Welcome
Our presentation will begin shortly.

Today’s Trainer:
Cynthia Hinman, Lead Customer Readiness Trainer
Housekeeping

Keep yourself muted to minimize background noise

Unmute to ask verbal questions or write questions in the chat pod

Raise your hand using WebEx interactivity tools

The information contained in these materials is provided for general information only and does not constitute legal or regulatory advice. The ultimate responsibility for complying with the ISO FERC Tariff and other applicable laws, rules or regulations lies with you. In no event shall the ISO or its employees be liable to you or anyone else for any decision made or action taken in reliance on the information in these materials.
Energy Storage Enhancements Track 2 has several goals

- Co-Located Model Enhancements
- RIMS Update
- State of Charge (SOC) Exceptional Dispatch

- ACC for pseudo-tie resources
- Option – do not charge from the grid
- New data fields
- Calculation
- Settlement
Aggregate Capability Constraint for Co-located Pseudo-Tie Resources

Background
How to apply
References
Example: Co-Located Resource

Solar_1
• meter
• resource ID
• telemetry
• forecast
• bids
• outages
• settlements

BESS_1
• meter
• resource ID
• telemetry
• forecast
• bids
• outages
• settlements

Solar_1
110 MW

BESS_1
55 MW
Example: Aggregate Capability Constraint (ACC)

ISO Grid

ACC 233 MW

Solar_1
110 MW

BESS_1
55 MW

Solar_2
123 MW

BESS_2
62 MW
Example: Pseudo-Tie Resources

ISO Grid

ACC 233 MW

ISO BAA

Non-ISO BAA

Solar_1
110 MW

BESS_1
55 MW

Solar_2
123 MW

BESS_2
62 MW
Market Process Review with ACCs

• Each day the IFM and RTM receive model data for all active ACCs and their co-located resources

• For each market run the system will optimize unit commitment and economic dispatch while enforcing the ACC for co-located resources
 – Combined dispatch of co-located resources will not exceed the ACC min or max limits
 – One resource at a co-located facility may produce energy while another consumes energy at the same co-located facility

• Dispatch instructions for all resources are based on submitted bids
What is the problem?

• Aggregate Capability Constraints (ACCs) ensure that co-located resources’ aggregate market awards do not exceed the interconnection service capacity for a particular site.
• This functionality was only approved for internal co-located resources.

Solution:
Allow co-located pseudo-tie resource to apply for Aggregate Capability Constraint (ACC)
SCHEDULE 1

Section 1: Technical Characteristics of Participating Generator Units

ABC Solar LLC

<table>
<thead>
<tr>
<th>Resource Name (Generating Unit)</th>
<th>CAISO Resource ID</th>
<th>Type Of Unit</th>
<th>Primary Fuel Type</th>
<th>Resource Maximum Operating Value (E_{\text{Max}}) (MW)</th>
<th>Resource Minimum Operating Value (E_{\text{Min}}) (MW)</th>
<th>Hybrid (Y/N)</th>
<th>Co-Located (Y/N)</th>
<th>ACC ID / ACC Limits (if unit is Co-Located)</th>
<th>Maximum & Minimum Operating Value must be provided if Co-Located</th>
<th>Net capacity to the CAISO Controlled (MW)</th>
<th>Limitations (That affect technical characteristics and performance of the unit - include those not captured in the GRDT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC Solar:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Master ACC ID:</td>
<td>ABC_SOLAR_123</td>
<td>200MW / -50W</td>
<td></td>
</tr>
<tr>
<td>ABC Solar 1A</td>
<td>ALPHA_2_A1A581</td>
<td>Solar</td>
<td>Solar</td>
<td>100</td>
<td>0</td>
<td>N</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABC Solar 1B</td>
<td>ALPHA_2_A1ABT1</td>
<td>Battery</td>
<td>Battery</td>
<td>25</td>
<td>-25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co-tenancy Projects:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>List ACC-ID Controlled Resource</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABC Solar 2A</td>
<td>ALPHA_2_A2A581</td>
<td>Solar</td>
<td>Solar</td>
<td>100</td>
<td>0</td>
<td>N</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABC Solar 2B</td>
<td>ALPHA_2_A2ABT1</td>
<td>Battery</td>
<td>Battery</td>
<td>25</td>
<td>-25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Co-tenancy Projects: Language will be captured on all co-tenant PGA Schedule 1’s.

Note: The effective values for purposes of this Schedule 1 shall be determined by the CAISO. The values are subject to certification by the CAISO in accordance with Section 4.3.2 of the Participating Generator Agreement and the CAISO Tariff. More detailed generating unit operating data must be provided at a time and in a format specified by the CAISO in response to CAISO requests pursuant to CAISO Tariff Sections 4.6.4 and 4.6.7.1 and 30.
Generator Resource Data Template (GRDT)

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>CV</td>
<td>CX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CW</td>
<td>Co-Located Resource</td>
<td>VER_NGR</td>
<td>Meter</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PGA Name</td>
<td>Scheduling Coordinator ID</td>
<td>Resource ID</td>
<td>Forecast Selection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PGA_NAME</td>
<td>SC_ID</td>
<td>RES_ID</td>
<td>FORECAST_SELECTION</td>
<td>CO_LOCATED</td>
<td>VER_NGR</td>
<td>METER</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table includes columns for PGA Name, Scheduling Coordinator ID, Resource ID, Forecast Selection, Co-Located Resource, VER_NGR, and Meter Column.
Additional resources

- Co-located Resources and Aggregate Capability Constraint (ACC): Refer to the BPM for Market Operations, Section 2.1.19
- Pseudo-ties: Refer to the BPM for Market Operations, Section 2.1.14

What Questions Do You Have?

Unmute or Raise your hand
Optional - Avoid Charging from the Grid

Background
New SIBR Features
What is the problem?

• The Investment Tax Credit (ITC) strictly limits the tax incentive a developer can receive if it charges a storage resource from sources external to a co-located renewable resource

• Many agreements assume ITC recovery and include requirements to avoid grid charging

Solution:
Create a charging constraint that co-located resources can use to help avoid grid charging
New! Off grid charge indicator
RUG slide for SIBR

<table>
<thead>
<tr>
<th>System</th>
<th>Project</th>
<th>UI</th>
<th>API</th>
<th>Data/Comments</th>
<th>Tech Specs</th>
<th>MapStage</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIBR*</td>
<td>ESE2</td>
<td></td>
<td>New optional element in xsd for 'offGridCharge' used by designated resource to manage Sub/Stand Alone ACC. RawBidSet, BidResults, CleanBidSet v5 xsd. Version 20231101.</td>
<td>New Hourly Parameter for offGridCharge this is a Yes/No type that is optional.</td>
<td>8/10/2023</td>
<td>8/28</td>
</tr>
</tbody>
</table>
What Questions Do You Have?

Unmute or Raise your hand
RIMS Update

New Data Fields
RIMS – New Data Fields

App & Study

MPAI>NRI projects

IR Forms

PDF
RUG Slide for RIMS

<table>
<thead>
<tr>
<th>System</th>
<th>Project</th>
<th>UI</th>
<th>API</th>
<th>Data</th>
<th>Technical Specifications</th>
</tr>
</thead>
</table>
| RIMS | ESET2 | Existing: Existing > App & Study > Equipment Configuration tab > Generation as Modeled and Implemented grid | NA | > Pull storage resource MWh from MF
> Add new field for calculated MWh
> Add new field for storage resource duration in hours | NA |
What Questions Do You Have?

Unmute or Raise your hand
Counterfactual Opportunity Cost Methodology for Hold SOC Exceptional Dispatches

Background
Examples
Market Sim Scenarios
What is the problem?

- The ISO may need to issue exceptional dispatches (ED) to storage resources to hold their state of charge (SOC) when we are concerned that real-time price signals may inadvertently drain storage resources and make them less available when we need them most.

- Existing ED settlements are based on “bid or better” methodology which does not work for instructions to hold state of charge, essentially a 0 MW instruction.

Solution:

Implement new counterfactual opportunity cost methodology to settle EDs that instruct resources to hold SOC.
Storage resources may be exceptionally dispatched to charge and then hold the state of charge

Scenario

The operator initially charges a storage resource because it will be needed in future intervals. This will be covered by a SYSEMR ED as it is today.

Once the resource is at the desired state of charge, the operator issues the Hold ED and this will be settled using the lost opportunity cost uplift.

Tip: If a co-located resource receives an ED to charge and hold, off-grid charging will not be observed.
Charge Codes

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Version</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Settlement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6485</td>
<td>New! Exceptional Dispatch Hold SOC Uplift Settlement</td>
<td>5.0</td>
<td>Payment for Hold SOC</td>
</tr>
<tr>
<td></td>
<td>Allocation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6486</td>
<td>Real-Time Excess Cost for Instructed Energy Allocation</td>
<td>5.7</td>
<td>First tier of cost allocation.</td>
</tr>
<tr>
<td>6480</td>
<td>Excess Cost Neutrality Allocation</td>
<td>5.4</td>
<td>Second tier of cost allocation (if there are remaining costs that were not allocated above)</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-calc</td>
<td>RTM Net Amount</td>
<td>5.38</td>
<td>Includes Exceptional Dispatch Hold SOC payment in the Real-time Market Net Amount. This is used in RTM BCR settlement</td>
</tr>
</tbody>
</table>
Key points of Exceptional Dispatch Hold SOC Uplift Settlement (CC 6485)

- Hold SOC is a System Emergency ED reason type (SYSEMR ED)
- Represents lost revenue that could have been made if resource had not been exceptionally dispatched to hold
- Upstream calculation of opportunity cost based on Hold SOC instruction until the end of the trade date
- This revenue is considered in the real-time bid cost recovery calculation

Billing Determinant: BA_5M_RSRC_ED_HOLD_SOC_AMT
Variable name: ExceptionalDispatchHoldSOCAMt BrtOmdhcf
New counterfactual opportunity cost methodology accounts for the maximum revenues the resource would have received had it participated optimally in the market

• For each Hold ED the market will compute two counterfactual values
 – Revenue maximizing energy dispatch the resource would have received if there was no Hold ED in place
 – Revenue maximizing energy dispatch the resource would have received if the Hold ED remains in place

• ISO will compare these values
 – If resource could have made additional revenue if the Hold ED was not in place, then the resource would receive the difference between the two as an additional uplift payment for the day
 – If it would have not received additional revenue, then it would receive no additional uplift
How are counterfactuals determined?

• The ISO will calculate the resource’s opportunity costs based on its master file and real-time characteristics
 – Includes SOC limits, real-time SOC, and real-time bids

• Economic dispatches will be determined by comparing the resource’s real-time bids with the real-time LMPs

• Bid cost recovery (BCR) will now account for this new type of Hold ED compensation
Examples
Inputs to Lost Opportunity Cost

<table>
<thead>
<tr>
<th>BRS Item</th>
<th>Location</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOC Hold ED, Start Time</td>
<td>ADS and CMRI</td>
<td>ADS: ED instructions, ED Type will be SYEMR Constraint will be “Fixed”, GOTO MW will be 0 CMRI New Report Name: "Exceptional Dispatch Hold State of Charge" Report will contain: Trade Date, SCID, Resource, ED Start Time, ED End Time, SOC Hold Instruction (Y/N), Counterfactual Dispatch with Hold (MW) and Counterfactual Dispatch without Hold (MW)</td>
</tr>
<tr>
<td>RTD Resource Bids</td>
<td>SIBR and CMRI</td>
<td>SIBR (SC Submitted bid) or Clean Bid CMRI will have Mitigated Bids: "Real-Time Dispatch (RTD) Market Power Mitigation (MPM) Results"</td>
</tr>
<tr>
<td>RT SOC</td>
<td>Request via CIDI</td>
<td>Actual 5-minute RT SOC. New item with this project.</td>
</tr>
<tr>
<td>Upper and lower market energy capacity limits</td>
<td>Existing Calculation</td>
<td>These are the MEC limits calculated during the Expected Energy and Allocation process, as detailed in Market Operations BPM Appendix C, Item C.3. (Operating range once Operating Limits, Economic Limits, and AS capacities are applied.)</td>
</tr>
<tr>
<td>Minimum and maximum SOC levels</td>
<td>Master File</td>
<td>Submitted by market participant</td>
</tr>
<tr>
<td>PMin/PMax</td>
<td>Master File</td>
<td>Submitted by market participant</td>
</tr>
<tr>
<td>OMS Cards, RT Operating Limits</td>
<td>OMS</td>
<td>Submitted by market participant</td>
</tr>
<tr>
<td>RT Min and Max SOC</td>
<td>OMS</td>
<td>Submitted by market participant</td>
</tr>
<tr>
<td>Other EDs</td>
<td>ADS and Operations Procedure</td>
<td>233OC</td>
</tr>
<tr>
<td>AS Awards</td>
<td>CMRI</td>
<td>"Fifteen-Minute Market (FMM) Schedules"</td>
</tr>
<tr>
<td>RTD Resource Specific LMP</td>
<td>CMRI</td>
<td>"Real-Time Dispatch (RTD) Schedule Prices"</td>
</tr>
<tr>
<td>RT Economic Dispatch (RTL/UED)</td>
<td>Existing Calculation</td>
<td>These are the economic dispatch levels during the Expected Energy and Allocation process, as detailed in Market Operations BPM Appendix C, Item C.2.1. Essentially it's the intersection of the RTD Final Bid Curve and the RTD Resource Specific Price.</td>
</tr>
<tr>
<td>DEB for discharge</td>
<td>CMRI</td>
<td>"Default Energy Bid Curves " Select 'Storage' Default Bid Type</td>
</tr>
<tr>
<td>Efficiency Factor - Discharging</td>
<td>Master File</td>
<td>Submitted by market participant</td>
</tr>
</tbody>
</table>
Suggestions for Settlements Market Simulation Scenario 1

- Submit day-ahead energy schedules
- Submit ancillary service bids
- Change RT SOC limits (SIBR) and RT operating limits (OMS)

Structured Simulation Trade Dates:
- September 19
- September 20
- September 21
New! Report for Exceptional Dispatch Hold State of Charge

Exceptional Dispatch Hold State of Charge

<table>
<thead>
<tr>
<th>Trade Date</th>
<th>Entity</th>
<th>Resource</th>
<th>Hold ED Applicable</th>
<th>SOC Hold Instruction (MW)</th>
<th>Counterfactual Dispatch With Hold (MW)</th>
<th>Counterfactual Dispatch Without Hold (MW)</th>
<th>Revenue Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>08/29/2023</td>
<td></td>
<td></td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/29/2023</td>
<td></td>
<td></td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/29/2023</td>
<td></td>
<td></td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/29/2023</td>
<td></td>
<td></td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/29/2023</td>
<td></td>
<td></td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/29/2023</td>
<td></td>
<td></td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/29/2023</td>
<td></td>
<td></td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/29/2023</td>
<td></td>
<td></td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/29/2023</td>
<td></td>
<td></td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/29/2023</td>
<td></td>
<td></td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/29/2023</td>
<td></td>
<td></td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/29/2023</td>
<td></td>
<td></td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/29/2023</td>
<td></td>
<td></td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RUG Slide for CMRI

| CMRI* | ESET2 | New report to display Exceptional Dispatch Hold State of Charge
New Reason! Energy>System>Operator-Initiated Commitment

Note. Please refer to Section 12.4 Energy in Market Instruments BPM to obtain information on date availability. Please refer to the Market Operations BPM for exceptional dispatch reason code descriptions included on this report.

Report Generated: 06/30/2023 15:02:48

Downloaded CSV file

<table>
<thead>
<tr>
<th>RESOURCE_ID</th>
<th>TAC_AREA</th>
<th>INTERVAL_START_GMT</th>
<th>START_DATE_TIME_GMT</th>
<th>END_DATE_TIME_GMT</th>
<th>Mkt_Type</th>
<th>EXECUTION_TYPE</th>
<th>COMMITMENT_MW</th>
<th>CONSTRAINT_TYPE</th>
<th>REASON</th>
</tr>
</thead>
<tbody>
<tr>
<td>1005138481</td>
<td>TAC_ECNTR</td>
<td>2023-01-01T08:00:00-00:00</td>
<td>2023-01-01T14:00:00-00:00</td>
<td>2023-01-01T15:00:00-00:00</td>
<td>DAM</td>
<td>RUC</td>
<td>0.52 Capacity</td>
<td>System Wide Capacity</td>
<td>Optimization</td>
</tr>
<tr>
<td>1005138481</td>
<td>TAC_ECNTR</td>
<td>2023-01-01T08:00:00-00:00</td>
<td>2023-01-02T01:00:00-00:00</td>
<td>2023-01-02T01:00:00-00:00</td>
<td>DAM</td>
<td>RUC</td>
<td>0.52 Capacity</td>
<td>System Wide Capacity</td>
<td>Optimization</td>
</tr>
<tr>
<td>1005138481</td>
<td>TAC_ECNTR</td>
<td>2023-01-01T08:00:00-00:00</td>
<td>2023-01-02T03:00:00-00:00</td>
<td>2023-01-02T03:00:00-00:00</td>
<td>DAM</td>
<td>RUC</td>
<td>0.52 Capacity</td>
<td>System Wide Capacity</td>
<td>Optimization</td>
</tr>
<tr>
<td>1005138481</td>
<td>TAC_ECNTR</td>
<td>2023-01-01T08:00:00-00:00</td>
<td>2023-01-01T17:00:00-00:00</td>
<td>2023-01-01T17:00:00-00:00</td>
<td>DAM</td>
<td>RUC</td>
<td>0.52 Capacity</td>
<td>System Wide Capacity</td>
<td>Optimization</td>
</tr>
</tbody>
</table>

New Reason Codes
SOC Hold
SOC Charge
RUG slide for OASIS

<table>
<thead>
<tr>
<th>System</th>
<th>Project</th>
<th>UI</th>
<th>API</th>
<th>Data/Comments</th>
<th>Tech Specs</th>
</tr>
</thead>
</table>
What Questions Do You Have?

Unmute or Raise your hand
Market Simulation Preparation

Provide logistics
Review scenarios
Participate in Market Simulation

Register to participate in the simulation at MarketSim@caiso.com mailbox as soon as possible.

Attend Market Simulation Forum calls to stay informed on timing of activities for this and other Fall 2023 release initiatives:
- Monday and Thursday 2pm PPT

Submit questions to the ISO via the CIDI application.
Scenario 1 (Structured): Demonstrate proper settlement for energy storage resources for different ED types

<table>
<thead>
<tr>
<th>Title</th>
<th>Action</th>
</tr>
</thead>
</table>
| ISO Operators will: | 1. Issue Exceptional Dispatches (ED) for two storage resources to hold SOC
 | 2. Issue another ED for one storage resource with a HOLD ED to move SOC |
| Market participants should see: | Different ED types for storage resources are being settled properly |
| Settlements validation: | When an energy resource receives a HOLD SOC ED, it’s anticipated that there will be a settlement for:
 | • Real-time excess cost for instructed energy settlement (charge code 6486)
 | • Exceptional dispatch Hold SOC uplift settlement (charge code 6485)
 | There could also be a settlement for:
 | • Excess cost neutrality allocation (charge code 6480) |
What Questions Do You Have?

Unmute or Raise your hand
Scenario 2 (Unstructured): Verify hourly do not charge from the grid bidding functionality for standalone or sub-ACC constraints

<table>
<thead>
<tr>
<th>Title</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market participants should:</td>
<td>• Submit hourly bid attribute type in SIBR to not charge from the grid in the real-time market</td>
</tr>
<tr>
<td></td>
<td>• Submit economic bids for all resources behind the ACC; for storage resources, submit economic bids to charge/discharge</td>
</tr>
<tr>
<td>Expected outcome:</td>
<td>The market will enforce a withdrawal line of 0 MW for the ACC</td>
</tr>
</tbody>
</table>
What Questions Do You Have?

Unmute or Raise your hand
Wrap Up

Summary, Q&A
Recap: Here’s what you need to do

- Participate in the Market Simulation and the Market Simulation Forums
- Participate in the Release User Group (RUG) meetings
- If you have a pseudo tie co-located resources and would like to have an ACC work with ISO Contracts department to update the PGA
- If you have a co-located resource and wish to opt out of charging from the grid
 - Work with ISO Contracts department to update the PGA
 - Use the Off Grid Charging Indicator on the Hourly tab in SIBR to indicate if a resource should not charge from the grid
What Questions Do You Have?

Unmute or Raise your hand
Thank you for your participation!

For clarification on anything presented in this training, send an email to: CustomerReadiness@caiso.com

For any other questions or stakeholder specific questions or concerns, please submit a ticket.

CustomerReadiness@caiso.com

www.caiso.com