

# **Contingency Modeling Enhancements**

Prototype Analysis with Production Cases August 22, 2017

Lin Xu, Ph.D. Sr. Advisor Engineering Specialist



# Agenda

| Time      | Торіс                     | Presenter      |
|-----------|---------------------------|----------------|
| 1:00-1:05 | Introduction & background | Perry Servedio |
| 1:05-2:00 | Analysis results          | Dr. Lin Xu     |



### Background

- In 2013, ISO began building the CME prototype to test how the preventive-corrective constraint would perform in practice.
  - One simple goal: does the constraint work?
- Presented technical analysis preliminary results to MSC on 2/3/2017
  - MSC had questions about how the prototype behaves when it cannot economically clear less load
  - MSC had questions about if we verified benefits of using the CME vs. MOC
- Presented more technical analysis results to MSC on 7/10/2017
  - Finalized results from stressed scenarios
  - Results from parallel operations
  - Began to answer question related to load-clearing behavior



# **EXECUTIVE SUMMARY**



#### Executive summary

- The CME constraint ensures that effective unloaded capacity is available to meet the reliability standard via unit commitments and positioning units, and CME may also leverage bid-in demand
- Under realistic system conditions, even when the system is stressed, CME is unlikely to bind
- When the CME constraint is binding, it sends correct market price signals to the system
- Generally, CME commits less units and costs less to the market than MOC, and CME can increase market efficiency



# PURPOSE



#### urpose

- We broke from the initial simple objective for three specific purposes:
  - We wanted to see if corrective capacity is sufficient in the system, and when its not, observe how CME resolves the reliability concern.
  - We wanted to observe how CME may impact the market in terms of commitment and cost, particularly compared with the minimum online commitment (MOC) constraint
  - We wanted to get a sense of how frequently CME constraint may bind in the market on a day-to-day basis
- The following analyses address these purposes:
  - Analysis of stressed system scenarios
  - Analysis of MOC commitment and CME commitment
  - Analysis of reliability constraint efficiency
  - Parallel operations



# ANALYSIS OF STRESSED SYSTEM SCENARIOS



### Analysis of stressed system scenarios Methodology

- Selected 12 scenarios to test
  - Chose six different network conditions
    - Major path outages
  - Test each network condition in two seasons
    - Spring
    - Summer

| Network condition        | Season 1 | Season 2 |
|--------------------------|----------|----------|
| N0. All lines in service | N0S1     | N0S2     |
| N1. Path 26 outage       | N1S1     | N1S2     |
| N2. Path 15 outage       | N2S1     | N2S2     |
| N3. COI (PACI) outage    | N3S1     | N3S2     |
| N4. SCIT outage          | N4S1     | N4S2     |
| N5. SDGE IMP BG outage   | N5S1     | N5S2     |

# Analysis of stressed system scenarios Methodology

- Built CME cases
  - Selected day-ahead production cases matching the scenarios
  - Built the CME cases
    - Defined and enabled all CME contingencies in all scenarios
    - Used appropriate ratings for system condition and season
    - Set 20 minute corrective timeframe
    - Created outages to further stress the case
    - Removed relevant MOCs
- Compared CME cases to same case but without CME enabled and without MOC enforced



### Analysis of stressed system scenarios Analysis results

- CME constraint binds in 1 of 12 scenarios
  - SDGE Import Limit (Summer)
- CME confirms enough unloaded 20-minute capacity in 11 of 12 scenarios
- CME confirms/allows reliable transmission system without using MOC in all 12 scenarios



Analysis of stressed system scenarios Analysis results – non-binding scenarios

# **Non-binding scenarios**

• CME confirms enough capacity to meet the reliability standard

| Scenario | Date:hour (GMT) | CME case   | Path      | Path Flow | Post-<br>Contingency<br>Rating | Capacity<br>Required | Unloaded<br>Capacity |
|----------|-----------------|------------|-----------|-----------|--------------------------------|----------------------|----------------------|
| N0S1     | 02FEB2015:02    | CME_PACI   | PACI_MSL  | 2523      | 1834                           | 689                  | 1282                 |
| N0S2     | 30MAR2015:22    | CME_PACI   | PACI_MSL  | 3288      | 1834                           | 1454                 | 3846                 |
| N1S1     | 31MAY2015:03    | CME_PATH26 | PATH26_BG | 1301      | 1000                           | 301                  | 714                  |
| N1S2     | 04OCT2015:01    | CME_PATH26 | PATH26_BG | 3343      | 1000                           | 2343                 | 4481                 |
| N2S1     | 02JUN2015:14    | CME_PATH15 | PATH15_BG | 2008      | 2650                           | 0                    | 1267                 |
| N2S2     | 30MAR2015:07    | CME_PATH15 | PATH15_BG | 3079      | 2650                           | 429                  | 1404                 |
| N3S1     | 05DEC2014:04    | CME_PACI   | PACI_MSL  | 2175      | 1633                           | 542                  | 2435                 |
| N3S2     | 06OCT2015:16    | CME_PACI   | PACI_MSL  | 2382      | 1333                           | 1049                 | 1552                 |
| N4S1     | 04MAY2015:16    | CME_SCIT   | SCIT_BG   | 8722      | 13750                          | 0                    | 3870                 |
| N4S2     | 09OCT2015:23    | CME_SCIT   | SCIT_BG   | 13541     | 14920                          | 0                    | 392                  |
| N5S2     | 06OCT2015:19    | CME_SDGE   | CME_SDGE  | 1943      | 1400                           | 543                  | 910                  |

Analysis of stressed system scenarios Analysis results – binding scenario

# **Binding scenario**

- CME binds in four hours under SDGE contingency
- CME procures enough corrective capacity in binding scenario
- CME lowers pre-contingency flows
- CME de-commits El Cajon to award corrective capacity

| Scenario | Date:hour (GMT) | CME<br>case | Path       | CME<br>Flow | Post-<br>Contingency<br>Rating | ingency Capacity<br>g Required |     | Shadow<br>Price | No CME<br>Flow | No CME<br>Available<br>Capacity |
|----------|-----------------|-------------|------------|-------------|--------------------------------|--------------------------------|-----|-----------------|----------------|---------------------------------|
| N5S1     | 23JUL2016:00    | SDGE        | SDGEIMP_BG | 1919        | 1400                           | 519                            | 531 | 18.87           | 2264           | 275                             |
| N5S1     | 23JUL2016:01    | SDGE        | SDGEIMP_BG | 1921        | 1400                           | 521                            | 521 | 11.64           | 2183           | 273                             |
| N5S1     | 23JUL2016:02    | SDGE        | SDGEIMP_BG | 1906        | 1400                           | 506                            | 517 | 7.06            | 2066           | 273                             |
| N5S1     | 23JUL2016:03    | SDGE        | SDGEIMP_BG | 2065        | 1400                           | 665                            | 674 | 6.16            | 2170           | 363                             |



Analysis of stressed system scenarios Analysis results – binding scenario

Price impact

- SDGE DLAP sees higher LMP than SCE
- LMPs higher than non-CME/non-MOC cases by the cost of corrective capacity

|              | PG&E           |        |         | SCE            |       |        | SDGE  |        |            |        | VEA   |        |            |        |       |        |
|--------------|----------------|--------|---------|----------------|-------|--------|-------|--------|------------|--------|-------|--------|------------|--------|-------|--------|
|              | LMP Congestion |        | gestion | LMP Congestion |       | LMP Co |       | Cong   | Congestion |        | LMP   |        | Congestion |        |       |        |
|              | CME            | No CME | CME     | No CME         | CME   | No CME | CME   | No CME | CME        | No CME | CME   | No CME | СМЕ        | No CME | CME   | No CME |
| 23JUL2016:00 | 51.32          | 50.48  | -7.28   | -7.51          | 63.03 | 65.77  | 1.69  | 4.85   | 84.19      | 68.2   | 20.35 | 4.56   | 60.57      | 62.88  | 1.06  | 3.98   |
| 23JUL2016:01 | 60.18          | 60.25  | -2.38   | -1.65          | 65.11 | 65.92  | -0.26 | 1.11   | 79.57      | 68.77  | 11.33 | 1.05   | 63.62      | 64.21  | -0.41 | 0.92   |
| 23JUL2016:02 | 59.98          | 60     | -2.09   | -1.26          | 65.28 | 65     | 0.32  | 0.81   | 75.16      | 67.95  | 7.31  | 1.03   | 63.76      | 61.78  | 0.15  | -0.94  |
| 23JUL2016:03 | 49.98          | 50     | -0.6    | -1.76          | 52.27 | 55     | -0.6  | 1.09   | 60.79      | 57.98  | 5.56  | 1.6    | 50.93      | 50.09  | -0.6  | -2.4   |



Analysis of stressed system scenarios Analysis results – binding scenario

#### Ancillary services impact

 Minor impact on A/S procurement between CME case and non-CME/non-MOC case.

| Scenario | Date:hour (GMT) | Commodity | Region | MW with<br>CME | MW without<br>CME | Price with CME | Price without CME |
|----------|-----------------|-----------|--------|----------------|-------------------|----------------|-------------------|
| N5S1     | 23JUL2016:00    | En        | SDGE   | 4195           | 4364              | 84.19          | 68.20             |
| N5S1     | 23JUL2016:01    | En        | SDGE   | 4107           | 4276              | 79.57          | 68.77             |
| N5S1     | 23JUL2016:02    | En        | SDGE   | 4061           | 4145              | 75.16          | 67.95             |
| N5S1     | 23JUL2016:03    | En        | SDGE   | 4056           | 4090              | 60.79          | 57.98             |
| N5S1     | 23JUL2016:01    | Up AS     | SP26   | 982            | 963               | 0              | 0                 |
| N5S1     | 23JUL2016:02    | Up AS     | SP26   | 1076           | 961               | 0              | 0                 |
| N5S1     | 23JUL2016:03    | Up AS     | SP26   | 928            | 818               | 0              | 0                 |
| N5S1     | 23JUL2016:04    | Up As     | SP26   | 655            | 578               | 0              | 0                 |



Analysis of stressed system scenarios Analysis results – other observations

### **Other observations**

- How does the constraint behave if it cannot economically clear less load?
- Does CME commit more units to meet the reliability concern as expected?
- Used the binding N5S1 scenario
  - Base case with no-CME/no-MOC to get cleared demand
  - Fixed the demand to this level in a CME case
- Optimization commits three more units and de-commits one unit to provide corrective capacity



# ANALYSIS OF MOC COMMITMENT AND CME COMMITMENT



## Analysis of MOC commitment and CME commitment Methodology

- How does CME impact unit commitment? Does CME commit more resources than the associated MOC?
- Selected a non-binding CME day
- Compared CME commitment of resources in the MOC definition to the MOC requirement
  - Some of the MOC requirements are conservatively defined to meet the reliability criteria
  - CME resolves the reliability criteria with less commitments
  - The CME constraints are not over-committing units to result in the non-binding outcome



### Analysis of MOC commitment and CME commitment Results

| Date     | Hour | MOC      | MOC<br>Requirement | CME MOC<br>Supply |
|----------|------|----------|--------------------|-------------------|
| 4-Dec-14 | 10   | MOC NP15 | 3,350              | 3,211             |
| 4-Dec-14 | 11   | MOC NP15 | 3,315              | 3,211             |
| 4-Dec-14 | 14   | MOC NP15 | 3,297              | 3,213             |
| 4-Dec-14 | 8    | SCIT MOC | 4,600              | 4,205             |
| 4-Dec-14 | 9    | SCIT MOC | 4,600              | 4,205             |
| 4-Dec-14 | 10   | SCIT MOC | 4,600              | 4,205             |
| 4-Dec-14 | 11   | SCIT MOC | 4,600              | 4,249             |
| 4-Dec-14 | 12   | SCIT MOC | 4,600              | 4,249             |
| 4-Dec-14 | 13   | SCIT MOC | 4,600              | 4,249             |
| 4-Dec-14 | 14   | SCIT MOC | 4,600              | 4,249             |
| 4-Dec-14 | 15   | SCIT MOC | 4,600              | 4,249             |
| 4-Dec-14 | 16   | SCIT MOC | 4,600              | 4,249             |
| 4-Dec-14 | 17   | SCIT MOC | 4,600              | 4,249             |
| 4-Dec-14 | 18   | SCIT MOC | 4,600              | 4,358             |
| 4-Dec-14 | 19   | SCIT MOC | 4,600              | 4,358             |
| 4-Dec-14 | 20   | SCIT MOC | 4,600              | 4,358             |
| 4-Dec-14 | 21   | SCIT MOC | 4,600              | 4,249             |

# ANALYSIS OF RELIABILITY CONSTRAINT EFFICIENCY



# Analysis of Reliability constraint efficiency

- How does the constraint impact the market in terms of total production cost?
- Directly compared total cost of CME constraints versus their equivalent MOC constraints to estimate the market efficiency improvements that the CME may provide
- We wanted to isolate the cost difference that can be attributed to CME, not difference in load or other complicating factors
  - Ran MOC case with fixed bid-in demand
  - Ran CME case with same fixed bid-in demand
- CME constraint meets the reliability criteria at less cost

| Model           | Minimum cost to meet load |
|-----------------|---------------------------|
| CME             | \$7,168,661               |
| MOC             | -\$7,179,846              |
| CME cost saving | <sup>1</sup> \$11,185     |



# **PARALLEL OPERATIONS**



### **Parallel** operations

- To support policy decision related to the CRR market: how frequent might this constraint bind in practice?
- CME in parallel operations for two week period at the end of March through the beginning of April
- Enforced constraints consistent with the system conditions
- Over the period of parallel operations, the preventive-corrective constraint did not bind
- Further indicates that there may be a low likelihood of the constraint binding in practice



# CONCLUSION



### Conclusion

- Stressed scenarios and parallel operations indicate that under realistic conditions, CME is unlikely to bind
  - In these cases, MOCs are not necessary for meeting the reliability standard
- Generally, CME would commit less capacity than MOC and can replace the MOC with higher market efficiency
  - When CME constraints are not binding, CME commits less capacity than what MOC requires
  - CME saves total production cost than MOC in meeting the same load
- Under stressed scenario where corrective capacity is required, CME performs as expected from a pricing, capacity procurement, and commitment standpoints
- CME constraints are more precise and efficient than the MOC constraints to manage the reliability criteria, and CME can increase market efficiency



# QUESTIONS

