Convergence Bidding Working Group – 10/1/09

Teleconference Information

Dial-in Number: (800) 401-8436 International Dial-in: (612) 332-0418 There is no conference ID number.

Web Conference Information

Web Address: <u>www.webmeeting.att.com</u> Meeting Number: 511.468.2337 Access Code: 93.41.896

Agenda

TIME	TOPIC	PRESENTER
9:00 – 9:10	Regulatory update	Sidney Davies and Janet Morris
9:10 – 9:30	Proposed solution to mitigate concerns regarding AC power flow under Convergence Bidding	Khaled Abdul- Rahman
9:30 – 10:00	Proposed approach for alleviating bid volume limitations	Li Zhou

Introduction

This is the third in the series of Convergence Bidding Working Group conference calls focused on technical and implementation challenges

Future Sessions

- CAISO welcomes suggestions for future agenda items
- Participants are encouraged to discuss their internal challenges and present results of their studies and analysis on future sessions

Update on Regulatory Process

Policy Finalization

- Final Draft Proposal Posted October 2
- Final Policy Call October 9
- Board Documents Posted October 22
- Board Meeting October 29-30
- FERC Filings
 - Motion for extension of implementation date November 13
 - Conceptual design filing November 13
 - Tariff filing Late January 2010

AC Power Flow Convergence Testing

- The CAISO has been testing approaches to mitigating concerns related to AC power flow divergence
 - Branch angle divergence due to excessive MW flow on a particular branch or group of branches
 - Voltage divergence due to low voltage magnitude at a bus or group of busses
- A whitepaper describing testing scenarios executed, a summary of the results and key conclusions is posted on the CAISO website at:

http://www.caiso.com/2437/243786845a9d0ex.html

AC Power Flow Testing – Approach

- CAISO began with a peak-hour save case which converged with AC power flow in all iterations of UC-NA
- Select a "target node" and increase the load at that node until an AC power flow solution cannot be obtained and NA produces a DC power flow solution
- For initial branch angle divergence cases
 - Provide the DC solution to the second UC iteration
 - Force subsequent NA iterations to attempt an AC solution
- For higher MW level voltage divergence cases, either
 - Enforce more constraints around the target node and rerun
 - Enforce nodal MW limits on the target node and rerun

AC Power Flow Testing – Results

- Branch angle divergence was overcome by allowing the first iteration of NA to use DC power flow and requiring subsequent iterations to first attempt AC power flow
- Voltage divergence was overcome by imposing additional constraints around the target node
- Voltage divergence was also overcome by manually imposing a MW limit on the target node after the first power flow solution

AC Power Flow Testing – Analysis

- Using an initial DC power flow solution to provide additional information on constraints to SCUC will typically allow an AC power flow solution to be obtained in the second iteration
- Nodal MW limitations may be imposed if CAISO does not have good observability nor reasonable branch group ratings for the node where excessive injections or withdrawals are occurring
- CAISO will use the DC iteration approach first, but will maintain ability to use both approaches to ensure an AC solution

AC Power Flow Testing – Conclusions

- The ability to directly apply nodal constraints is required regardless of whether nodal or LAP-level Convergence Bidding is implemented
- Reducing nodal bids is more effective than reducing LAP bids since they have an effective factor of one
- Nodal MW constraints will only be enforced if AC power flow cannot be obtained through transmission constraints
- Once the nodal constraint is enforced, it will be included in all subsequent iterations
- The nodal MW constraint, if binding, impacts the LMP

Alleviating Bid Volume Limitations

- In previous discussions, CAISO has discussed the need for a "bid volume" limit
 - The system-wide count of bids / Resource IDs that IFM can process is limited
 - A multi-stage process was proposed to allocate the available bid volume capability across SCs
- CAISO has identified a new approach that would eliminate the need for a bid-volume limit

Alleviating Bid Volume Limitations – Approach

- Step 1 At 10am, the CAISO will aggregate all supply and demand CBs at a location to create a composite CB supply and composite CB demand curve prior to MPM
- Step 2 Run MPM/IFM with physical bids and the composite CB supply and demand curves; run RUC with physical bids only
- Step 3 Following RUC, disaggregate the cleared CB quantities and map them to the submitted bids
- Step 4 Around 1pm, publish Day-Ahead market results, including individual CB results

Alleviating Bid Volume Limitations – Notes

- This approach guarantees no more than about 7,000 CBs can be submitted (~3,500 nodes * 2 CB types)
- A initial \$0.005 per-segment fee will be imposed on submitted CBs
 - Economically limits submitted CBs to "reasonable" levels
 - Revenues from the fee will be credited against the GMC imposed on cleared CB gross MWh
 - Design limits incentives to submit significantly out of the money bid segments without imposing additional net cost on CB
 - CAISO will evaluate magnitude on an on-going basis

