELAP) prices\(^5\) for the FMM and RTD in each EIM BAA. The red line represents FMM ELAP prices, the blue line represents RTD ELAP prices, and the dashed line represents proxy prices; there are no proxy prices to report for Powerex. These trends show only the factual prices, which are financially binding. In prior reports, the CAISO provided these factual prices in comparison to counterfactual prices in order to show the effect of using the pricing waiver of the price discovery mechanism.\(^6\)

The CAISO may correct prices posted on its Open Access Same-time Information System (OASIS) pursuant to the CAISO’s price correction authority in section 35 of the CAISO tariff, if it finds: (1) that the prices were the product of an invalid market solution; or (2) the market solution produced an invalid price due to data input failures, hardware or software failures; or (3) a result that is inconsistent with the CAISO Tariff. The prices presented in the figures below include all prices produced by the CAISO consistent with the CAISO tariff requirements. That is, the trends below represent: (1) prices as produced in the market for which the CAISO deemed valid; (2) prices that the CAISO could and did correct pursuant to section 35; and (3) any prices the CAISO adjusted pursuant to transition period pricing reflected in section 29.27 of the CAISO tariff.

Table 4 shows the average ELAP prices for all EIM BAAs observed in the second quarter of 2019.

\(^5\) The ELAP provides aggregate prices that are representative of pricing in the overall BAA.

\(^6\) In Docket ER15-402, the CAISO reported on prices based on the price discovery mechanism in effect during the term of the Commission’s waiver granted in that docket and the prices as they would be if the waiver was not in effect, i.e., what prices would have been had they been on the penalty prices in the CAISO tariff. Because pricing under the waiver pricing is based on the last economic bid price signal, these prices are a proxy of what the prices would have been absent the seven category of learning curve type issues experience in that market. The difference between the counterfactual pricing and the price in effect during the term of the reports in that docket illustrated the market impact of the waiver pricing.
Table 4: Average ELAP Prices for the Various EIM BAAs

<table>
<thead>
<tr>
<th>BAA</th>
<th>FMM ($/MWh)</th>
<th>RTD ($/MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAC West</td>
<td>19.29</td>
<td>21.00</td>
</tr>
<tr>
<td>PAC East</td>
<td>19.80</td>
<td>25.96</td>
</tr>
<tr>
<td>NV Energy</td>
<td>20.83</td>
<td>25.85</td>
</tr>
<tr>
<td>APS</td>
<td>31.29</td>
<td>32.94</td>
</tr>
<tr>
<td>PSE</td>
<td>18.33</td>
<td>20.18</td>
</tr>
<tr>
<td>IPCO</td>
<td>19.92</td>
<td>26.23</td>
</tr>
<tr>
<td>PGE</td>
<td>17.18</td>
<td>19.22</td>
</tr>
<tr>
<td>PWRX</td>
<td>19.16</td>
<td>17.66</td>
</tr>
<tr>
<td>BANCSMUD</td>
<td>24.83</td>
<td>27.72</td>
</tr>
</tbody>
</table>

Figure 42: Daily Average Price for the PAC West BAA ELAP
Figure 43: Daily Average Price for the PAC East BAA ELAP

Figure 44: Daily Average Price for the NV Energy BAA ELAP
Figure 45: Daily Average Price for the APS BAA ELAP

Figure 46: Daily Average Price for the PGE BAA ELAP
Figure 47: Daily Average Price for the PSE BAA ELAP

Figure 48: Daily Average Price for the PWRX BAA ELAP
Figure 49: Daily Average Price for the IPCO BAA ELAP

![Graph showing daily average price for the IPCO BAA ELAP from 1st April to 30th June. The graph displays three lines: FMM ELAP, RTD ELAP, and Estimated Proxy.](image)

Figure 50: Daily Average Price for the BANCSMUD BAA ELAP

![Graph showing daily average price for the BANCSMUD BAA ELAP from 1st April to 30th June. The graph displays three lines: FMM ELAP, RTD ELAP, and Estimated Proxy.](image)
B. Frequency of Power Balance Constraint Relaxation

The figures in this section show the frequency of intervals in which the power balance constraint was relaxed in each EIM BAA for under-supply or over-supply conditions in the FMM and RTD, respectively. A bar with positive frequency represents an under-supply power balance constraint infeasibility, and a bar with negative frequency represents an over-supply power balance constraint infeasibility. The CAISO excluded invalid infeasibilities and therefore these frequencies reflect only actual infeasibilities. Invalid infeasibilities are power balance constraint infeasibilities for intervals that were subject to a price correction under the provisions of the CAISO tariff.

The CAISO uses a load conformance limiter in the CAISO BAA and the EIM BAAs to prevent over-adjustments through use of load conformance, and thus prevent an artificial infeasibility – that is, one that does not reflect actual scarcity. When the quantity of the infeasibility is less than the operator’s adjustment, and the infeasibility is in the same direction as the adjustment, the load conformance limiter automatically limits the operator’s adjustments to at least the feasibility level. In the pricing run, the limiter will remove an infeasibility that is less than or equal to the operator’s adjustment, i.e., the load conformance. The limiter will not apply to infeasibilities greater than or in the opposite direction of the load conformance. Use of the load conformance limiter avoids invalid constraints that arise through operations rather than because of real supply issues.7 This feature applies to either over- or under-supply infeasibilities.

For the Powerex BAA, there were no undersupply infeasibilities in either the FMM or RTD during the reported three-month period.

For the PAC West BAA, there were 25 valid undersupply infeasibilities (0.3 percent of the time) in the FMM during the reported three-month period and no infeasibilities covered by the load conformance limiter. For the RTD, there were 34 under-supply infeasibilities (0.1 percent of the time); the load conformance limiter covered none of these instances.

7 The CAISO amended its tariff to include enhancements to the limiter later in 2018, which were approved and became effective in February 2019: http://www.caiso.com/Documents/DraftTariffLanguage_ImbalanceConformanceEnhancements.docx
There were 12 valid undersupply infeasibilities (0.1 percent) in the FMM during the reported three-month period in the PAC East BAA with no infeasibilities covered by the load conformance limiter. For the RTD, there were 73 under-supply infeasibilities (0.3 percent of the time) with 14 instances covered by the load conformance limiter.
For the NV Energy BAA, there were 429 valid undersupply infeasibilities (4.9 percent of the time) in the FMM during the reported three-month period with the load conformance limiter covering 11 percent of these instances. For the RTD, there were 711 under-supply infeasibilities (2.7 percent of the time); the load conformance limiter covered approximately nine percent of these instances.
There were 303 valid undersupply infeasibilities (3.5 percent of the time) in the FMM in the APS BAA during the reported three-month period; the load conformance limiter covered 82 percent of these instances. For the RTD, there were 305 undersupply infeasibilities (1.2 percent of the time); the load conformance limiter covered
approximately 74 percent of these instances.

Figure 57: Frequency of FMM Power Balance Infeasibilities in the APS BAA

![Chart showing frequency of FMM power balance infeasibilities from April to June 2019.](chart-image)

Figure 58: Frequency of RTD Power Balance Infeasibilities in the APS BAA

![Chart showing frequency of RTD power balance infeasibilities from April to June 2019.](chart-image)
There were 15 (0.18 percent of the time) valid undersupply infeasibilities in the FMM in the PSE BAA during the reported three-month period, with the load conformance limiter covering none of these instances. For the RTD, there were 22 under-supply infeasibilities (0.1 percent of the time), with the load conformance limiter covering none of these instances.

Figure 59: Frequency of FMM Power Balance Infeasibilities in the PSE BAA

![Graph showing frequency of FMM power balance infeasibilities](image)

Figure 60: Frequency of RTD Power Balance Infeasibilities in the PSE BAA

![Graph showing frequency of RTD power balance infeasibilities](image)
There were no infeasibilities in the FMM in the IPCO BAA during the reported three-month period. For the RTD, there were 54 under-supply infeasibilities (0.2 percent of the time) with 31 percent of instances covered by the load conformance limiter.

Figure 61: Frequency of RTD Power Balance Infeasibilities in the IPCO BAA

There were no undersupply infeasibilities in the FMM in the PGE BAA during the reported three-month period. For the RTD, there were 13 under-supply infeasibilities (0.05 percent of the time) and the load conformance limiter covered 15 percent of these instances.

Figure 62: Frequency of RTD Power Balance Infeasibilities in the PGE BAA
There were 39 undersupply infeasibilities in the FMM in the BANCSMUD BAA during the reported three-month period (0.45 percent of the time) with no instances covered by the load conformance limiter. For the RTD, there were 49 under-supply infeasibilities (0.19 percent of the time) with no instances covered by the load conformance limiter.

Figure 63: Frequency of FMM Power Balance Infeasibilities in the BANCSMUD BAA

Figure 64: Frequency of RTD Power Balance Infeasibilities in the BANCSMUD BAA
C. Balancing and Sufficiency Test Failures

The first set of figures in this section show the trend of balancing test failures for each of the EIM entity BAAs for the quarter covered by this report. The CAISO performs the balancing test pursuant to Section 29.34(k) of the CAISO tariff.

The NV Energy BAA passed the balancing test 98.9 percent of the time, where approximately 60 percent of the failures were due to under-scheduling. These failures are within normal ranges and reflect the incidence of the forecasting and balancing process that has occurred at a frequency that is well within expected performance tolerances.

Figure 65: Frequency of Balancing Test Failures for the NV Energy BAA
The PAC West BAA passed the balancing test for the reported period 99 percent of the time, where 41 percent of the failures reflected under-scheduling. Similarly, the PAC East BAA passed the balancing test 99.4 percent of the time, and approximately 75 percent of the failures were associated with under-scheduling.

Figure 66: Frequency of Balancing Test Failures for the PAC West BAA

![Graph showing balancing test failures for the PAC West BAA]

Figure 67: Frequency of Balancing Test Failures for the PAC East BAA

![Graph showing balancing test failures for the PAC East BAA]
The APS BAA passed the balancing test in 97 percent of the hours and approximately 52 percent of the failures were for under-scheduling conditions. For the PSE BAA, the passing rate was 98.9 percent of the hours and 70 percent of infeasibilities were for under-scheduling conditions.

Figure 68: Frequency of Balancing Test Failures for the APS BAA

![Graph showing frequency of balancing test failures for the APS BAA]

Figure 69: Frequency of Balancing Test Failures for the PSE BAA

![Graph showing frequency of balancing test failures for the PSE BAA]
The IPCO BAA passed the balancing test in 99.6 percent of the hours and approximately 38 percent of the failures were for under-scheduling conditions. For the PGE BAA, the passing rate was 99.4 percent of the hours and 43 percent of infeasibilities were due to under-scheduling conditions.

Figure 70: Frequency of Balancing Test Failures for the IPCO BAA

Figure 71: Frequency of Balancing Test Failures for the PGE BAA
The BANCSMUD BAA passed the balancing test in 98.5 percent of the hours and 50 percent of the failures were for under-scheduling conditions.

Figure 72: Frequency of Balancing Test Failures for the BANCSMUD BAA

The next set of figures below represent the flexible ramping sufficiency test trends in each of the EIM entity’s BAA. For the reported period, the NV Energy BAA passed the test 95.2 percent of the hours; the PAC West BAA passed the balancing test 99.5 percent of the hours; the PAC East BAA passed the test 99.6 percent of the hours; the APS BAA passed the test in 94.4 percent of the hours; the PSE BAA passed the test in 99.7 percent of the hours; the IPCO BAA passed the test in 99.3 percent of the hours; the PGE BAA passed the test in 99.8 percent of the hours; the PWRX BAA passed the test in 99.7 percent of the hours; and the BANCSMUD BAA passed in 99.2 percent of the hours.
Figure 73: Frequency of Flexible Ramping Sufficiency Test Failures in the NV Energy BAA

Figure 74: Frequency of Flexible Ramping Sufficiency Test Failures in the PAC West BAA
Figure 75: Frequency of Flexible Ramping Sufficiency Test Failures in the PAC East BAA

Figure 76: Frequency of Flexible Ramping Sufficiency Test Failures in the APS BAA
Figure 77: Frequency of Flexible Ramping Sufficiency Test Failures in the PSE BAA

Figure 78: Frequency of Flexible Ramping Sufficiency Test Failures in the IPCO BAA
Figure 79: Frequency of Flexible Ramping Sufficiency Test Failures in the PGE BAA

Figure 80: Frequency of Flexible Ramping Sufficiency Test Failures in the PWRX BAA
D. Flexible Ramping Constraint Infeasibilities

The CAISO implemented the flexible ramping product on November 1, 2016. The flexible ramping product uses a price-responsive demand curve. Consequently, there no longer are constraint infeasibilities related to the flexible ramping constraint to report.
CERTIFICATE OF SERVICE

I hereby certify that I have served the foregoing document upon the parties listed on the official service list in the above-referenced proceeding, in accordance with the requirements of Rule 2010 of the Commission's Rules of Practice and Procedure (18 C.F.R. § 385.2010).

Dated at Folsom, California, this 29th day of March 2021.

/s/ Anna Pascuzzo
Anna Pascuzzo