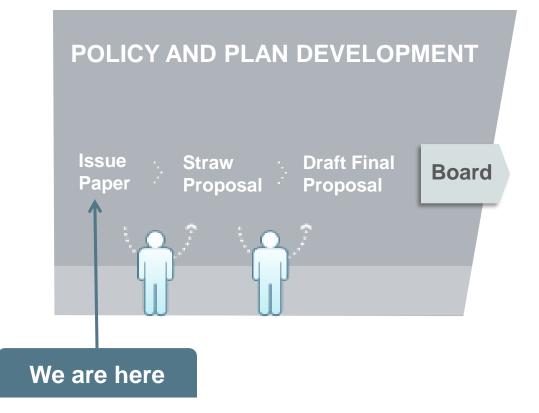


Generator Contingency & RAS Modeling Enhancements

Issue Paper April 25, 2016

Perry Servedio Senior Market Design and Regulatory Policy Developer



Agenda

Time	Торіс	Presenter
3:00-3:05	Introduction	Tom Cuccia
3:05-3:30	Background	Perry Servedio
3:30-4:30	Issues	Perry Servedio

ISO Policy Initiative Stakeholder Process

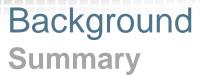
Background

Background N-1 security including loss of generation

A secure transmission system must be able to withstand credible transmission contingencies as well as credible generation contingencies.

1. Transmission security for loss of transmission element

- a. Transmission line or transformer loss
- 2. Transmission security for loss of generation
 - a. Generator loss
 - b. Generator loss due to RAS (includes loss of transmission element)



Background

Current contingency reserve procurement

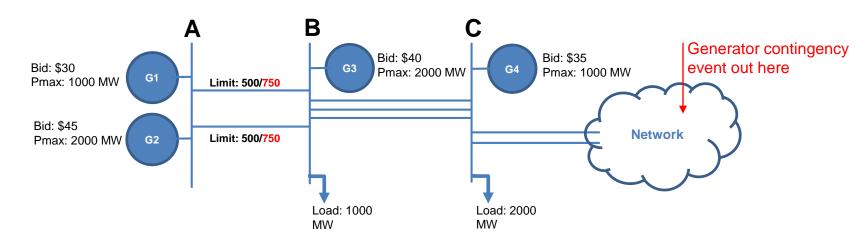
- Contingency reserves currently procured regionally (and sub-regionally)
- Regions set up to model known transmission constraints
- Co-optimized with energy
- Do not consider more localized limitations to ensure sufficient deliverable contingency reserve procurement
- Deployed upon a generator contingency event

System condition after deployment of contingency reserves

- Given a generator loss plus the deployment of contingency reserves, all transmission facilities must be below emergency ratings.
- Given a transmission line loss, plus a generator loss due to RAS action, plus the deployment of contingency reserves, all transmission facilities must be below emergency ratings.

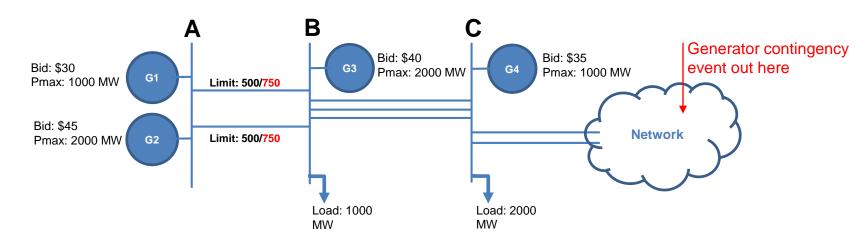
Market issues related to generator contingency and RAS modeling

- 1. Infeasible contingency reserve procurement
- 2. Insecure transmission given potential generator loss
- 3. Uneconomic dispatch given generation loss due to RAS



Infeasible contingency reserve procurement

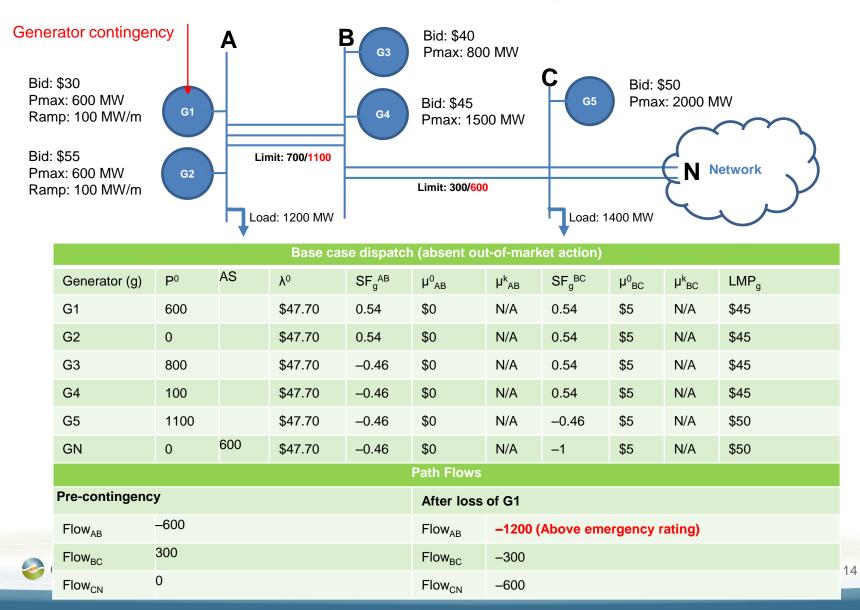
- ISO holds contingency reserves for generator events
- Full quantity of reserves not guaranteed deliverable to system absent out-of-market actions


Issues Infeasible contingency reserve procurement

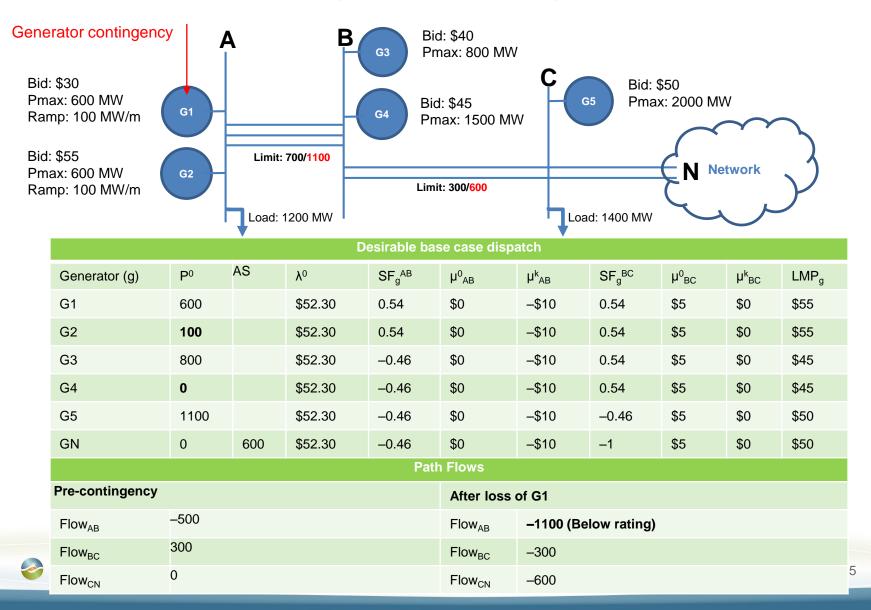
Base case dispatch (absent out-of-market action)							
Generator (g)	P ⁰	AS	λ ⁰	$\mathrm{SF}_{\mathrm{g}}^{\mathrm{AB}}$	$\mu^{0}{}_{AB}$	$\mu^k{}_{AB}$	LMPg
G1	750	250	\$40	1	\$0	\$10	\$30
G2	0	750	\$40	1	\$0	\$10	\$30
G3	1250	0	\$40	0	\$0	\$10	\$40
G4	1000	0	\$40	0	\$0	\$10	\$40
Path Flows							
Pre-contingency					After loss of G4 & AS Deployment		
Flow _{AB}	low _{AB} 750			Flow _{AB}	1750 (Above emergency)		

Issues Infeasible contingency reserve procurement

Desirable base case dispatch							
Generator (g)	P ⁰	AS	λ^0	$\mathrm{SF}_{\mathrm{g}}^{\mathrm{AB}}$	μ^0_{AB}	μ^k_{AB}	LMPg
G1	750	250	\$40	1	\$0	\$10	\$30
G2	0	500	\$40	1	\$0	\$10	\$30
G3	1250	250	\$40	0	\$0	\$10	\$40
G4	1000	0	\$40	0	\$0	\$10	\$40
Path Flows							
Pre-contingency					After loss of G4 & AS Deployment		
Flow _{AB}	Flow _{AB} 750			Flow _{AB}	1500 (Below rating)		

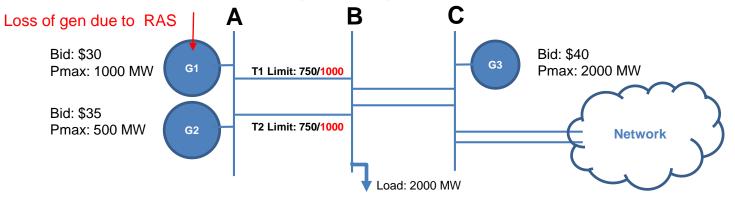


Insecure transmission given potential generator loss


- ISO requires N-1 security for loss of generation
- All transmission facilities must be below emergency ratings
- N-1 security for loss of generation not ensured absent out-of-market actions

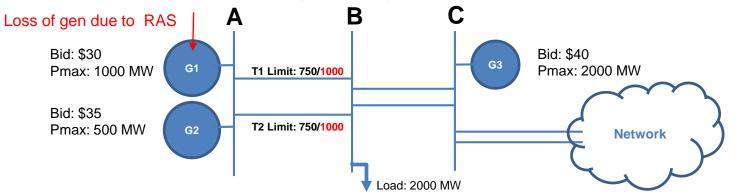
Insecure transmission given potential generator loss

Insecure transmission given potential generator loss



Uneconomic dispatch given generation loss due to RAS

- Lower production cost solution available when generation loss due to RAS action is modeled.
- All transmission facilities must be below emergency ratings
- Economic solution not ensured absent out-of-market actions


Uneconomic dispatch given generation loss due to RAS

Base case dispatch (absent out-of-market action)							
Generator (g)	P ⁰	AS	λ ⁰	$\mathrm{SF}_{\mathrm{g}}^{\mathrm{AB}}$	$\mu^{0}{}_{AB}$	μ^k_{AB}	LMPg
G1	1000		\$40	1	\$0	\$5	\$35
G2	0		\$40	1	\$0	\$5	\$35
G3	1000		\$40	0	\$0	\$5	\$40
GN	0	1000	\$40	0	\$0	\$5	\$40
Path Flows							
Pre-contingency After loss of T2 (and RAS G1)						S G1)	
Flow _{AB}	1000				Flow _{AB}	1000	
Flow _{BC}	-1000				Flow _{BC}	-1000	
Flow _{CN}	0				Flow _{CN}	0	
Bid Cost = $1000(30) + 1000(40) = $70,000$							

Uneconomic dispatch given generation loss due to RAS

Desirable base case dispatch							
Generator (g)	P ⁰	AS	λ ⁰	$\mathrm{SF}_{\mathrm{g}}^{\mathrm{AB}}$	μ^0_{AB}	μ^k_{AB}	LMP_g
G1	1000		\$40	1	\$5	\$0	\$35
G2	500		\$40	1	\$5	\$0	\$35
G3	500		\$40	0	\$5	\$0	\$40
GN	0	1000	\$40	0	\$5	\$0	\$40
Path Flows							
Pre-contingency After loss of T2 (and RAS G1)							
Flow _{AB}	1500				Flow _{AB}	500	
Flow _{BC}	-500				Flow _{BC}	-1500	
Flow _{CN} 0 Flow _{CN} $^{-1000}$ Bid Cost = 1000(30) + 500(35) + 500(40) = \$67,500							

Market issues related to generator contingency and RAS modeling

- 1. Infeasible contingency reserve procurement
- 2. Insecure transmission given potential generator loss
- 3. Uneconomic dispatch given generation loss due to RAS

Next Steps

Next Steps

Date	Event	
Wed 4/19/2016	Issue paper	
Mon 4/25/2016	Stakeholder conference call	
Fri 5/13/2016	Stakeholder comments due on issue paper	
Thu 5/19/2016	Straw proposal posted	
Thu 5/26/2016	Stakeholder conference call (straw proposal)	
Thu 6/09/2016	Stakeholder comments due on straw proposal	
Thu 6/23/2016	evised straw proposal posted	
Thu 6/30/2016	takeholder conference call (revised straw proposal)	
Thu 7/14/2016	Stakeholder comments due (revised straw proposal)	
Mon 8/8/2016	Draft final proposal posted	
Mon 8/15/2016	Stakeholder meeting (draft final proposal)	
Mon 8/29/2016	Stakeholder comments due (draft final proposal)	
10/26-10/27	Board of Governors	
Fall 2017	Implementation	

Please submit comments to initiativecomments@caiso.com

Questions

