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I. BACKGROUND AND TESTIMONY SUMMARY 13 

Q. What is your name and by whom are you employed? 14 

A.  My name is Shucheng Liu.  I am employed by the California Independent System 15 

Operator (CAISO), 250 Outcropping Way, Folsom, California as Principal, Market 16 

Development. 17 

 18 

Q. Have you previously submitted testimony in this proceeding? 19 

A. Yes.  I submitted testimony on August 13, 2014 and October 22, 2014 supporting 20 

and describing the results of the CAISO’s 2014 Long-Term Procurement Plan 21 

(LTPP) deterministic study. 22 

 23 

Q. What is the purpose of this testimony? 24 

A. My testimony describes the construct of the CAISO’s stochastic model, the 25 

development of the stochastic variables and the capacity shortfalls and renewable 26 

curtailments identified by the model.  27 

 28 

Q. Please describe how your testimony is organized. 29 

A. My testimony is divided in to three main sections and a comprehensive Technical 30 

Appendix.  Section II of this testimony addresses the stochastic model developed by 31 

the CAISO and the assumptions contained therein.  Section III discusses the 32 
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development of the load, solar generation, wind generation and forced outage 1 

stochastic variables and the processes by which the CAISO validated the stochastic 2 

variables.  Section IV presents the capacity shortfalls and renewable curtailments 3 

observed in the CAISO’s 500-iteration stochastic model simulations.  The Technical 4 

Appendix presents additional details regarding the development of the CAISO’s 5 

stochastic model, the stochastic variables and the results of the simulations.   6 

 7 

II. THE BASE MODEL 8 

Q.  Please provide an overview of the CAISO’s 2014 LTPP stochastic production 9 

simulation model.  10 

A. The CAISO’s stochastic production simulation model is based on the Trajectory 11 

scenario deterministic zonal model the CAISO developed for the 2014 LTPP study 12 

pursuant to this proceeding’s Administrative Law Judge’s request.  The model has 13 

four stochastic variables – forced outage, load, solar generation and wind 14 

generation.  The CAISO conducted 500-iteration full-year hourly chronological 15 

Monte Carlo simulations with the model.  The CAISO produced frequency 16 

distributions for capacity shortfalls and renewable generation curtailments based on 17 

results of these simulations. The inclusion of stochastic variables for the main inputs 18 

of load, wind generation, solar generation and conventional generation outages 19 

captures the variations of system conditions hour-by-hour for the entire year. 20 

 21 

Q.  What is the difference between a deterministic and stochastic variable in 22 

simulations of this study?  23 

A. A deterministic variable has a single given input of a load, solar or wind profile for 24 

the year.  The deterministic simulation runs only once from the beginning to the end 25 

of the year in hourly intervals.  It represents a single prediction of the future based 26 

on the best knowledge and available information.  The results are represented as 27 

single data points.  The deterministic approach assumes that there is perfect 28 

foresight what the conditions for every hour of the year 10 years out. 29 
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A stochastic simulation complements the deterministic simulation by 1 

exploring not just a single point forecast of future conditions but rather studies a 2 

range of conditions that may exist.  A stochastic variable has a built-in mathematical 3 

mechanism that derives its value from one hour to the next, from the beginning to 4 

the end of the year.  The process will repeat many times and each time the value of 5 

the stochastic variable is different.  This enables the variable to capture more 6 

possible conditions.  The stochastic simulation runs in multiple iterations with the 7 

multiple sets of input values for each stochastic variable.  The stochastic results are 8 

presented in frequency distribution format.  In this study, the stochastic model is 9 

aligned with the deterministic model for comparison and compliment purposes.   10 

 11 

Q. Explain how the CAISO’s deterministic model was used a basis for the 12 

stochastic model. 13 

A. Inside the CAISO footprint, the stochastic model is essentially the same as the 14 

deterministic model: generation resources, load, operational constraints and internal 15 

transmission limits were modeled in the same manner.  Both models also use the 16 

same unit commitment and economic dispatch methodologies.  For details, see 17 

Appendix A, Section II.A. 18 

 19 

Q. Please describe how the CAISO’s stochastic model differs from deterministic 20 

model.  21 

A. The only significant differences between the two models are the inclusion of the 22 

stochastic variables in the stochastic model and the more limited modeling of the 23 

Western Electricity Coordinating Council (WECC) generation resources and load 24 

outside the CAISO.   25 

 26 

Q. Please describe the more limited modeling of the external zones in the 27 

stochastic model. 28 

A. The stochastic simulation model is a streamlined version of the deterministic zonal 29 

production simulation model using the Trajectory scenario assumptions.  Because 30 
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running the stochastic model requires a significant amount of time and computing 1 

power, the CAISO used a model that covered only California in detail.  Individual 2 

generation resources and load outside of the CAISO are aggregated and represented 3 

by a single external zone in the stochastic model rather than in the greater detail 4 

included in the deterministic model.  The external zone is directly connected to the 5 

CAISO through the PG&E_VALLEY, SCE and SDG&E zones and has the 6 

resources to provide the CAISO with dedicated and economic imports.  The external 7 

zone also takes the CAISO’s export when economic, subject to the CAISO zero net 8 

export limit.  This allowed the CAISO to complete the stochastic simulations more 9 

quickly, which enabled the CAISO to complete the analysis to present in this 10 

testimony.  The long run time necessary for Monte Carlo simulations is a significant 11 

challenge of stochastic modeling. 12 

 13 

Q. Explain the significance of the 500-iteration full-year hourly chronological 14 

Monte Carlo simulations produced by the CAISO’s model. 15 

A. The deterministic Trajectory scenario represents only one possible set of outcomes 16 

based on one set of assumptions whereas the stochastic model simulates 500 cases. 17 

The stochastic model uncovered more varied system conditions not observed in the 18 

deterministic model that represent the potential for more significant supply 19 

shortfalls or more significant over-generation curtailment risk than the deterministic 20 

results.  The stochastic model provides us the likelihood of outcomes based on the 21 

500 draws in the simulations using the more expanded projections of load, 22 

generation, wind generation and solar generation.  It provides the possible range of 23 

scenarios and context which can be used to evaluate the findings in the deterministic 24 

runs. The deterministic model is unable to capture the range of possible system 25 

conditions.   26 

  27 
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III. STOCHASTIC VARIABLES 1 

Q. Please describe the four stochastic variables modeled in the CAISO’s study. 2 

A. The CAISO’s model has stochastic variables for load, solar generation, wind 3 

generation and forced outages.  The load variable is the aggregated load of the 4 

CAISO, excluding the California Department of Water Resources (CDWR) pump 5 

load.  The solar variable is the aggregated solar generation of RPS solar resources, 6 

distributed generation photo-voltaic generation inside the CAISO and the RPS solar 7 

resources from out-of-state.  The wind variable is the aggregate wind generation by 8 

RPS wind resources inside the CAISO and out-of-state.  In simulations, the 9 

generated stochastic values of load, solar and wind generation are distributed to the 10 

five zones - PG&E_BAY, PG&E_VALLY, SCE, SDG&E, and the external zone by 11 

ratios calculated based on the 2024 deterministic load, solar and wind generation 12 

profiles.  Lastly, forced outages are generated for each generation resource inside 13 

the CAISO. 14 

  Of the four stochastic variables, forced outage is independent of all other 15 

variables.  Load, solar and wind generation are assumed to follow mean reversion 16 

stochastic process, which is auto-correlated.   In other words, the next hour load 17 

depends on the current hour load.  The correlations among the three are derived 18 

from the process of developing the stochastic variables.  For details please see 19 

Appendix A, Section III.G. 20 

 21 

Q. What are the factors specifically considered in developing the load, solar 22 

generation and wind generation stochastic variables.  23 

A. Load, solar generation and wind generation are assumed to follow a mean reversion 24 

stochastic process.  However each of these is defined specifically based on historical 25 

data.  The repetitive patterns as well as the volatilities of the variables decide how 26 

each of is defined in the model.  Load and solar generation have repetitive  daily 27 

patterns that are preserved in the developed stochastic variables, but wind does not.  28 

Also solar generation is more volatile than load due to its intermittency as reflect 29 

actual historical data.  Therefore, the three stochastic variables are developed 30 
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differently.  For a detailed description of the mean reversion stochastic process, 1 

please see Appendix A. 2 

 3 

Q. Please explain the CAISO’s development of the load stochastic variable. 4 

A. Load stochastic variable is developed based on the CAISO 2003-2012 historical 5 

hourly load data.  This was the most recent complete 10-year data set available 6 

when these studies were commenced. This period of available load data also 7 

matches the solar historical data obtained by the CAISO and used to develop the 8 

solar stochastic variable.  The load data does not include the CWDR pump load 9 

because the pump load depends on the hydro condition of the year, which does not 10 

vary within the year.  Instead, pump load is modeled as a deterministic input.  11 

The stochastic study assumes that the hourly historical load ratio follows a 12 

mean reversion stochastic process.  The hourly historical load ratio is calculated by 13 

dividing 2003-2012 historical load values by the 2005 load values by matching date 14 

and hour.  The 2005 load value is used as the denominator of the ratio because the 15 

2024 deterministic load profile is developed based on the 2005 historical load 16 

profile.  This approach preserves the daily load patterns in the stochastic variable.  17 

The parameters of the stochastic process are estimated through regression based on 18 

the historical load ratios.  The CAISO then generated 500-iteration stochastic values 19 

of the load ratio and multiplied these by the 2024 deterministic load profile to get 20 

the 500-iteration stochastic values of the load variable. 21 

The CAISO benchmarked the load stochastic variable with the historical 22 

data, by generating 500-iteration stochastic load values based on the 2005 load 23 

profile.  The CAISO used these 2005-load based stochastic values to compare the 24 

2003-2012 historical load data in a frequency distribution.  As can be seen in Figure 25 

1, the stochastic variable generated values match well with the actual 2003-2012 26 

historical load data.   27 

 28 

 29 

 30 
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Figure 1 Histogram of 2005-Based Stochastic Load and 2003-2012 Historical Load 1 

  2 

The stochastic variable values extend below the minimum historical load and above 3 

the maximum historical load, as one would expect from a 500-iteration simulation.  4 

These points represent the load conditions that did not happen in the historical 5 

period, but were possible.  Capturing these extreme conditions with the stochastic 6 

load variable improves the representation of possible load conditions in the 7 

simulations for 2024.  These possible outcomes, while less likely, are rooted in the 8 

historical patterns contained in the historical data set.  It is important to include the 9 

full range of possible outcomes in the study so that the Commission can make 10 

informed decisions about the determination of need and how to fill those needs.  11 

 In order to validate the generated 2024 stochastic load values, the CAISO 12 

compared the results m with the 2024 deterministic load profile using a full-sample 13 

histogram, a one-week chronological profile plot, and the distribution of the 500 14 

stochastic load values at the deterministic model peak load hour. These comparisons 15 

show the stochastic load values are relatively evenly distributed around the 16 

deterministic load profile.  This indicates that the 500 stochastic load profiles 17 

include the deterministic load. 18 
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The CAISO’s process for validating the stochastic load variable results is 1 

described in detail in Appendix A, Section III.D 2 

 3 

Q. Please explain the CAISO’s development of the solar stochastic variable. 4 

A. Solar stochastic variable is developed based on the Clean Power Research 2003-5 

2012 historical hourly “Global Horizontal Irradiance (GHI) W/m2” data of 11 sites 6 

inside the CAISO.  The CAISO used these historical irradiance values to 7 

approximate relative solar generation.  As with the deterministic model, the solar 8 

generation values in the stochastic model include distributed generation 9 

photovoltaic solar.  The CAISO developed both hourly and daily solar generation 10 

ratios and used the weighted average to develop the final 500-iteration solar 11 

generation ratio stochastic values.  This approach was based on the CAISO’s 12 

analysis of the volatilities of the historical and the 2024 deterministic solar 13 

generation profiles.   14 

  The CAISO validated the solar stochastic variable in a similar manner as the 15 

load stochastic variable.  The 2005-data based benchmarking was not conducted 16 

because the solar historical data is based on irradiance, as opposed to actual 17 

generation data.  As expected, the solar stochastic variable shows more volatility 18 

than load, but as Figure 2 below shows, the stochastic generated solar generation 19 

values are comparable to the 2024 deterministic solar generation results.  Figure 2 20 

represents the first eight stochastic solar generation profiles plotted against the 21 

deterministic solar generation profiles for July 18 and 19, 2024, the peak load days 22 

in the deterministic model. 23 

  24 



PHASE I.A. STOCHASTIC STUDY TESTIMONY OF DR. SHUCHENG LIU  
ON BEHALF OF THE  

CALIFORNIA INDEPENDENT SYSTEM OPERATOR CORPORATION 
R.13-12-010 

Page 9 of 14 
 

Figure 2 July 18-19, 2024 Deterministic and Stochastic Solar Profiles 1 

 2 

 3 

Additional information regarding the development of the solar generation stochastic 4 

variable can be found in Appendix A, Section III.E. 5 

 6 

Q. Please explain the CAISO’s development of the wind stochastic variable. 7 

A. The CAISO developed the wind stochastic variable based on the NREL 2004-2012 8 

hourly simulated wind generation data for 60 California sites based on historical 9 

weather data.  The NREL simulation assumes 30 MW of installed capacity at each 10 

site. Unlike load and solar generation, wind generation does not have a repetitive 11 

daily pattern.  The CAISO’s stochastic model assumes that the sum of 60 sites 12 

simulated wind generation follows a mean reversion stochastic process.  Similar to 13 

the solar generation variable, the CAISO developed hourly and daily stochastic 14 

processes based on the historical data and used the weighted average of the two to 15 

generate 500-iteration simulated wind generation values.  The CAISO then 16 

normalized the simulated wind generation values with the estimated seasonal long-17 

term mean and multiplied the ratios by the 2024 deterministic wind generation 18 

profile to produce the 500-iteration stochastic values for the wind variable. 19 
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  The CAISO validated the wind stochastic variable in the same manner as the 1 

solar stochastic variable.  Additional details regarding the development of validation 2 

of the wind generation stochastic variable can be found in Appendix A, Section 3 

III.F.   4 

 5 

Q. Please explain the CAISO’s development of the forced outage stochastic 6 

variable. 7 

A. The forced outages are generated using the converged Monte Carlo method, as is 8 

used in the deterministic model.  Forced outages are created independently for each 9 

generation resource in the CAISO in each iteration of the Monte Carlo simulations.  10 

The bases for the forced outage stochastic variable are the forced outage rates of the 11 

resources based on CAISO 2006-2010 actual outage data, as was used in the 12 

deterministic model.  Forced outages are independent of any other variables in the 13 

model. 14 

 15 

IV. MONTE CARLO SIMULATION AND RESULTS 16 

Q. Describe how the stochastic model was prepared to run the simulations. 17 

A. The stochastic model was first benchmarked with the deterministic model.  The 18 

2024 deterministic load, solar and wind generating profiles were used as the input of 19 

the stochastic model.  Forced outages were also fixed to that in the deterministic 20 

model.  Ran one iteration of the stochastic model with the deterministic inputs and 21 

compared the results with that of the deterministic model.  The comparison focused 22 

on capacity shortfall and renewable generation curtailment.  The stochastic model 23 

results are very close to the deterministic model results. 24 

 25 

Q. Pleases describe the Monte Carlo simulations. 26 

A. With the generated stochastic values of the load, solar and wind generation 27 

variables, 500-iteration Monte Carlo simulations were run.  Each iteration of the 28 

simulations took one set of generated values of load, solar and wind generation 29 



PHASE I.A. STOCHASTIC STUDY TESTIMONY OF DR. SHUCHENG LIU  
ON BEHALF OF THE  

CALIFORNIA INDEPENDENT SYSTEM OPERATOR CORPORATION 
R.13-12-010 

Page 11 of 14 
 

stochastic variables as input.  The 500-iteration 12-month hourly chronological 1 

simulations were split on multiple computers running in parallel.   2 

 3 

Q. Generally describe the capacity shortfall results observed in the stochastic 4 

modeling.    5 

A. The capacity shortfalls include shortfalls in load following-up, non-spinning, 6 

spinning, regulation-up and unserved energy.  The 500-iteration Monte Carlo 7 

simulations identified an average of 19.9 hours per year with a capacity shortfall.  8 

The maximum capacity shortfall observed was 16,745 MW.  In contrast, the 9 

CAISO’s deterministic model indicated a total of five hours with capacity shortfall 10 

with the maximum shortfall equal to 1,489 MW.  The differences between the 11 

stochastic and deterministic results are based on the various possible system supply 12 

and demand variations presented in the stochastic inputs.  The most frequent 13 

capacity shortfalls occurred in July from hours 18 to 20.  These results reinforce the 14 

findings of the deterministic study, which found capacity shortfalls in similar time 15 

frames.  The CAISO notes that in both the stochastic and deterministic studies, these 16 

shortfalls occurred after the peak load hour when solar generation production drops 17 

prior to the evening reduction in load.  Traditionally planning focused only on peak 18 

load hour.  With the increase in renewable generation, the traditional planning 19 

reserve margin approach focusing on peak load hour has become insufficient and 20 

outdated.  The results of the CAISO’s study confirm that planning to meet peak load 21 

hour requirements is not necessarily sufficient to maintain reliability.   22 

 23 

Q. How can the capacity shortfalls observed in the CAISO’s stochastic model be 24 

used to determine system capacity needs? 25 

A. Prior to making a determination of need, one must set a level of system reliability to 26 

be achieved.  Once the desired level of system reliability is set, the stochastic study 27 

results may be used determine whether there is a need to reach that level.  The 28 

CAISO used the 1 day-in-10 years standard to determine the system capacity needs 29 

based on the results.    30 
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 1 

Q. Explain the 1-day-in-10-years standard applied by the CAISO.  2 

A. The CAISO used the 1 day-in-10 years reliability standard to determine the amount 3 

of additional capacity needed to provide system reliability.  The 1 day-in-10 years 4 

standard is an industry standard that is widely used in determining system capacity 5 

needs.  On a more granular level, the CAISO’s application of the 1 day-in-10 years 6 

standard provides that the system must have seven or fewer hours of capacity 7 

shortfall in 10 years.1  Because the CAISO’s stochastic study results produce 500 8 

hourly year-long iterations, up to 350 hours with capacity shortfall are allowed in 9 

order to meet the reliability standard. 2  The results can be easily arranged to 10 

determine any capacity shortfalls in excess of 350 hours for the 500 years 11 

represented by the stochastic model results.  One can sort the observed capacity 12 

shortfalls by MW and determine the MW of capacity needed to eliminate all but the 13 

highest 350 hourly shortfalls.   Table 1 below presents this analysis. 14 

Table 1  Sorted Capacity Shortfalls 15 

 16 

 17 

Based on this analysis, 8,292 MW of capacity shortfall should be eliminated 18 

in order to meet the 1 day-in-10 years reliability standard.   19 

However, this analysis does not take into account any offsets from the 20 

authorized 2,315 MW Track 1 and Track 4 capacity, which are not modeled in the 21 

CAISO’s stochastic or deterministic studies.   22 

                                                 
1 See Appendix B. 
2 7 Hours/10 Years = 350 hours/500 years. 

Order # Capacity Shortfall (MW)
1 16,745
2 16,408
3 15,879

…
350 8,297
351 8,292
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 1 

Q.  How should the Commission use the stochastic study results in determining 2 

whether procurement should be authorized in this proceeding? 3 

A. The stochastic study provides context and support to interpret the deterministic 4 

study results.  This is because the stochastic model uncovers system conditions not 5 

observed in the deterministic study.  Presenting this range of system conditions 6 

allows the Commission to plan for contingencies and make procurement decisions 7 

based on its own interpretation of service level reliability criteria.  The CAISO 8 

presented the results of the 1 day-in-10 years reliability standard because it is 9 

directly applicable to the stochastic model results.  Based on the CAISO’s 10 

interpretation of the 1 day-in-10 years standard, the identified capacity need is 8,292 11 

MW, before accounting for Track 1 and Track 4 resources. The Commission should 12 

use this data to inform its decision as to whether new procurement is needed only 13 

after the CAISO conducts additional deterministic studies to identify any flexible 14 

capacity need.   15 

 16 

Q. Describe the renewable generation curtailment observed in the stochastic 17 

modeling.  18 

A. Renewable generation curtailment observed in the CAISO’s stochastic study was 19 

more than double the amounts observed in the deterministic study.  The number of 20 

hours with curtailment increased from 96 to an average of 209 hours per year, the 21 

maximum single hour curtailment jumped from 5,927 MW to 12,393 MW, and the 22 

total energy curtailed increased from 153 gigawatt-hours (GWh) to an average of 23 

407 GWh.  Table 2 summarizes the observed differences in renewable curtailment 24 

between the CAISO’s deterministic and stochastic studies. 25 

  26 
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Table 2  Summary of Renewable Curtailment 1 

 2 

 3 

  The CAISO notes that in 69 of the 209 hours with curtailment either solar or wind 4 

generation, or both, are capped at the installed capacity.  Curtailment could be 5 

higher in the stochastic study if there were no installed capacity limit or a higher 6 

limit. 7 

 8 

Q.  How should Commission used the results of the CAISO’s stochastic study in 9 

determining capacity needs in this proceeding? 10 

A. The CAISO’s stochastic study results provide context and support for the 11 

deterministic studies conducted to date.  The results reveal a more comprehensive 12 

range of possible outcomes.  Dr. Meeusen’s concurrently served testimony discusses 13 

the reliability implications of the data presented herein and the need for important 14 

policy decisions regarding the level of service reliability to be maintained.  The 15 

Commission can use the stochastic study data to make informed decisions to 16 

balance the costs of additional procurement against the appropriate level of service 17 

reliability for customers.      18 

 19 

Q. Does this conclude your testimony? 20 

A. Yes, it does. 21 

 22 

 23 

 24 

Month 1 2 3 4 5 6 7 8 9 10 11 12 Annual
500-Iteration Average

Number of Hours 10.6 12.5 40.9 61.5 34.9 15.6 2.3 0.3 3.8 5.2 8.7 12.7 209
Max Curtailment (MW) 8,303 8,178 12,393 11,022 10,244 8,808 5,529 3,937 8,045 7,379 7,240 9,436 12,393
Curtailment (GWh) 16.9 19.4 93.4 135.7 71.6 24.8 2.7 0.2 4.0 6.1 10.8 21.4 407

Deterministic 
Number of Hours 2 26 47 16 5 96
Max Curtailment (MW) 243 5,927 5,410 2,984 2,025 5,927
Curtailment (GWh) 0.5 48.4 76.7 21.7 6.2 153
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Appendix A – 
 The CAISO Stochastic Production Simulation Model and Results 

I. Introduction 

This document describes the technical details of the California Independent System Operator 
(CAISO) stochastic production simulation model and the results of the Trajectory scenario using 
the 2014 long-term procurement plan (LTPP) assumptions adopted in the Assigned 
Commissioner’s Ruling dated May 12, 2014.1  

This model was developed to evaluate the system capacity and flexibility sufficiency in order to 
integrate renewable generation to meet the California state renewable portfolio standard (RPS) 
goal.  It was based on the Trajectory scenario deterministic zonal production simulation model 
the CAISO developed for the 2014 LTPP system flexibility studies.  The model includes 
stochastic variables for generation resource forced outages, load, solar and wind generation.  For 
the stochastic model, the CAISO ran a 500-iteration Monte Carlo simulation.  Each iteration was 
a full-year hourly chronological simulation.  The stochastic model results complement the 
deterministic model results that the CAISO served on August 13, 2014.  The stochastic results 
show: 

 Significantly higher capacity shortfalls than the deterministic run; 

 Capacity shortfalls measured against the 1 day-in-10 years reliability standard; and 

 More than double the renewable curtailment in number of hours, the maximum 
curtailment (MW), and total curtailment energy (GWh) compared to the deterministic run 
results. 

II. Modeling Assumptions 

A. The Base Model 

The base of the stochastic simulation model is a streamlined version of the deterministic zonal 
production simulation model using the Trajectory scenario assumptions.  Because it takes a 
significant amount of time to run and complete a sufficient number of iterations it was necessary 
to scale down the base model to a size that allowed the Monte Carlo simulations to be completed 
in a reasonable time to present the results in this proceeding.  The deterministic model includes 
individual generation resources and load modeled throughout the Western Electricity 

                                                 
1  The study is for year 2024. 
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Coordinating Council (WECC). 2  The stochastic model only maintains a detailed representation 
of individual generation resources and load only inside the CAISO.  The remainder of the WECC 
resources and load are aggregated into a single market zone to capture all resources and loads 
located outside the CAISO.   

Inside the CAISO the stochastic model is essentially the same as the deterministic model.  There 
are four zones inside the CAISO: PG&E_BAY, PG&E_VALLEY, SCE, and SDG&E.  Both the 
stochastic and deterministic models have the same generation resources and inter-zonal 
transmission capabilities.  Both models enforce the same operational constraints, such as 
minimum up and down time, start-up and shut-down profiles, ramp rate and energy usage limit.  
As with the deterministic model, the 25% regional generation requirement for the CAISO, SCE 
and SDG&E as well as the CAISO zero net export constraint are enforced in the stochastic 
model.  The two models also share the same deterministic inputs for regulation and load-
following requirements, hydro generation and California Department of Water Resources 
(CDWR) pump load, and maintenance outage schedules. 

A single set of deterministic regulation and load following requirements are used for all the 
iterations in the Monte Carlo simulations.3  Recalculating regulation and load following 
requirements for each of the 500 iterations in the Monte Carlo simulations would take an 
inordinate amount of time and would be impossible to provide this testimony within the 
timeframe of this proceeding.  Spinning and non-spinning reserves are held at 3% of load as in 
the deterministic model.  Because load is a stochastic variable, the hourly values of spinning and 
non-spinning reserve requirements vary in each iteration. 

Hydro generation and CDWR pump load are deterministic inputs in the stochastic model based 
on 2005 actual data, as was used in the deterministic model.  Hydro generation and CDWR pump 
load depend on the hydro condition of the year.  The hydro condition is determined in the winter 
months and does not change throughout the year.   

In practice, maintenance outage schedules are planned events, unlike the stochastic variables.  
Uncertainty should not have an impact on planning maintenance outages.  Therefore 
deterministic model maintenance outage schedules are used in all the iterations of the Monte 
Carlo simulations. 

                                                 
2  For details of the CAISO 2014 LTPP deterministic model, see Dr. Liu’s initial and reply testimony at 

http://www.caiso.com/Documents/Aug13_2014_InitialTestimony_ShuchengLiu_Phase1A_LTPP_R13-12-
010.pdf and http://www.caiso.com/Documents/Oct22_2014_ReplyTestimony_ShuchengLiu_Phase1ALong-
TermProcurementPlans_R13-12-010.pdf. 

3  The load-following and regulation requirements are from the Trajectory scenario Production Cost Run 
deterministic model. 
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The stochastic model uses the exact same unit commitment and economic dispatch 
methodologies as the deterministic model.  The two models, therefore, should produce 
comparable results. 

B. The External Zone  

All generation resources and load in WECC and outside of the CAISO, are aggregated into a 
single external zone.  The external zone is connected to the CAISO directly and provides the 
CAISO with dedicated and economic imports.  It also takes CAISO exports when economic, 
subject to the export constraints.  The external zone contains the California out-of-state RPS 
resources, the CAISO non-RPS dedicated imports, the ancillary services and load following 
provided by out-of-state resources, and a “market station” for economic import and export. 

1) Transmission connections 

The external zone is connected to PG&E_VALLEY, SCE, and SDG&E zones directly.  The 
ratings of the paths are 7,800 MW, 13,502 MW, and 4,223 MW respectively, each of which are 
derived from the deterministic model.  The CAISO total net import limit is 12,594 MW, which is 
the maximum net import on July 19, 2024, the peak load day in the deterministic run.4  All 
dedicated imports, economic imports, and ancillary services and load-following provided by 
outside resources are subject to the maximum net import limit. 

The paths from the external zone to the three CAISO zones have an import wheeling rate equal 
to $11.25/MWh.  The import wheeling rate is calculated as the average of wheeling rates 
(including the CO2 cost adders) for the four major CAISO import paths in the deterministic 
model.  Table 1 summarizes the wheeling rates for the four major CAISO import paths and the 
average rate used in the stochastic model: 

Table 1  Import Wheeling Rates ($/MWh) 

 

The CAISO export wheeling rate used in the stochastic model is $9.96/MWh, as was used in the 
deterministic model. 

                                                 
4  The CAISO annual maximum net import is 12,992 MW in the Trajectory scenario deterministic run. The 

deterministic model does not have a CAISO total net import limit, but has a 14,142 MW California total net 
import limit that is shared by the CAISO, IID, LADWP, SMUD, and TIDC. 

Import Path Wheeling Rate CO2 Cost Adder Total
NW-PG&E_VALLEY 1.87 2.02 3.89
NEVP-SCE 6.81 10.12 16.93
SRP-SCE 1.97 10.12 12.09
SRP-SDG&E 1.97 10.12 12.09
Average 3.15 8.10 11.25
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2) Import from out-of-state RPS resources 

RPS solar and wind resources located outside of California are a part of the aggregated solar and 
wind stochastic variables in the model (see discussion in Section III below).  Based on its load 
and internal RPS generation, CAISO market participants own or have contracted for 31% of total 
out-of-state RPS generation.  As assumed in the deterministic model, the CAISO takes 70% of 
its share of the out-of-state RPS generation as dedicated (must-take) import.  As a result, 21.7% 
of the total out-of-state RPS generation is modeled as dedicated import to the CAISO.  The 
remainder of the out-of-state RPS generation may come into the CAISO as economic import. 

3) Non-RPS dedicated import, ancillary services and load following provided by out-of-state 
resources 

Because out-of-state non-RPS generation resources are not modeled individually in the 
stochastic model, the dedicated import from Hoover, Palo Verde and similar resources cannot be 
optimized in the Monte Carlo simulations.  In order to model hourly dedicated import values 
from the non-RPS resources in the stochastic model, the hourly deterministic model dedicated 
import profile is used as an input.  Similarly, the hourly values for ancillary services and load 
following provided by out-of-state resources in the deterministic model run are also used as 
inputs to the stochastic model. 

4) Market station for economic import and export 

The market station in the external zone represents all other generation resources and load in the 
rest of the WECC.  The market station handles the CAISO’s economic import and export.  To 
enable the economic import and export capability, a 4-block price curve was developed for the 
market station.  The CAISO derived the price curve based on the market clearing prices (MCPs) 
in the deterministic model run according to the following steps: 

 Calculate hourly average MCPs of three major import zones—NW, NEVP, and SRP—
over the course of the 8,784 hours in the deterministic run; 

 Sort the hourly average MCPs from low to high and divide into 4 equal groups of 2,196 
hours; 

 Calculate the average of MCPs of each group to get 4 prices;  

 Each block of the curve has a size about 3,149 MW, which is about one fourth of the 
12,594 MW CAISO total net import limit. The last block is extended to 15,000 MW. 

Table 2 represents the price curve for the market station using the method described above. 
When the CAISO MCP is higher than the price of the curve plus the import wheeling rate, the 
CAISO imports economically from the market station, subject to the CAISO net import limit.  
Conversely, when the CAISO MCP plus export wheeling rate is lower than the price of the first 
block of the curve, the CAISO exports economically to the market station, subject to the CAISO 
zero net export constraint. 

 



Page 5 of 30 

Table 2  Price Curve of the Market Station 

 

III. Stochastic Variables 

A. Overview of Stochastic Variables 

The stochastic variables in CAISO’s study were developed based on historical data.  The data 
represent the system conditions that actually occurred in the historical years.  To capture a more 
complete set of possible conditions stochastic variables should also capture system conditions 
that did not occur, but were possible.   

There are different methods of developing stochastic variables.  One way is to develop the 
stochastic variables as stochastic processes or independent random variables in mathematical 
formulas.  The mathematical formulas can generate an unlimited number of samples (draws) for 
Monte Carlo simulations.  The past efforts show that this approach poses a significant challenge 
in preserving the repeating daily patterns of the variables, such as load and solar generation.  As 
shown in Figure 1, load and solar generation have patterns that repeat every day with small 
variations.  Wind generation does not have such repeating pattern.   

Another way to develop stochastic variables is to simply use the scaled historical daily, monthly, 
or annual profiles for Monte Carlo simulations.  In this approach the random variations within 
the day, month, or year are lost.  Such an approach may lead to understatement of the 
uncertainties of the system.  It may especially affect the accuracy of assessing the sufficiency of 
system flexibility. 

The CAISO took a unique approach in developing the stochastic variables for this model.  The 
variables capture the variations of system conditions hour-by-hour chronologically for the whole 
year and preserve the repetitive daily patterns of the load and solar generation variables. This 
approach is discussed in detail later in this section. 

 

  

1 2 3 4
Capacity (MW) 0 -3,149 3,149-6,297 6,297-9,446 9,446-15,000
Price ($/MWh) 28.07 29.96 32 48.23
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Figure 1  Hourly Profiles of Load, Solar and Wind Generation 

 

The CAISO’s study uses four stochastic variables – forced outage, aggregated load, solar 
generation and wind generation.  The variables are intended to capture the uncertainties that 
otherwise cannot be explicitly modeled.  They do not capture long-term uncertainties such as 
load growth and installed RPS capacity, or short-term uncertainties such as day-ahead and real-
time forecast error.  The long-term load growth is taken from the CEC 2013 IEPR forecast.  RPS 
installed capacity is based on the California Public Utilities Commission (CPUC) 2014 LTPP 
RPS Calculator.  The short-term forecast errors are addressed by the calculated regulation and 
load-following requirements. 

Among the stochastic variables, load consists of CAISO total load, excluding the CDWR pump 
load.  Solar generation (including distributed generation photo-voltaic) and wind generation both 
are the aggregation of the total CAISO internal and out-of-state RPS solar and wind generation. 
The generated hourly stochastic values of load, solar and wind generation are then allocated to 
the different zones by the energy ratios of the deterministic model input profiles as provided in 
Table 3. 
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Table 3    Load, Solar and Wind Generation Allocation Ratios 

 

B. Forced outages 

Forced outages are generated for each generation resource over the whole year.  The bases for 
forced outages are the forced outage rates of the resources specified in the model input.  The 
forced outages are generated randomly and independently for each generation resource in each 
iteration.  The converged Monte Carlo method is used in generating the forced outages so that 
the percent of hours with forced outage is close to the forced outage rates of the resources.  The 
deterministic model also uses the converged Monte Carlo method for generating forced outages. 

C. Mean reversion stochastic process 

In this model the load, solar generation and wind generation variables are assumed to follow a 
mean reversion stochastic process.  

Equation (1) is a mean reversion stochastic process  

ݐܻ  ൌ െ1ݐܻ ൅ ߤሺߢ െ െ1ሻݐܻ ൅  (1) ݐߝ

where: 

 mean reversion rate – ߢ
 long-term mean value – ߤ
,௧~ܰሺ0ߝ  ሻ – time-independent random error (the drift term) with a zero mean and aߪ
constant standard deviation Normal distribution 

Equation (1) is basically a random walk with mean reversion.  The walk takes one step forward 
each time.  At each step of the walk, there is a random error, ߝ௧, that affects the direction of the 
step (the drift).  The long-term mean, ߤ, guides the random walk.  When the random walk 
departs from the long-term mean, a force, the mean reversion, pulls it back toward the mean.  
The speed of reversion depends on the value of the mean reversion rate, ߢ	ሺ൐ 0ሻ.  The larger the 
value of ߢ, the faster the reversion.  If the value of ߢ is too large it may cause overcorrection, if it 
is too small it may result in undercorrection. 

Load Solar Wind
PG&E_BAY 20.6% 1.8% 12.9%

DG PV 4.3%
PG&E_VALLEY 25.5% 18.1% 2.3%

DG PV 6.0%
SCE 44.4% 47.8% 37.1%

DG PV 6.9%
SDG&E 9.6% 4.2% 9.3%

DG PV 2.4%
Out-of-State 8.4% 38.4%

Sum 100.0% 100.0% 100.0%
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Figure 2 demonstrates the differences between two random walks based on the same random 
error values.  The blue line represents a mean reversion random walk and the red line represents 
a random walk without a mean reversion. The mean reversion walk has a long-term mean of 1.0 
and its value varies around the mean as the walk steps forward.  The walk without a mean 
reversion diverges from starting point, thereby is not the correct method for developing the 
stochastic valuables for this model. The load, solar and wind generation stochastic variables 
should vary within realistic ranges.  A diverged stochastic process does not correctly reflect the 
realities of these variables. 

Figure 2  Mean Reversion vs. Non-Mean Reversion Random Walk 

 

Load, solar and wind generation all have the autocorrelation characteristics built-in the stochastic 
process.  For example, the next hour load is a variation of the current hour load.  In other words, 
the next hour load depends on the current hour load.  It is a continuously evolving process.  Solar 
and wind generation, while having natural intermittencies, also demonstrate time dependency 
relationship for most of the time. 

Although load, solar, and wind are all assumed to follow the mean reversion stochastic process, 
each is defined differently in developing the stochastic variables.  Each is based on the overall 
consideration of their individual daily and weekly patterns (see Figure 1), the volatilities 
embedded in the historical data, data quality, etc.  This is discussed in detail later in this section. 

D. Load stochastic variable 

The load stochastic variable is developed based on the CAISO 2003-2012 historical hourly load 
data.  The data does not include CDWR pump load. 
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As discussed above, load has a repetitive daily pattern.  A generic mean reversion stochastic 
process cannot reproduce the daily pattern.  Therefore, the CAISO uses a unique approach that 
combines mean reversion stochastic load ratios and deterministic load profiles to generate 
stochastic values of the load variable.  This is done through the following steps. 

1) Align the multi-year historical data with 2024 weekly patterns. 

In addition to having a repetitive daily pattern, load also has a repetitive weekly pattern.  On 
weekends load values are usually much lower than on weekdays.  In order to calculate hourly 
load ratios, the weekly patterns of all the data must match correctly.  This study is for year 2024, 
so the weekly pattern of 2024 is used as the basis for aligning historical load data.  January 1, 
2024 is a Monday.  After the alignment, the historical data of each year, from 2003 to 2012, 
beings with a Monday. 

2) Calculate hourly load ratios. 

The hourly load ratio is defined as  

݄,݀,݉,ݕܮܴ  ൌ
݄,݀,݉,ݕܮ
݄,݀,݉,2005ܮ

 (2) 

where: 

ݕ) ݄ month ݉ day d hour ݕ ௬,௠,ௗ,୦ – load ratio of yearܮܴ ൌ 2003, 2004, 2006,… ,2012) 

 ݄ month ݉ day ݀ hour ݕ ௬,௠,ௗ,௛ – load of yearܮ

2005 load value is used as the denominator of the ratio because the 2024 deterministic load 
profile is developed based on the 2005 historical load profile. 

3) Estimate mean reversion stochastic process parameters. 

Assuming the load ratio, ܴܮ௬,௠,ௗ,୦, follows a mean reversion stochastic process  

ݐܮܴ  ൌ െ1ݐܮܴ ൅ ߤሺߢ െ െ1ሻݐܮܴ ൅  (3) ݐߝ

where, ߝ௧~ܰሺ0, 		ሻߪ

The CAISO ran a regression on the 9 years historical load ratios to estimate the parameters of the 
stochastic process by season.  Table 4 shows the estimated parameters of the load mean reversion 
stochastic process by season.5 

 

                                                 
5  Season 1 –  December to February; season 2 – March-May; season 3 – June to August; season 4 – September to 

November 
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Table 4  Estimated Parameters of the Load Stochastic Variable 

 

The estimated parameters suggest the load ratio stochastic process has a long-term mean around 
1.0.  The standard deviations, ߪ, are about 1%.  The mean reversion rate is also low.  That tells 
us that the load stochastic variable is a relatively smooth and stable process. 

4) Generate stochastic values of the load ratios. 

Generate 500 iterations (draws) full-year hourly chronological load ratio values, ܴܮ෪ଶ଴ଶସ,௠,ௗ,௛,௜ 

(݅ ൌ 1,2,⋯ ,500), using equation (3). 

5) Calculate stochastic values of the load variable. 

Multiply the 500-iteration load ratio stochastic values by the value of the 2024 deterministic load 
profile to generate the 500-iteration stochastic load values. 

݅,݄,݀,݉,෨2024ܮ  ൌ ݅,݄,݀,݉,෪2024ܮܴ ൈ ܮ
2024,݉,݀,݄

 (4) 

where: 

 ݄ ଶ଴ଶସ,௠,ௗ,௛ – 2024 deterministic load value of month ݉ day ݀ hourܮ

݅)  ݅ ෨ଶ଴ଶସ,௠,ௗ,௛,௜ – 2024 stochastic load value of month ݉ day ݀ hour ݄ iterationܮ ൌ
1,2,⋯ ,500) 

For benchmarking purposes, the CAISO also calculated 500-iteration stochastic load values 
based on the 2005 historical load profile.  That is, 

݅,݄,݀,݉,෨2005ܮ  ൌ ݅,݄,݀,݉,෪2024ܮܴ ൈ ܮ
2005,݉,݀,݄

 (5) 

 

  

            

Season 1 0.0212 1.0018 0.0105
Season 2 0.0273 1.0011 0.0146
Season 3 0.0074 0.9948 0.0117
Season 4 0.0175 1.0205 0.0153

ߢ̂ߤො̂ߪ



Page 11 of 30 

Figure 3  Histogram of 2005-Based Stochastic Load and 2003-2012 Historical Load 

  

The 2005 based stochastic load values are then benchmarked with the 2003-2012 historical load.  
Figure 3 shows the histogram comparison of the data.  “Average of 2003-2012” represents the 
frequencies calculated based on the actual observed 2003-2012 hourly load data.  The 
frequencies are then divided by 10, based on the years of observations, and plotted on the 
histogram.  Similarly, “Average of Stochastic Draws” represents the frequencies produced by the 
500-iteration hourly 2005-based stochastic load values, divided by 500.  In this way the two set 
of data are on the same scale and directly comparable. 

As shown in Figure 3,  the two set of data match significantly.  As would be expected, the load 
values from the 500-iteration stochastic draws have a wider distribution range than the range 
found in the actual 2003-2012 data.  On the low end, the stochastic values extended below 
16,000 MW, the low end of actual observed hourly loads from 2003-2012 load, to 12,000 MW.  
On high end, maximum stochastic load values stretched to 56,000 MW, approximately 6,000 
MW in excess of actual observed load from 2003-2012.  Both the high and low range stochastic 
results are low probability load conditions that did not actually happen from 2003 to 2012, but 
were possible, given the parameters of the distribution of the actual data.  Capturing these 
extreme conditions with the stochastic load variable helps to better represent the possible load 
conditions in the 2024 simulations. 

Figure 4 compares the stochastic load profiles with the deterministic load profile for the week of 
July 15, 2024, the peak load week in the deterministic model.  The stochastic load profiles are 
from the first eight of the 500 draws.  Figure 4 shows that the deterministic load profile is within 
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the distribution of the stochastic load profiles.  In other words, the deterministic load profile is 
probably one of the 500 stochastic load profiles. 

Figure 4  Week of July 15, 2024 Deterministic and Stochastic Load Profiles 

 

The stochastic load profiles are smooth and have relatively small variations, which is exactly 
what the estimated parameters indicated.  In these stochastic draw values, the peak load is not 
always on the same day as the deterministic load.  This is consistent with the observed 2003-
2012 historical load. 

Figure 5  Histogram of 2024 Deterministic and Stochastic Load 

 



Page 13 of 30 

Figure 5 is a histogram of the 2024 deterministic and stochastic load projections, which show 
that they match significantly.  The deterministic load is surrounded by the stochastic load 
distribution, which indicates that the deterministic load is well represented by the stochastic load.  
The highest stochastic load value is 66,720 MW, which is 14,577 MW higher than the 52,143 
MW highest deterministic load.  However, there is a 0.13% per year probability that on average, 
load will fall in the range of 52,143 and 66,720 MW. 

Figure 6  500-Iteration Stochastic Load at July 19, 2024 Hour 16 

 

Figure 6 shows the 500 stochastic load values at July 19, 2024, hour 16, the peak load hour in the 
deterministic model. The values are distributed in the range between 35,142 and 64,793 MW.  
The median value 52,168 MW is very close to the deterministic peak load, 52,143 MW.  This 
indicates that the deterministic load falls close to the middle of the stochastic load distribution.  
This is also supported by the information in Figure 4 and Figure 5. 

From the above comparison the stochastic load variable demonstrates that it captures the right 
volatility in the mean reversion stochastic process, covers the small probability but likely load 
conditions, and preserves the daily and weekly load patterns well. 

E. Solar stochastic variable  

Solar stochastic variable is developed based on the Clean Power Research 2003-2012 historical 
hourly “Global Horizontal Irradiance (GHI) W/m2” data.  The CAISO obtained the data through 
Solar Anywhere, which was under contract with the CPUC. 

The irradiance is used to approximate relative solar generation. There are 11 sites within the 
CAISO.  The sum of the irradiance of the 11 sites is used to develop the stochastic solar variable.  
The names of the 11 sites are listed in Table 5. 
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Table 5  Name of the Sites of Solar Historical Data 

 

Similar to load, solar generation also has a repetitive daily pattern.  The mean reversion 
stochastic solar ratios approach is used to generate the stochastic values of the solar variable.  
Unlike load stochastic variable, which uses only hourly ratios, the solar stochastic variable is 
built on both hourly and daily solar generation ratios.  This is done through the following steps. 

1) Align the multi-year historical data with the weekly patterns of 2024 

As with the load data, the historical solar data are also aligned with the weekly pattern of 2024.  
Solar data do not have a weekly pattern.  This alignment ensures that the calendar of the solar 
data match with that of the load data, which is important for enforcing the cross-correlation 
among load, solar and wind generation. 

2) Calculate hourly and daily solar ratios 

The hourly and daily solar ratios are defined as  

݄,݀,݉,ݕܪܴܵ  ൌ
݄,݀,݉,ݕܪܵ

݄,݀,݉,2005ܪܵ
 (6) 

and ܴܵݕܦ,݉,݀ ൌ
݀,݉,ݕܦܵ
݀,݉,2005ܦܵ

 (7) 

where: 

ݕ) month ݉ day ݀ hour h ݕ – solar ratio of year	௬,௠,ௗ,୦ܪܴܵ ് 2005) 

 ݄ month ݉ day ݀ hour ݕ ௬,௠,ௗ,௛ – solar irradiance of yearܪܵ

ݕ) ݀ month ݉ day ݕ – daily solar ratio of year	୷,୫,ୢܦܴܵ ് 2005) 

 ݀ month ݉ day ݕ ୷,୫,ୢ – average solar irradiance of yearܦܵ

The calculated hourly ratios show that for some hours the value of 2005 solar irradiance, 
 ଶ଴଴ହ,௠,ௗ,௛ is very small, like the hours at sunrise and sunset.  That caused very high hourlyܪܵ

solar ratio value, ܴܵܪ௬,௠,ௗ,௛, when the irradiance value of other years, ܵܪ௬,௠,ௗ,௛, is not so low.  

That may lead to larger standard deviations in parameter estimation. 

3) Estimate mean reversion stochastic process parameters 

Assume hourly and daily solar ratios follow mean reversion stochastic processes 

Site Name Site Name Site Name
Alpine Suntower_PGEVLY Ivanpah Solar_SCE SDGE
AV Solar Ranch_PGEVLY LUZ3_7_SCE SolarGen2_SDGE
CopperMountain_SCE LUZ8_9_SCE TopazSolar_SCE
HighPlains Ranch_PGEVLY Salton Sea_SDGE
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ݐܪܴܵ  ൌ െ1ݐܪܴܵ ൅ ݄ߤሺ݄ߢ െ െ1ሻݐܪܴܵ ൅ ݐߝ
݄ (8) 

and ܴܵݐܦ ൌ െ1ݐܦܴܵ ൅ ݀ߤሺ݀ߢ െ െ1ሻݐܦܴܵ ൅ ݐߝ
݀ (9) 

The CAISO ran a regression on the 9 years of historical solar ratios to estimate the parameters of 
the stochastic process by season.  The hours without sunlight are excluded from the regression.  
Table 6 shows the estimated parameters of the solar mean reversion stochastic process by season. 

Table 6  Estimated Parameters of the Solar Stochastic Variable 

 

As shown in the table, the solar stochastic processes are more volatile (having larger standard 
deviation, ߪො, values) than load.  Besides the cause discussed in step 2) above, it also reflects the 
intermittency of solar generation. 

4) Generate stochastic values of the solar ratios 

Generate 500 iterations full-year hourly chronological stochastic solar ratio values as 

 ܴ෪ܵଶ଴ଶସ,௠,ௗ,௛,௜ ൌ 0.333 ൈ ෫௬,௠,ௗ,௛,௜ܪܴܵ ൅ 0.667 ൈ  ෫௬,௠,ௗ,௜ (10)ܦܴܵ

   (݅ ൌ 1,2,⋯ ,500)  

Using weighted average of hourly and daily ratio is based on the assessment of the volatilities of 
the final stochastic solar generation values. 

5) Calculate stochastic values of the solar variable  

Multiply the 500 iterations solar ratio stochastic values by the value of the 2024 deterministic 
solar profile (including distributed generation photo-voltaic) to generate the 500 iterations 
stochastic solar values. 

 ሚܵଶ଴ଶସ,௠,ௗ,௛,௜ ൌ ܴ෪ܵଶ଴ଶସ,௠,ௗ,௛,௜ ൈ ܵଶ଴ଶସ,௠,ௗ,௛ (11) 

where: 

ܵଶ଴ଶସ,௠,ௗ,௛– 2024 deterministic solar generation value of month ݉ day ݀ hour ݄  

ሚܵଶ଴ଶସ,௠,ௗ,௛,௜ – 2024 stochastic solar value of month ݉ day ݀ hour ݄ iteration ݅ (݅ ൌ
1,2,⋯ ,500) 

Hourly Daily
1 0.1906 1.2109 0.3749 1 0.5685 1.2120 0.5112
2 0.1852 1.0292 0.2068 2 0.5313 1.0451 0.2788
3 0.4743 1.0453 0.2212 3 0.5365 1.0108 0.1141
4 0.3162 1.1358 0.3346 4 0.6151 1.0671 0.3195

ߢ̂ߤො̂ߪ ߢ̂ߤො̂ߪ
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In calculating the stochastic solar values, the 19,090 MW solar installed capacity is enforced.  It 

sets a maximum limit for the stochastic value.  That is ሚܵଶ଴ଶସ,௠,ௗ,௛,௜ ൑ 19,090 for all ݉, ݀, ݄, ݅. 

Figure 7  July 18-19, 2024 Deterministic and Stochastic Solar Profiles 

 

 Figure 7 shows the deterministic and stochastic solar profiles of July 18-19, 2024 (the peak load 
days in the deterministic model) plotted side by side. The stochastic solar profiles are also from 
the first eight of the 500 draws.  Compared to load in Figure 4 solar is more volatile.  We 
discussed the causes of the volatilities earlier in this section.  The deterministic solar profile is 
still within the distribution of the stochastic solar profiles. 

Figure 8  Histogram of 2024 Deterministic and Stochastic Solar Generation 
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As shown in Figure 8 the solar generation has flat histogram.  From 1,500 to 18,000 MW the 
generation in each segment has almost the same number of hours.  The stochastic profiles match 
well with the deterministic, with the exception above 17,500 MW.  The stochastic profiles cover 
more hours in this range.  It should be noted that on average there are over 200 hours per year the 
solar generation is capped by the 19,090 MW installed capacity.  The capacity limit certainly has 
impact on renewable generation curtailment.  If there were no installed capacity limit or a higher 
limit, the renewable generation curtailment could be more.  

F. Wind stochastic variable 

The wind stochastic variable is developed based on the NREL 2004-2012 hourly simulated wind 
generation data.  The NREL simulation assumes a 30 MW installed capacity at each site. The 
sum of the simulated generation of 60 sites within the California is used for developing the wind 
stochastic variable.  The locations of the 60 sites are listed in Table 7. 

Table 7  Locations of the 60 Sites of Wind Historical Data 

 

Unlike load and solar generation, wind generation does not have a repetitive daily pattern.  The 
ratio approach used by load and solar is not the best fit for wind.  Instead the mean reversion 
stochastic process is developed directly based on the simulated historical wind generation data.  
This is done through the following steps. 

1) Align the multi-year historical data with the weekly patterns of 2024 

The alignment is done for the same reasons as for the solar generation data. 

2) Estimate mean reversion stochastic process parameters 

Assume hourly and daily simulated wind generation follow mean reversion stochastic processes 

௧ܪܹܵ  ൌ ௧ିଵܪܹܵ ൅ ௛ߤ௛ሺߢ െ ௧ିଵሻܪܹܵ ൅ ௧ߝ
௛ (12) 

Site IDs  Latitude  Longitude Site IDs  Latitude  Longitude Site IDs  Latitude  Longitude Site IDs  Latitude  Longitude
708 32.742 -116.292 2505 34.675 -118.358 3386 35.042 -118.175 9206 37.725 -121.675
709 32.742 -116.275 2506 34.675 -118.342 3387 35.042 -118.158 9207 37.725 -121.658
710 32.742 -116.092 2507 34.675 -118.325 4558 35.342 -118.225 9208 37.725 -121.425
711 32.742 -116.075 2509 34.675 -118.292 4559 35.342 -118.208 9247 37.742 -121.692
712 32.742 -116.058 2572 34.708 -118.325 4560 35.342 -118.192 9248 37.742 -121.675
713 32.742 -115.975 2573 34.708 -118.308 4561 35.342 -118.175 9249 37.742 -121.658
714 32.742 -115.958 2574 34.708 -118.292 4562 35.342 -118.158 9250 37.742 -121.425
715 32.742 -115.942 2575 34.708 -118.275 4563 35.342 -118.142 9251 37.742 -121.408
718 32.758 -116.108 2576 34.708 -118.258 4564 35.342 -118.125 9288 37.758 -121.675
719 32.758 -116.092 3299 35.025 -118.242 4565 35.342 -118.108 9720 38.158 -121.892
720 32.758 -116.075 3381 35.042 -118.258 4566 35.342 -118.092 9721 38.158 -121.875
721 32.758 -116.058 3382 35.042 -118.242 4567 35.342 -118.075 9722 38.158 -121.858
722 32.758 -116.025 3383 35.042 -118.225 4568 35.342 -118.058 9726 38.175 -121.892
723 32.758 -115.975 3384 35.042 -118.208 4569 35.342 -118.042 9727 38.175 -121.875
724 32.758 -115.958 3385 35.042 -118.192 9205 37.725 -121.692 9728 38.175 -121.858
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and ܹܵܦ௧ ൌ ௧ିଵܦܹܵ ൅ ௗߤௗሺߢ െ ௧ିଵሻܦܹܵ ൅ ௧ߝ
ௗ (13) 

where: 

 ݄ month ݉ day ݀ hour ݕ – simulated wind generation of year	௬,௠,ௗ,୦ܪܹܵ

 ݀ month ݉ day ݕ ௬,௠,ௗ – average simulated wind generation of yearܦܹܵ

 

The CAISO ran a regression on the 9 years historical simulated wind generation data to estimate 
the parameters of the stochastic process by season.  In Table 8 are the estimated parameters of 
the wind mean reversion stochastic process by season. 

Table 8  Estimated Parameters of the Wind Stochastic Variable 

 

The estimated parameters indicate the wind mean reversion stochastic process is volatile.  The 
volatilities mostly come from the intermittency of wind generation. 

3) Generate stochastic values of the simulated wind generation 

Generate 500 iterations full-year hourly chronological stochastic simulated wind generation 
values as 

 ܵ෪ܹଶ଴ଶସ,௠,ௗ,௛,௜ ൌ 0.333 ൈ ෫௬,௠,ௗ,௛,௜ܪܹܵ ൅ 0.667 ൈ  ෫௬,௠,ௗ,௜ (14)ܦܹܵ

   (݅ ൌ 1,2,⋯ ,500)  

The weighted average of hourly and daily ratio is also based on the assessment of the volatilities 
of the final stochastic wind generation values. 

4) Calculate stochastic values of the wind variable  

In calculating the stochastic value of wind variable, the 500 iterations stochastic values of the 
simulated wind generation are normalized by dividing the estimated long-term mean of the 
season. This normalization is done to ensure that the mean of the stochastic wind values align 
with the mean of the deterministic wind profile. The normalized stochastic values of simulated 
wind generation are then multiplied by the value of the 2024 deterministic wind profile to 
generate the 500 iterations stochastic wind values. That is, 

 ෩ܹଶ଴ଶସ,௠,ௗ,௛,௜ ൌ
ܵ෪ܹଶ଴ଶସ,௠,ௗ,௛,௜

௦ߤ̂
ൈ ଶܹ଴ଶସ,௠,ௗ,௛ (15) 

Hourly Daily
Season 1 0.0224 342.88 65.50 Season 1 0.5030 343.88 233.41
Season 2 0.0286 576.38 80.33 Season 2 0.5123 576.90 227.03
Season 3 0.0309 580.59 86.18 Season 3 0.3124 581.35 166.91
Season 4 0.0238 364.69 68.35 Season 4 0.4730 363.42 217.69

ߢ̂ߤො̂ߪ ߢ̂ߤො̂ߪ
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where: 

ଶܹ଴ଶସ,௠,ௗ,୦ – 2024 deterministic wind generation value of month ݉ day ݀ hour ݄  

ݏ) ݏ ௦ – estimated long-term mean value of seasonߤ̂ ൌ 1,2,3,4) 

(݅ ൌ 1,2,⋯ ,500) 

The stochastic wind generation values are also capped the 10,728 MW wind installed capacity.   

Figure 9  July 18-19, 2024 Deterministic and Stochastic Wind Profiles 

 

 

Figure 9 shows the deterministic and stochastic wind profiles of July 18-19, 2024. The stochastic 
solar profiles are also from the first eight of the 500 draws.  The stochastic wind profiles display 
proper variations around the deterministic profiles. 
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Figure 10  Histogram of 2024 Deterministic and Stochastic Wind Generation 

 

As shown in Figure 10, the wind generation is distributed toward the low end and concentrated 
in the range between 5 to 35% of installed capacity.  The deterministic profile stretches to the 
high end, with maximum generation of 8,511 MW. The frequency of wind output diminishes 
quickly as the output approaches the maximum installed capacity level. The stochastic profiles 
reach out to the installed capacity limit, 10,728 MW.  They have higher probability in the high 
end than the deterministic profile.  On average, there are 53 hours per year the wind generation 
will reach the cap set by the installed capacity. 

G. Correlations 

Forced outages are independent of all other stochastic variables.  There is no correlation with 
other variables.  

Load, solar and wind generation stochastic variables are developed based on mean reversion 
stochastic process.  The stochastic process is auto-correlated.  

Load, solar and wind generation stochastic profiles are all variations of their 2024 deterministic 
profiles.  That can be seen from equation (4), (11), and (15).  The cross-correlations among the 
deterministic load, solar and wind generation profiles are reflected in the stochastic load, solar 
and wind generation profiles.  Therefore there is no need to apply additional cross-correlations.   

In Table 9 are the correlation matrixes calculated by season based on the 2024 deterministic load, 
solar and wind generation profiles.  Load and solar are moderately positively correlated in season 
2, 3, and 4.  Wind is uncorrelated with load and solar.  

Table 9  Correlation Matrixes Calculated Based on the 2024 Deterministic Profiles 
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IV. Monte Carlo Simulations 

In preparing for the Monte Carlo simulations, the stochastic model was first benchmarked with 
the deterministic model.  To do so, the CAISO ran the stochastic model using the 2024 
deterministic load, solar and wind generating profiles as inputs, and using the forced outages 
fixed to the forced outages used in the deterministic model.  The CAISO ran one iteration of the 
stochastic model with these deterministic inputs and compared the results with that of the 
deterministic model, focusing on the capacity shortfall and renewable generation curtailment.  
The stochastic model results are very close to the deterministic model results. 

The Monte Carlo simulations are 500 iterations of full-year hourly chronological simulations.  In 
order to reduce run time, the simulations were spread onto multiple computers running in parallel.  
The 500-iteration stochastic values of load, solar and wind generation were generated prior to the 
simulation so that the inputs on all the computers are consistent.  Forced outage schedules were 
generated randomly during the simulation.  Seeds for generating the random forced outages were 
set up such that the forced outage schedules are unique in each iteration of the Monte Carlo 
simulations.  Using seed control also ensures that the results can be replicated in re-run of the 
model. 

V. Simulation Results 

The stochastic model generated significantly more information than the deterministic model.  To 
manage simulation times and to concentrate on answering the key questions, the simulation 
reported only the capacity shortfall and renewable generation curtailment by hour and by 
iteration.   

Based on the results histograms were created to compare the stochastic results with the 
deterministic results.  The stochastic results were also measured against the 1 day-in-10 years 
reliability standard. 

A. Capacity shortfall  

In the deterministic model run there are 5 hours with capacity shortfall, all in July 2024.  The 
maximum shortfall is 1,489 MW.  In the stochastic model Monte Carlo simulations in average 
there are 19.9 hours with capacity shortfall.  The capacity shortfall increased significantly, with 
the maximum shortfall of 16,745 MW.   

Season Load Solar Wind Season Load Solar Wind
1 Load 1 3 1

Solar 0.2935 1 0.4445 1
Wind -0.0695 -0.0129 1 -0.0750 -0.1940 1

2 Load 1 4 1
Solar 0.4774 1 0.4320 1
Wind 0.0034 -0.0722 1 -0.1185 -0.0823 1
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Table 10 compares the monthly capacity shortfall results of the stochastic and deterministic 
model runs.  In the “500 Iterations Average” section the “Number of Hours” and “Shortfall 
(GWh)” are average per iteration.  “Max Shortfall (MW)” is the maximum shortfall for all 
iterations in a month.  As shown in the table, the 500-iteration average annual number of hours 
with capacity shortfall almost quadrupled.  The stochastic total shortfall (GWh) is more than 15 
times higher than the deterministic run.  While the expected and maximum shortfalls are shown 
in Table 10, the entire distribution is provided in Figure 11 below.  Any decision about need for 
capacity should be made based on the distributional results.  The numbers in Table 10  are 
intended for comparison purpose only. 

Table 10  Summary of the Stochastic and Deterministic Capacity Shortfall  

 

 

The frequency distributions of the capacity shortfall are plotted in Figure 11.6  The stochastic 
model yields a much wider range of potential system conditions, including instances with low 
supply or high load.  11.6 out of the total 19.9 hours per year have capacity shortfalls higher than 
the 1,489 MW deterministic run maximum shortfall.  In total, only one hour of the 500-iteration 
simulations with a capacity shortfall had solar generation capped at the installed capacity.  The 
installed capacity limit does not have much impact on the volume and frequency of capacity 
shortfall.  Wind generation never reaches the cap during the hours with capacity shortfall. 

  

                                                 
6  “Average of 500 Iterations” is the frequencies of all 500-iteration hourly capacity shortfall values divided by 500. 

Month 5 6 7 8 9 10 11 Annual
500-Iteration Average

Number of Hours 0.0 0.3 16.7 2.5 0.3 0.0 0.0 19.9
Max Shortfall (MW) 0.12 6,462 16,745 9,543 5,164 3,555 1,460 16,745
Shortfall (GWh) 0.00 0.43 46.34 4.34 0.46 0.02 0.01 51.60

Deterministic 
Number of Hours 5 5
Max Shortfall (MW) 1,489 1,489
Shortfall (GWh) 3.22 3.20
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Figure 11  Histogram of Deterministic and Stochastic Capacity Shortfall 

 

Table 11 shows the frequencies of capacity shortfalls by month and by hour in the stochastic and 
deterministic model runs.  In the deterministic run capacity shortfalls occur only in July.  The 
stochastic model run has capacity shortfalls from May to November, but primarily in July and 
August.  The most frequent capacity shortfalls occur in July, from hour 18 to 21, roughly the 
same hours capacity shortfalls were found in the deterministic run.  The CAISO notes that these 
shortfalls occur after the peak load hour.  The deterministic model results showed the drop-off of 
solar generation is faster than the load during these hours.  The stochastic model simulation 
results confirmed that finding. 
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Table 11  Frequency of Capacity Shortfall by Month and Hour of Day 

 

The CAISO measured the stochastic simulation results against the 1 day-in-10 years reliability 
standard to determine if the system has sufficient installed capacity to meet load.  The 1 day-in-
10 years standard was originally developed based on daily peak load.  To apply this standard to 
hourly simulations, additional studies were conducted to find the equivalent standard.  The 
CAISO used the equivalent of 7 hours-in-10 years, or 0.7 hours-in-1 year in order to determine 
the capacity shortfalls to be eliminated based on this reliability standard.7  Using this standard 
and the hourly by iteration Monte Carlo simulation results, it is easy to find the value of capacity 
shortfall that needs to be eliminated in order to meet the reliability standard. 

In the 500-iteration full-year hourly Monte Carlo simulation, each iteration represents one 

year.  As a result, the CAISO produced Monte Carlo simulations represent a total of 500 

years.  To meet the reliability standard referenced above, capacity shortfalls are allowed in 

0.7 hours per year.  Because the CAISO’s Monte Carlo results produce 500 years of data, 

the total hours of allowable capacity shortfall are equal to 0.7 x 500 = 350 hours.  As a 

result, the 351st largest shortfall must be identified and eliminated to meet this reliability 

standard. The hourly capacity shortfall can be sorted from high to low to find the 351st 

largest shortfall and thereby determine the value of capacity needed to eliminate all by the 

350 greatest hours of shortfall produced by the simulations.   

                                                 
7  See Appendix B – “Probability Fundamentals and Models in Generation and Bulk System Reliability Evaluation,” 

Roy Billinton, NERC Workshop, October 16-18, 2013, Mesa, Arizona 

Stochastic - 500 Iterations Average Deterministic

Hour of Day/Month 5 6 7 8 9 10 11 7
11 0.006
12 0.018
13 0.058 0.002
14 0.220 0.004
15 0.460 0.014
16 0.956 0.060 0.002
17 0.026 1.840 0.262 0.018
18 0.002 0.048 3.054 0.758 0.104 0.004 0.012 2
19 0.098 3.904 0.648 0.054 0.004 0.010 2
20 0.034 2.320 0.334 0.086 0.018 0.002 1
21 0.008 0.034 2.260 0.342 0.052 0.002
22 0.018 1.336 0.074
23 0.254 0.012
24 0.038

Sum 0.010 0.258 16.724 2.510 0.316 0.028 0.024 5
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Table 12  shows the sorted capacity shortfalls from the 500-iteration Monte Carlo simulations.  
The 351st largest shortfall is 8,292 MW.  8,292 MW of capacity shortfall must be eliminated to 
meet the 1 day-in-10 years reliability standard. 

 

Table 12  Sorted Capacity Shortfalls from Monte Carlo Simulations 

   

There are other interpretations of the 1 day-in-10 years standard.  The capacity shortfalls 
reported in the Table 10, Table 11, and Table 12 include deficiencies in load following-up, non-
spinning, spinning, regulation-up and unserved energy.  Some parties suggest reviewing capacity 
shortfalls corresponding to the CAISO staged emergencies.  According to the CAISO operating 
procedures, Stage-1 emergency will declared if operating reserves fall below 7% of load.8  In this 
study this is equivalent to a shortfall in non-spinning, spinning, regulation-up or unserved energy.  
Similarly a Stage-3 emergency will be declared if the operating reserves fall below 3% of load.  
In this study, a Stage-3 emergency is equivalent to a shortfall in spinning, regulation-up, or 
unserved energy.   

As shown in Figure 5, the stochastic load reached values in excess of 60,000 MW based on the 
characteristics of the stochastic load variable.  The CAISO conducted additional analysis to 
determine the impact these outlier load events had on capacity shortfalls.  To do so, the CAISO 
analyzed the results with maximum stochastic load limit set at the California Energy 
Commission’s (CEC’s) projected 1-in-10 peak load forecast for 2024, approximately 58,000 
MW.9  For hours with a capacity shortfall, if the stochastic load value was higher than the limit, 
the amount in excess of the limit was reduced from the shortfall.   

Table 1513 provides a comparison of the total, Stage-1, and Stage-3 capacity shortfalls to be 
eliminated to meet the standard with different interpretations, with and without the 58,000 MW 
maximum load limit.   

 

                                                 
8  The CAISO Emergency Fact Sheet at http://www.caiso.com/Documents/EmergencyFactSheet.pdf 
9  58,000 MW approximates the CEC 2013 IEPR High Load (1-in-10) CAISO coincident peak load forecast with 

AAEE adjustment. 

Order # Capacity Shortfall (MW)
1 16,745
2 16,408
3 15,879

…
350 8,297
351 8,292
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Table 13  Capacity Shortfalls Based on Different Reliability Standards10 

 

The stochastic model does not include 2,315 MW of Track 1 and Track 4 capacity that the CPUC 
has authorized.  Even assuming that 2,315 MW is “perfect” capacity, a capacity shortfall persists 
based on the 1-day-in-10 years standard, according to the results in Table 13. 

Table 14 provides a different view of the capacity shortfall results to help understand the high-
end tail of the capacity shortfall distribution.  It sets another reference framework for 
determining the need for capacity.  Table 14 represents the total, Stage-1 and Stage-3 capacity 
shortfalls, with and without the 58,000 MW maximum load limit, at 100, 97.5, 95, 90, and 75th 
percentile values.  As the results indicate, the capacity shortfalls above 9,000 MW are small 
probability events.  The capacity shortfalls need to be eliminated to meet the 0.7 hours-in-1 year 
reliability standard in Table 13 fall in the range of 97.5 and 90th percentile values of the capacity 
shortfalls. 

Table 14  Capacity Shortfall by Percentile Values 

 

B. Renewable generation curtailment 

Renewable generation curtailment is unlimited in both the deterministic and stochastic models.  
The curtailment may mask need for flexibility when a limit on renewable generation curtailment 

                                                 
10  0.1 days-in-1 year standard is an interpretation of the 1 day-in-10 years, which is not the same as the 1 event-in-

10 years standard. 

Reliability Standard (hours-in-1 year) 0.1 0.7 2.4
Without Maximum Load Limit

Shortfall (MW) 11,822 8,292 5,414
Stage-1 Shortfall (MW) 10,500 6,930 4,050
Stage-3 Shortfall (MW) 9,145 5,521 2,690

With 58,000 MW Maximum Load Limit
Shortfall (MW) 10,635 7,660 5,158
Stage-1 Shortfall (MW) 9,276 6,370 3,811
Stage-3 Shortfall (MW) 7,948 5,023 2,470

Percentile 100 97.5 95 90 75
Without Maximum Load Limit

Shortfall (MW) 16,745 8,924 7,465 5,861 3,782
Stage-1 Shortfall (MW) 15,380 8,529 7,214 5,595 3,534
Stage-3 Shortfall (MW) 14,000 8,087 6,608 5,202 3,095

With 58,000 MW Maximum Load Limit
Shortfall (MW) 13,150 8,349 6,991 5,589 3,646
Stage-1 Shortfall (MW) 11,820 7,865 6,730 5,365 3,365
Stage-3 Shortfall (MW) 10,405 7,075 6,138 4,810 2,955
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is established.  It is therefore important to understand how much renewable generation is 
curtailed, how frequently curtailment occurs and at what time it is likely to occur.  The next step 
in this process will be to understand the impact of curtailment on system flexibility need. 

Table 15 compares the monthly renewable generation curtailment results of the deterministic and 
stochastic model runs.  In the “500-Iteration Average” section the “Number of Hours” and 
“Curtailment (GWh)” are average per iteration.  “Max Curtailment (MW)” is the maximum 
shortfall of all iterations of the month.  The number of hours, maximum curtailment, and 
curtailment are more than doubled from the deterministic results.  The CAISO also notes that in 
the 500-iteration average 69 of the 29 hours of curtailment have solar generation, wind 
generation or both capped at installed capacity.  The curtailment could be higher if there was no 
installed capacity limit or a higher limit. 

Table 15  Summary of the Stochastic and Deterministic Renewable Curtailment  

 

Figure 12 compares the distributions of the deterministic and stochastic model results of 
renewable generation curtailments.  In the stochastic model simulations the renewable generation 
curtailment is more frequent and has a much higher single-hour curtailment volume. 
  

Month 1 2 3 4 5 6 7 8 9 10 11 12 Annual
500-Iteration Average

Number of Hours 10.6 12.5 40.9 61.5 34.9 15.6 2.3 0.3 3.8 5.2 8.7 12.7 209
Max Curtailment (MW) 8,303 8,178 12,393 11,022 10,244 8,808 5,529 3,937 8,045 7,379 7,240 9,436 12,393
Curtailment (GWh) 16.9 19.4 93.4 135.7 71.6 24.8 2.7 0.2 4.0 6.1 10.8 21.4 407

Deterministic 
Number of Hours 2 26 47 16 5 96
Max Curtailment (MW) 243 5,927 5,410 2,984 2,025 5,927
Curtailment (GWh) 0.5 48.4 76.7 21.7 6.2 153
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Figure 12  Histogram of Deterministic and Stochastic Renewable Curtailment 

 

Table 16 shows the frequencies of renewable generation curtailment by month and by hour in the 
stochastic and deterministic model simulations.  In the deterministic run renewable curtailments 
occur between February and June.  The stochastic model simulations show curtailment every 
month in the year.  In both models the highest level of curtailments occur in March and April and 
in hours 10 to 15.   

Table 16  Frequency of Renewable Curtailment by Month and Hour of Day 

 

 

Stochastic - 500 Iterations Average Deterministic

Hour of Day/Month 1 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6
1 0.002
2 0.002 0.002
3 0.002 0.004
4 0.004
5 0.002 0.002
6 0.002 0.002
7 0.016 0.024
8 0.100 0.352 0.746 0.296 0.054 0.020 1 1
9 0.002 0.126 2.102 4.430 3.790 1.502 0.382 0.028 0.368 0.216 0.066 0.038 3 5 2

10 0.604 0.838 4.986 8.076 5.832 2.422 0.530 0.050 1.076 0.676 1.074 1.080 3 8 3 1
11 1.394 1.550 6.166 9.584 5.900 2.698 0.462 0.092 0.676 0.726 1.452 1.872 5 10 4 1
12 1.954 2.190 6.746 10.172 5.564 2.690 0.380 0.058 0.542 0.930 1.864 2.454 1 7 10 3 1
13 2.376 2.648 6.990 10.022 5.352 2.558 0.300 0.044 0.482 1.134 2.052 2.936 1 4 7 2 1
14 2.160 2.536 6.514 8.942 4.142 1.950 0.126 0.018 0.414 0.964 1.524 2.658 2 6 2 1
15 1.600 1.846 5.016 7.116 2.640 1.108 0.016 0.002 0.212 0.478 0.654 1.538 1
16 0.500 0.722 2.104 2.722 0.888 0.304 0.038 0.064 0.014 0.114
17 0.148 0.078 0.036 0.026 0.002

Sum 10.6 12.5 40.9 61.5 34.9 15.6 2.3 0.3 3.8 5.2 8.7 12.7 2 26 47 16 5
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C. Stability of the results 

Run time is the obstacle to achieving a larger number of iterations in the Monte Carlo simulation.  
To understand the stability of the simulation results, a summary of the simulation results with 
different numbers of iterations is presented in Table 17.  As shown in the table the results 
become relatively stable starting from 300 iterations.  The maximum capacity shortfall has a 
jump from 450 to 500 iterations.  That is an indication that 500 iterations are may not be 
sufficient.  Running more iterations would increase capacity shortfall and renewable generation 
curtailment slightly, but not significantly.   

Table 17  Simulation Results with Different Number of Iterations 

 

VI. Summary 

A. Findings from the simulations 

1) The stochastic model run identified a need for capacity based on the 1-day-in-10 years 
reliability standard. 

2) Renewable generation curtailments in the stochastic model run are more than double those 
found in the deterministic model run.   

3) Renewable curtailment was affected by the installed capacity limit.  In average, 70 out of the 
210 hours per year with curtailment have either solar generation, wind generation, or both, 
capped by installed capacity.  Renewable curtailment could be higher if there were no 
installed capacity limit or a higher limit. 

4) In some of the iterations the 33% RPS goal may not be met even with no curtailment.  That is 
due to the variations of load, solar and wind generation.  Iterations in which solar or wind 
generation is capped by installed capacity are more likely to not meet the 33% RPS goal.   

5) The deterministic Trajectory scenario is a relatively mild case compared to the 500 cases the 
stochastic model simulated.  It does not have a high level of capacity shortfall or renewable 
generation curtailment.  The stochastic model uncovered more extreme system conditions 

Number of Iterations 100 150 200 250 300 350 400 450 500
All-Iteration Average - Capacity Shortfall

Number of Hours 21.7 20.5 20.3 20.1 19.8 19.6 19.5 19.4 19.9
Shortfall (GWh) 56.0 52.8 51.8 50.6 49.6 49.6 49.2 49.4 51.6

All-Iteration Average - Curtailment
Number of Hours 207.8 210.9 208.2 207.3 208.4 208.3 209.0 209.3 208.9
Curtailment (GWh) 400.8 414.6 408.2 405.7 408.9 407.1 408.6 408.0 406.9

All-Iteration Maximum
Shortfall (MW) 15,301 15,301 15,301 15,879 15,879 15,879 15,879 15,879 16,745
Curtailment (MW) 10,805 11,174 11,174 11,174 11,174 11,174 12,393 12,393 12,393

Capacity Shortfall To Be Eliminated To Meet 1 day-in-10 years Standard
Shortfall (MW) 8,322 8,318 8,292 8,212 8,005 8,005 7,948 8,093 8,292
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that have either significant supply shortfalls or significant over-generation.  These system 
conditions are not captured by the deterministic model. 

6) The stochastic results align well with the deterministic results through benchmarking the 
model and through developing the stochastic variables that have the deterministic input 
variable distributions surrounded by the stochastic input variable distributions.  The results of 
the two models support each other. 

B. Advantages of the modeling approach 

1) The stochastic model is almost identical to the deterministic model that is familiar to the 
LTPP parties.  

2) The approach using mean reversion stochastic process and deterministic input profiles to 
generate stochastic variables preserves the daily patterns of load and solar generation and 
their volatilities.  It also captures the intra-day volatilities. 

3) The stochastic model has auto-correlation and cross-correlation embedded in the stochastic 
variables.  There is no need to apply additional correlation. 

4) The stochastic variables capture not only the normal system conditions, but also the extreme 
conditions that did not happen in the historical data set, but were possible.  

5) Any number of independent samples (draws) can be generated to meet the need of Monte 
Carlo simulations. 

6) Full-year hourly chronological sampling aligns the stochastic variables values with other 
deterministic input, such as the generation profiles for run-of-river hydro, CDWR pump load, 
maintenance outage schedules, etc.  It ensures the model produces results consistent with that 
of the deterministic model. 

7) The full-year hourly chronological Monte Carlo simulations capture every occurrence of 
capacity shortfall and renewable curtailment. There is no need to approximate results of some 
time periods of the year with that of other periods.  

8) The full-year hourly iteration simulation results can be easily processed to measure against 
the 1 day-in-10 years reliability standard and to answer different questions about the 
sufficiency of system capacity and flexibility for renewable integration. 

 



 
 
 
 
 
 
 
 

APPENDIX B 
 

Probability Fundamentals & Models in Generation & Bulk System Reliability Evaluation 
Roy Billinton 

Power System Research Group 
University of Saskatchewan 

 
















