DMM Comments and Recommendations on Convergence Bidding Design Options

Eric W. Hildebrandt, Ph.D.
Manager, Analysis & Mitigation
CAISO Department of Market Monitoring
October 30, 2006
Presentation Outline

- Benchmarking (PJM, NYISO, ISO-NE)
 - Market design rules
 - Mitigation measures
 - Monitoring tools
- DMM Recommendations on Key Design Issues
 - Spatial Granularity
 - Load Distribution Factors
 - Market Power Mitigation Measures
 - Monitoring Tools
- Conclusion
Benchmarking

- **Market Design Issues**
 - Spatial Granularity
 - Flagging of convergence bids
 - Limits of Convergence Bid Volumes/Segments
 - Treatment of Uninstructed Deviation and Forced Outages

- **Mitigation Measures**
 - CRR settlement rules
 - Ability to limit or suspend trading

- **Monitoring Tools**
 - Ability to run the DA market without virtual trades
 - Ability to Track Convergence Bidding Profits and Losses
 - Ability to Simulate Impact of Convergence Bids on Prices
 - Ability to Assess Impact of Market Behavior on a Participant’s Total Portfolio
Benchmarking — Summary Matrix

<table>
<thead>
<tr>
<th></th>
<th>NYISO</th>
<th>PJM</th>
<th>ISO-NE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial Granularity</td>
<td>Zonal (15 zones)</td>
<td>Nodal</td>
<td>Nodal</td>
</tr>
<tr>
<td>Flagging of Convergence Bids</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Congestion Revenue Rights</td>
<td>Monitor using Re-Runs of the DA Market</td>
<td>Automated Settlement Rule</td>
<td>Settlement Rule (May not be Automated)</td>
</tr>
<tr>
<td>Bid Segments</td>
<td>VB in Whole MWh Only</td>
<td>(unable to determine)</td>
<td>None</td>
</tr>
<tr>
<td>Collateral & Charges</td>
<td>Collateral $200/MWh</td>
<td>(unable to determine)</td>
<td>Small Charge per Convergence Bid</td>
</tr>
<tr>
<td>Ability to Limit or Suspend VB</td>
<td>Yes – Unused “Circuit Breaker” Provision</td>
<td>No</td>
<td>Yes – Limit or Suspend < 6 months</td>
</tr>
<tr>
<td>Ability to Re-Run DA Market</td>
<td>SCUC and PROBE</td>
<td>SCUC and PROBE</td>
<td>Estimates Effects of Convergence Bidding on an Annual Basis</td>
</tr>
</tbody>
</table>
Market Power Mitigation and Monitoring Issues

- Spatial Granularity
- Load Distribution Factors
- Market Power Mitigation Measures
- Monitoring Tools
Spatial Granularity

- **CAISO proposed three major spatial granularity options**
 1. Convergence supply and demand bids at the LAPs
 2. Convergence supply and demand bids at all PNodes
 3. Convergence demand bids at LAPs and convergence supply bids at generation PNodes

- **DMM recommends Option 1 – rationale based on:**
 - Under-scheduling
 - Mitigating Supplier Market Power
 - Eliminating Implicit Virtual Bids
 - Increase Market Liquidity
 - Hedging Mechanism for Generation Owners
 - Gaming of Congestion Revenue Rights
 - Monitoring and Mitigating of Generation Outages, Deviations, and Other Factors Affecting Real Time LMPs
Load Distribution Factors

- DMM agrees with the CAISO proposal that Load Distribution Factors (LDFs) used for physical bids should also be used for convergence bids.
Recommendations on Mitigation Measures

- **Congestion Revenue Rights Settlement Rules**
 - Not necessary under Option 1

- **Position Limits**
 - Should consider having ability to impose

- **Limitation or Suspension of Convergence Bidding**
 - Should have circuit breaker capability

- **Local Market Power Mitigation and Price Caps**
 - CBs should be subject to energy bid caps
 - Consideration of CBs in LMPM needs further study

- **Flagging of Convergence Bids**
 - Need flagging

- **Limitations on Bid Price-Quantity Pairs**
 - Not effective for market power mitigation
 - May be useful for limiting transaction volumes
Required Monitoring Tools

- **Ability to Re-Run the DA Market**
 - Routine, daily counterfactual re-run of the DA Market excluding convergence bids
 - Convergence (or divergence) of DA and RT prices
 - Large or persistent financial losses by individual participant
 - Impacts of each participant’s convergence bidding on prices, congestion, and their net profits

- **Ability to re-run settlement outcomes if significant differences in charges exist between convergence and physical bids**
Conclusion

- Convergence Bidding is an important market design element that can improve market efficiency.
- Convergence bidding at a nodal level creates the potential for market manipulation – design needs careful consideration and strong monitoring and mitigation tools.
- Better to start with simple design – LAP Convergence Bidding
 - Captures most of the benefits of convergence bidding
 - Minimizes potential for nodal price manipulation
 - Provides opportunity for further study of the need and proper design of more granular convergence bidding