

Flexible Capacity Requirements for 2021 through 2023

Clyde Loutan - Principal, Renewable Energy Integration Jessica Taheri – Energy Meteorologist

January 28, 2020

What's the purpose of this call?

- Discuss the criteria, methodology, and assumptions used in calculating monthly flexible capacity requirement.
- Calculate requirements for all LRAs within the ISO footprint for RA compliance year 2021 and advisory flexible capacity requirements for compliance years 2022 and 2023
- Discuss the input assumptions and methodology of the annual CAISO's Availability Assessment Hour (AAH).

Agenda / Overview

- Background
- Process review
 - Expected build out from all LSEs (CPUC jurisdictional and non-Jurisdictional)
 - Load, wind and solar profiles
 - Calculate 3-hour net-load ramps
 - Expected monthly maximum contingency reserve requirements
 - Calculate monthly Flexible Capacity requirement
 - Next steps

Each LSE SC shall make a year-ahead and month-ahead showing of flexible capacity for each month of the compliance year

Resource Adequacy (RA)

- Ensure LSEs contract for adequate capacity to meet expected flexible needs
- Year ahead timeframe: LSEs need to secure a minimum of 90% of the next years monthly needs
- Month ahead timeframe: LSEs need to secure adequate net qualified capacity to serve their monthly peak load including a planning reserve margin and flexible capacity to address largest three hour net load ramps plus contingency reserves
- All resources participating in the ISO markets under an RA contract will have an RA must-offer-obligation
- Required to submit economic bids into the ISO's real-time market consistent with the category of flexible capacity for which it is shown

The ISO flexibility capacity assessment is based on current LSE's RPS build-out data

- Uses the most current data available for renewable build-out obtained from all LSE SCs
- For new renewable installation scale 2019 actual production data based on the expected installed capacity in subsequent years
- Generate net-load profiles for 2021 through 2023
 - Generate load profiles for 2021 through 2023
 - Generate solar profiles for 2021 through 2023
 - Generate wind profiles for 2021 through 2023
- CAISO will look into impacts of curtailments when running draft requirement values

The ISO will use the CEC's 1-in-2 IEPR forecast to develop the load forecast

- ISO uses 1-in-2 IEPR forecast; the IEPR forecast has both an hourly view and a monthly view.
 - The forecast is correlated such that the peak of the month can be seen in the hourly profile.
- CEC IEPR Load Forecast
 - https://ww2.energy.ca.gov/2019_energypolicy/documents/Demand_2020-2030_revised_forecast_hourly.php

The ISO will use the CEC's 1-in-2 IEPR forecast to develop the load forecast

- CEC IEPR Load Forecast
 - https://ww2.energy.ca.gov/2019_energypolicy/documents/Demand_2020-2030_revised_forecast_hourly.php
 - Title of File: "CED 2019 Hourly Results CAISO MID-MID"
 - CAISO will be using Managed Net Load (column S) within the spreadsheet
 - Managed Net Load (col S) = Baseline Net Load (col R)
 - AAEE (col Q)
 - Baseline Net Load (col R) = Baseline Consumption (col M)
 - BTM PV (col N)
 - BTM Storage Res (col O)
 - BTM Storage NonRes (col P)
 - Baseline Consumption (col M) = unadjusted consumption (col E)
 - + Pumping (col F)
 - + climate change (col H)
 - + light duty EV (col I)
 - + mdhd EV (col J)
 - + TOU impacts (col K)
 - + other adjustments (col L)

CAISO - PUBLIC

Example: Building a1-Minute Load Profile

Step 2

Hourly Load Forecast to 1 Minute Load Forecast

- Used 2019 actual 1-minute load data to build 1-minute load profiles for subsequent years
- Scaled the hourly CEC load forecast value of each hour into 1-minute forecast data using a smoothing equation looking at the differences between the forecasted year and the 2019 1-minute actuals.

2020 Load 1-Minute Forecast

- 2020 L_{CECfcst_1-min} = 2019 L_{Act_1-min} + X
 - Where X = Interpolated 1min profile from the difference

(2020 L_{CECfcst_hourly} - 2019 L_{actual_hourly})

2021 Load 1-Minute Forecast

- 2021 $L_{CECfcst_1-min}$ = 2019 L_{Act_1-min} + X
 - Where X = Interpolated 1min profile from the difference

(2021 L_{CECfcst_hourly} - 2019 L_{actual_hourly})

*See Pg. 7 for more graphs showing steps to calculate X

CAISO - PUBLIC

Wind growth assumptions

- Use the actual 1-minute wind production data for the most recent year i.e. for 2020 wind forecast, use actual 1-minute data from 2019 (2019_{Act_1-min})
- Projects installed in 2019 would be modeled in 2020 for the months the projects were not yet in-service (e.g. projects installed in May 2019 would be included in January through April of 2019)
- Scale 1-minute data using expected capacity for the new plants scheduled to be operational in 2020
- Repeat the above steps for 2021

 2020 W_{Mth_Sim_1-min} = 2019 W_{Act_1-min} * 2020 W_{Mth Capacity} / 2019 W_{Mth Capacity}
 2021 W_{Mth_Sim_1-min} = 2019 W_{Act_1-min} * 2021 W_{Mth Capacity} / 2019 W_{Mth Capacity}

Note: This approach maintains load/wind, load/solar and wind/solar correlations

Solar growth assumptions

Existing solar

• Use the actual solar 1-minute production data for the most recent year

i.e. for 2020 forecast, use 2019 actual 1-minute data (2019_{Act_1-min})

New solar installation

- Develop 1-minute solar production profiles by scaling actual 2019 1-minute data by the expected monthly installed capacity in 2020 divided by the monthly installed capacity in 2019
- Projects installed in 2019 will be modeled in 2020 for the months the projects were not yet in-service in 2019

 $2020 S_{Mth_Sim_1-min} = 2019 S_{Act_1-min} * 2020 S_{Mth Capacity} / 2019 S_{Mth Capacity}$ $2021 S_{Mth_Sim_1-min} = 2019 S_{Act_1-min} * 2021 S_{Mth Capacity} / 2019 S_{Mth Capacity}$ $2022 S_{Mth_Sim_1-min} = 2019 S_{Act_1-min} * 2022 S_{Mth Capacity} / 2019 S_{Mth Capacity}$ $2023 S_{Mth_Sim_1-min} = 2019 S_{Act_1-min} * 2023 S_{Mth Capacity} / 2019 S_{Mth Capacity}$

Net-load is a NERC accepted metric¹ for evaluating additional flexibility needs to accommodate VERs

- Net-load is the aggregate of customer demand reduced by variable generation power output
- Net-load is more variable than load itself and it increases as VER production increases
- The monthly three-hour flexible capacity need equates to the largest expected up-ward change in net-load when looking across a rolling three-hour evaluation window
- The ISO dispatches flexible resources to meet net-load

¹NERC Special Report - Flexibility Report Requirements and metrics for Variable Generation: Implications for System Planning Studies, August 2010. <u>http://www.nerc.com/files/IVGTF_Task_1_4_Final.pdf</u>

Example of net-load variability for one week in March 2017

Monthly 3-hour ramps typically increases with the build out of renewables and addition of behind-the-meter resources

Contingency reserves is a NERC/WECC requirement all BAs must have available in real-time

- Each Balancing Authority and each Reserve Sharing Group shall maintain a minimum amount of Contingency Reserve, except within the first sixty minutes following an event requiring the activation of Contingency Reserve.
- To meet WECC and NERC reliability criteria, the ISO must have contingency reserves.
- Contingencies can occur during the three hour ramps and the ISO must be prepared to dispatch contingency reserve to recover its Area Control Error (ACE) within 15-minutes following a disturbance.
- Contingency reserves are held for contingency events and cannot be dispatched to meet day-to-day net-load ramps.

The proposed interim flexible capacity methodology should provide the ISO with sufficient flexible capacity

Methodology

Flexible Req_{MTHy} = Max[(3RR_{HRx})_{MTHy}] + Max(MSSC, 3.5%*E(PL_{MTHy})) + ε

Where:

 $Max[(3RR_{HRx})_{MTHy}] = Largest three hour contiguous ramp starting in hour x for month y$

E(PL) = Expected peak load

 $MTH_y = Month_y$

MSSC = Most Severe Single Contingency

 ϵ = Annually adjustable error term to account for load forecast errors and variability. ϵ is currently set at zero

For next year the CAISO will work towards changing the Flex RA standard to be reflective of the current WECC/NERC reliability requirements.

2017 forecast (using 2016 data) of 3-hour ramps for 2017, 2018 & 2019

California ISO

2019 forecast (using 2018 data) of 3-hour ramps for 2019, 2020 & 2021

What data does the ISO need?

- CEC's IEPR demand forecast (e.g. 2020 2023 demand forecast)
- LSE SCs to update renewable build-out for 2019 through 2023 by CREZ by January 15, 2020 (Beyond 2023 if data is available)
- The data should include:
 - Installed capacity by technology and expected operating date (e.g. Solar thermal, solar PV tracking, solar PV non-tracking, estimate of behind-themeter solar PV, hybrid, co-located, etc.) for all variable energy resources under contract
 - Operational date or expected on-line date
 - Interconnecting substation or closes substation or switching station
 - Resources located outside ISO's BAA must indicate if the resources are dynamically scheduled or not
- The majority of LSE SCs have already provided this data
 - LSE SCs must submit data for all LSE for which they are the SC
 - ISO is in the process of reviewing the submittal

ANNUAL REVIEW OF AVAILABILITY ASSESSMENT HOURS

Methodology Overview of System/Local Availability Assessment Hours

- Used CEC IEPR data described in previous slides to obtain:
 - Hourly Average Load
 - By Hour
 - By Month
 - Years 2019-2023
- Calculated:
 - Top 5% of Load Hours within each month using an hourly load distribution
 - Years 2021 2023

Already Occurred Flex RA Key Timeline Information

- ISO published a market notice for data in December 2018 and January 2019
- CEC Hourly IEPR Forecast was finalized and published on January 16, 2020
- LSE Survey Data was due on January 15, 2020

Next Steps

- ISO Flex RA methodology and criteria stakeholder call on January 28, 2020
- Stakeholder Comments on Flex RA methodology, criteria and data used for 2021 flexible requirements due by February 11, 2020.
- Publish preliminary flexible capacity and AAH requirements for 2021, 2022 & 2023 in early April 2020.
- Stakeholder call on preliminary flexible capacity and AAH requirements for 2021, 2022, and 2023 on March 31, 2020.
- Stakeholder comments on preliminary requirements due on April 14, 2020
- Issue final Flexible Capacity and AAH requirements for 2021 and projected requirements for 2022 & 2023 by May 1, 2020

We are evaluating our Flex RA schedule based on delay of CEC IEPR forecast publication. At this time, we are expecting a two week delay. The above information is subject to change accordingly

Questions?

Please submit comments on the assumptions to <u>initiativecomments@caiso.com</u> by February 11th, 2020 Thank you for your participation.

