A Procedure for Calculation of Opportunity Costs of Use Limitations: Starts, Operation Hours & Energy

Benjamin F. Hobbs

Chair, Market Surveillance Committee, California ISO

Schad Professor of Environmental Management, DoGEE Director, Environment, Energy, Sustainability & Health Institute The Johns Hopkins University

MSC Meeting, Folsom, Nov. 15, 2013

- What are the opportunity costs of *starts*, *operation hours*, and *energy* for quick-start thermal units that have monthly or other limits on one or more of those?
- That is, how much profit (and, market surplus, assuming competitive conditions) is foregone if we use up one more start, run-hour, or MWh today?
 - One more start today could mean one less start later in the year, and a loss of benefit then
 - Likewise for one more operating hour, and one more MWh
- Proposed use: as adders in values of proxy start-up cost, proxy minimum-load cost, and default energy bid used by LMPM

Assumptions

- Limits on numbers of starts, operating hours, and/or MWh for a unit over some period (1 week ↔ 1 yr)
 - Defined as "season"
- RTUC can be used to start-up or shut-down
 → 15 minute prices relevant
- Future distribution of 5 minute prices known
 - Can construct a representative time series of prices for remainder of month
 - Actual profitability can be approximated by deterministic SCUC
 - Not actually true: prices might be higher or lower than expected and are not perfectly known
 - > Ideal: stochastic programming (SDP; see Oren et al.)
 - Could have multiple scenarios (hot/cool summer; major outages; etc.)

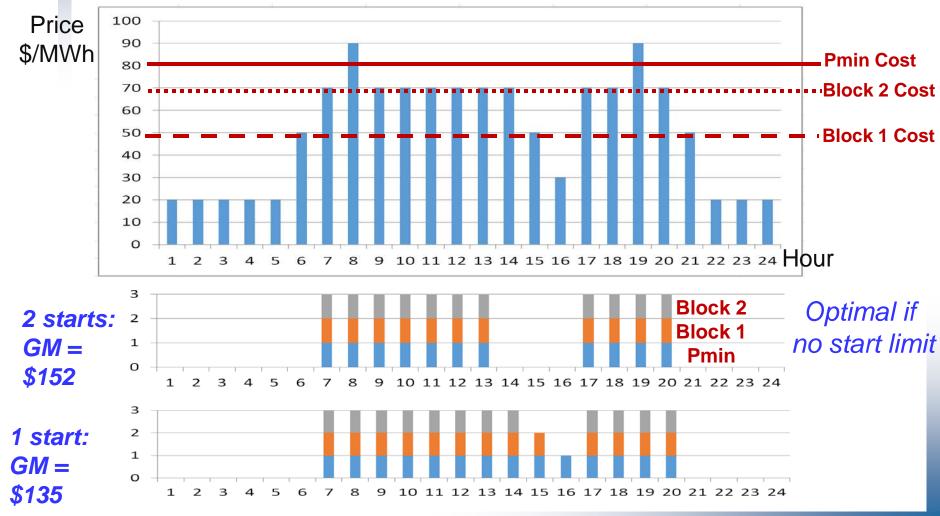
Basic Approach

Solve over entire season

- *Decisions*: timing of starts & shut-downs, and energy (& ancillary services) production by 15 minute interval
- Objective:
 - Maximize Gross Margin = [Revenues Variable Costs]
- Constraints:
 - **1.** Internal unit commitment, dispatch constraints:
 - a) Energy: ramp limits, Pmin, Pmax
 - b) Minimum shut-down and start-up times
 - c) (Ancillary service capabilities)

2. Operating constraints:

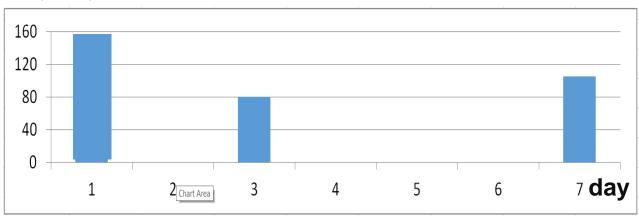
- a) Total number of starts over season < NSTARTS
- **b)** Total number of operating hours over season < NHOURS
- c) Total energy over season < NMWH


• **Opportunity Cost calculations:**

- a) Decrease NSTARTS by 1 (or other number), and note ∆Gross Margin
- **b)** Decrease NHOURS by 1, note \triangle GM
- c) Note shadow price on NMWH constraint

Example: Unit Commitment to Calculate GM

3 MW unit 24 hrs: Pmin = 1 MW, 2 variable blocks

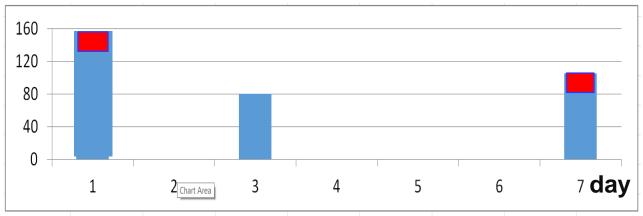

- \$50 start up cost; \$80/hr Pmin cost; 3 hr min down time
- Variable cost block 1 \$49/MWh; block 2 \$69/MWh

Optimal Starts over Season (7 days)

Say: NSTARTS = 4, NHOURS = 2, NMWH = 50 for 1 week: What is optimal operation?

GM by day

					<u>Total</u>
GM	152	80	105	=	\$337
Starts	2	1	1	=	4
Hours	11	5	9	=	25 hr
MWh	21	13	16	=	50 MWh



NSTART Opportunity Cost

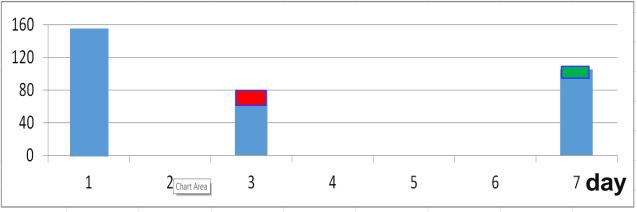
• Decrease NSTARTS from 4 to 3, reoptimize

- Red is decrease
- Green is increase

GM by day

					<u>Total</u>
GM	135	80	80	=	\$295
Starts	1	1	1	=	3
Hours	14	5	6	=	25 hr
MWh	27	13	10	=	50 MWh

GM Decrease = \$337 - \$295 = \$42 opportunity cost of start

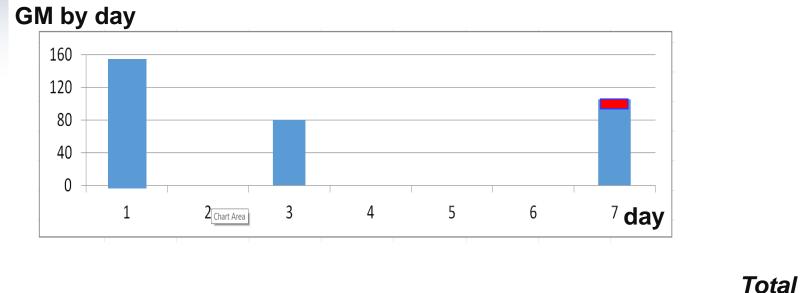


NHOURS Opportunity Cost

• Decrease NHOURS from 25 to 24, reoptimize

- Red is decrease
- Green is increase

GM by day


					<u>Total</u>
GM	152	72	108	=	\$332
Starts	2	1	1	=	4
Hours	11	4	9	=	24 hr
MWh	21	11	18	=	50 MWh

GM Decrease = \$337 - \$232 = \$5 opportunity cost of operating hours

NMWH Opportunity Cost

- Use -1*shadow price from NHOURS constraint (= increase in GM from △NMWH = +1).
- Effect of \triangle NMHW = -1:

GM	152	80	101	=	\$333
Starts	2	1	1	=	4
Hours	11	5	9	=	25 hr
MWh	21	13	15	=	49 MWh

GM Decrease = \$337 - \$333 = \$4 opportunity cost of energy

Carrie Bentley, CAISO Estimating real time prices: Preliminary comparison northern pricing node

	Apr-13		Sep-13	
LMP Price (\$/MWh)	Actual LMP	Estimated LMP	Actual LMP	Estimated LMP
Less than \$0/MWh	4%	7%	0%	1%
Between \$0/MWh and \$25/MWh	7%	13%	4%	8%
Between \$25/MWh and \$50/MWh	81%	67%	88%	87%
Between \$50/MWh and \$100/MWh	6%	12%	6%	4%
Between \$100/MWh and \$250/MWh	2%	1%	0%	1%
Greater than \$250/MWh	1%	1%	0%	1%

- September estimations were fairly accurate
- April estimations more distributed around the \$25/MWh and \$50/MWh price bin
- Congestion during base year (2012) impacted the implied heat rate calculation
 - If congestion does not materialize in 2013, estimated prices vary

Estimating real time prices: Preliminary comparison southern pricing node

	Apr-13		Sep-13	
LMP Price (\$/MWh)	Actual LMP	Estimated LMP	Actual LMP	Estimated LMP
Less than \$0/MWh	3%	3%	2%	2%
Between \$0/MWh and \$25/MWh	6%	11%	7%	8%
Between \$25/MWh and \$50/MWh	81%	67%	82%	80%
Between \$50/MWh and \$100/MWh	8%	15%	8%	8%
Between \$100/MWh and \$250/MWh	1%	2%	1%	1%
Greater than \$250/MWh	1%	2%	0%	2%

- In September, estimated 80% of LMPs to be between \$25/MWh and \$50/MWh, only 2% less than actual LMPs
- April estimated LMPs are more distributed around the \$25/MWh and \$50/MWh price range than actual LMPs

