
Local Capacity Requirements (LCR) for Year 2009 Study Results for the Big Creek/Ventura and LA Basin Areas

LCR Stakeholder Meeting, April 10th, 2008, Folsom CA

Yi Zhang Regional Transmission Engineer Department of Planning and Infrastructure Development California Independent System Operator (CAISO)

Changes since last Stakeholder meeting

Big Creek/Ventura:

- Change the Antelope-Pardee sub-area need into second worst for BC/Ventura. Update QF units in Ventura.
- ATP (Antelope Transmission Project) Segments 1, 2 and 3 modeled. (Includes the opening of the existing Antelope-Vincent and Antelope-Mesa 230 kV lines)

LA Basin:

- New sub-area El Nido
- Change Barre LCR in order to correctly account for the NQC available.

Table of Contents

Big Creek/Ventura LCR Study

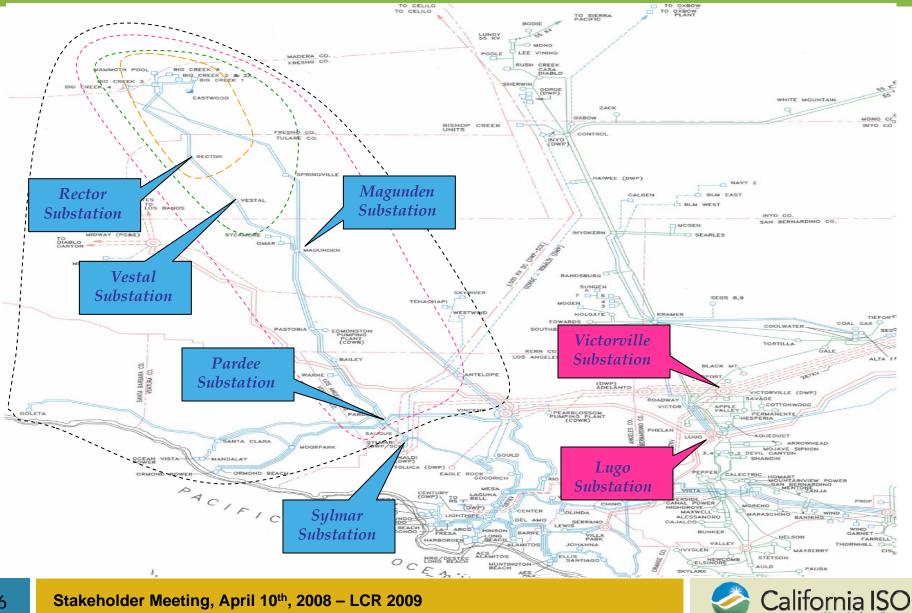
- Rector sub-area
- Vestal sub-area
- Big Creek Ventura
 - Antelope Vincent
 - Sylmar Pardee
- LA Basin LCR Study
 - El Nido sub-area
 - Barre sub-area
 - LA Basin

Big Creek/Ventura Boundary Transmission Lines

- Vincent-Antelope #1 230 kV Line (out of service)
- Vincent-Antelope #2 230 kV Line (new)
- Mesa-Antelope 230 kV Line (out of service)
- Sylmar-Pardee #1 230 kV Line
- Sylmar-Pardee #2 230 kV Line
- Eagle Rock-Pardee #1 230 kV Line
- Vincent-Pardee 230 kV Line
- Vincent-Santa Clara 230 kV Line

Big Creek/Ventura Area 2009 Load & Resources

Load


Load	Pump Load	Transmission Losses	Total
(MW)	(MW)	(MVV)	(MW)
4415	405	151	4971

Available Generation

	QF/Wind	Muni	Nuclear	Market	Max. Qualifying Capacity
	(MVV)	(MW)	(MVV)	(MW)	(MW)
Available Gen	909	22	0	4201	5132

Big Creek/Ventura Area

Stakeholder Meeting, April 10th, 2008 – LCR 2009

Rector Sub-area LCR Study

- Most critical contingency:
 - The loss of one of the Vestal-Rector 230kV lines followed by the loss of Eastwood generation
- Limiting components:
 - Thermally overload the remaining Vestal-Rector 230 kV line.
- <u>LCR:</u>
 - 603 MW (includes 15 MW QF/Wind generation)

Vestal Sub-area LCR Study

- Most critical contingency:
 - The loss of one of the Magunden-Vestal 230kV lines followed by the loss of Eastwood generation
- Limiting components:
 - Thermally overload the remaining Magunden-Vestal 230 kV line.
- <u>LCR:</u>

8

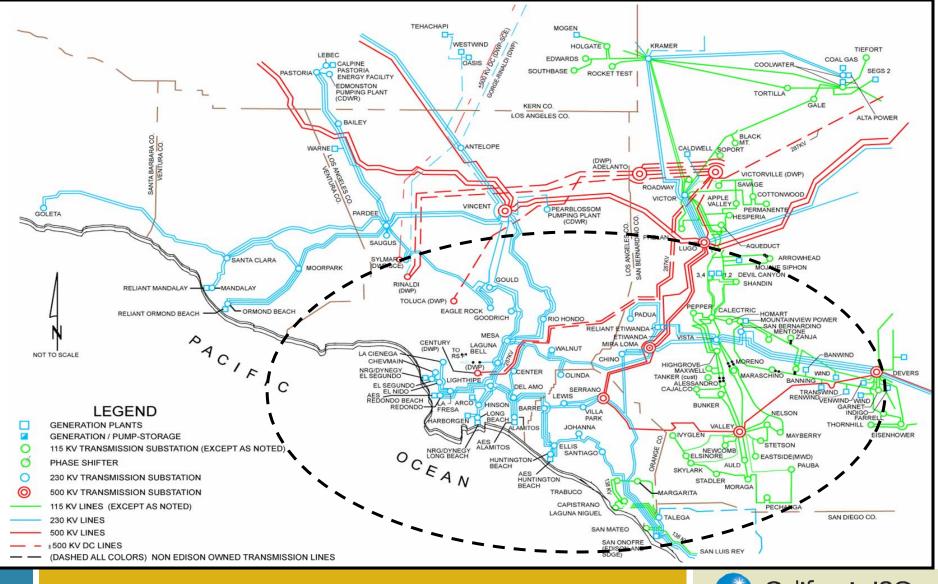
733 MW (includes 122 MW of QF/Wind generation)

Big Creek/Ventura Area LCR Study (Worst constraint)

- Category B LCR:
 - Most critical contingency:
 - The loss of Ormond Beach #2 unit followed by the loss of Sylmar-Pardee #1 or #2 230 kV line
 - Limiting components:
 - Thermally overload the remaining Sylmar-Pardee #1 or #2 230 kV line (emergency rating 1195MVA/3000 Amps modeled in the base case).
 - LCR:
 - 3178 MW (includes 836 MW of QF, 22 MW of Muni and 73 MW of wind generation)
- Category C LCR:
 - Second Most critical contingency:
 - The loss of Lugo-Victorville 500 kV followed by the loss of Sylmar-Pardee #1 or #2 230 kV line
 - Limiting components:
 - Thermally overload the remaining Sylmar-Pardee #1 or #2 230 kV line (emergency rating 1195MVA/3000 Amps modeled in the base case).
 - LCR:

9

3136 MW (includes 836 MW of QF, 22 MW of Muni and 73 MW of wind generation)


Changes since the 2008 LCR study

Total Big Creek/Ventura LCR has decreased

- Load forecast is up by 26 MW
- Detailed sub-area analysis has been presented
- One new peaker modeled in the area
- New project Antelope Transmission Project (New Segments 1, 2 and 3 plus the opening of the existing Antelope-Vincent and Antelope-Mesa 230 kV lines) has reduced the LCR
- Overall the LCR has decreased by 480 MW

LA Basin Area

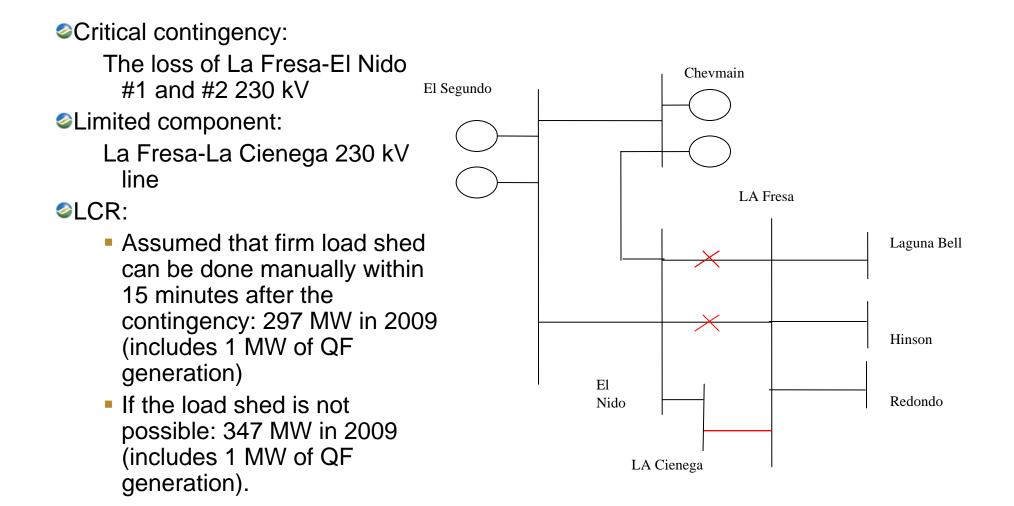
Stakeholder Meeting, April 10th, 2008 – LCR 2009

LA Basin Area Boundary Transmission Lines

- San Onofre San Luis Rey #1, #2, & #3 230 kV Lines
- San Onofre Talega #1 & #2 230 kV Lines
- Lugo Mira Loma #1, #2 & #3 500 kV Lines
- Sylmar Eagle Rock 230 kV Line
- Sylmar Gould 230 kV Line
- Vincent Mesa Cal 230 kV Line
- Antelope Mesa Cal 230 kV Line
- Vincent Rio Hondo #1 & #2 230 kV Lines
- Eagle Rock Pardee 230 kV Line
- Devers Palo Verde 500 kV Line
- Devers Coachelv 230 kV Line
- Mirage Ramon 230 kV Line
- Mirage Julian Hinds 230 kV Line

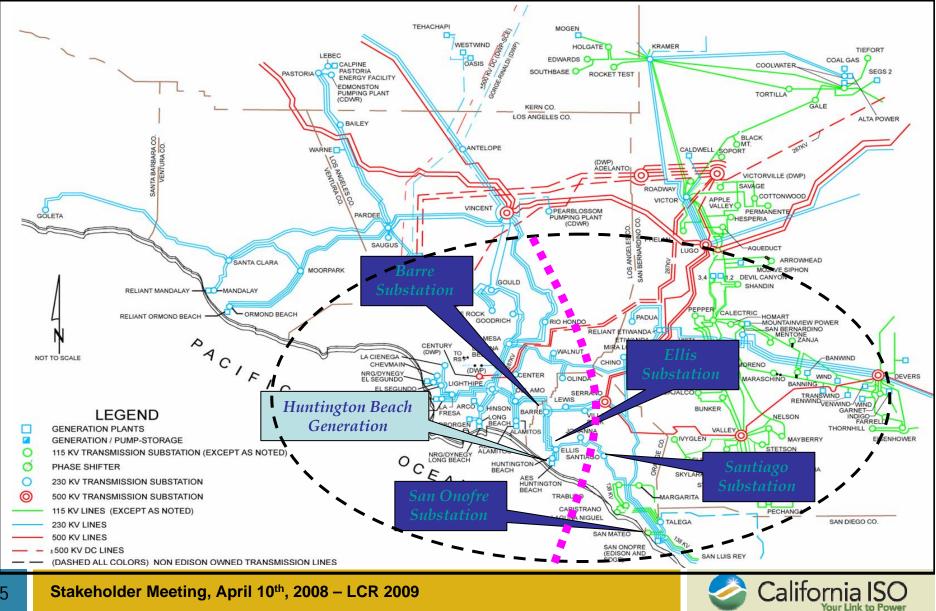
LA Basin Area 2009 Load & Resources

Load


Load	Pump Load	Transmission Losses	Total
(MVV)	(MVV)	(MVV)	(MW)
19612	22	202	19836

Available Generation

	QF/Wind	Muni	Nuclear	Market	Max. Qualifying
	(MW)	(MW)	(MW)	(MW)	Capacity (MW)
Available Gen	908	788	2246	8222	12164



El Nido Sub-area

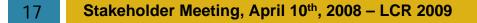
Barre Sub-area

Barre Sub-area LCR Study

- Most critical contingency:
 - The loss of the Ellis-Barre 230kV line followed by the double line outage of Songs-Santiago 230kV lines
- Limiting components:
 - Voltage collapse in the Barre sub-area
- LCR:
 - 4173 MW (includes 491 MW of QF/Wind, 383 MW of Muni and 0 MW of nuclear generation)

LA Basin LCR Study

Most Critical Contingency:


 The loss of one of the SONGS units, followed by the loss of Palo Verde-Devers 500 kV line

Limiting Components:

 South of Lugo operating rating (6400 MW with new Rancho Vista 500kV substation)

≦ <u>LCR:</u>

 10225 MW (includes 908 MW of QF/Wind, 788 MW of Muni and 2246 MW of nuclear generation)

Changes since the 2008 LCR study

Total LA Basin LCR has slightly increased

- Load forecast is up by 188 MW
- New sub-area analysis El Nido presented
- Two new peakers modeled in the area
- New project Rancho Vista 500 kV Substation
- Voltage collapse in the Barre area (a non-linear problem) has increased substantially (about 1000 MW) for a rather small change in load and as a result resources in that sub-area need to be on-line when the LA Basin calculation is done. They displace some resources that would otherwise be much more effective to the overall problem the South of Lugo constraint
- Overall the LCR has increased by 95 MW

Stakeholder Comments

Your comments and questions are welcome

For written comments, please send to: <u>RegionalTransmission@caiso.com</u>

