Enhancing the flexible ramping product to better address net load uncertainty

Ryan Kurlinski
Manager, Analysis and Mitigation Group
Department of Market Monitoring
California Independent System Operator

Western EIM Body of State Regulators Webinar
June 12, 2020
DMM has made 3 major recommendations for improving initial flexible ramping product design

1. Locational → account for transmission constraints
 - Being addressed in current FRP initiative
 - DMM supports the most recent proposal

2. Procure flexible capacity in day-ahead market
 - CAISO is developing design in day-ahead market enhancements initiative

3. Incorporate uncertainty about what net load will be 1 to 4 hours out from current real-time market run
 - Purpose of today’s talk: Explain this recommendation
To increase upward ramping capacity, CAISO grid operators make significant upward adjustments to the demand for energy used by the real-time market software to dispatch bids.

![Graph showing load adjustments and net load over the hours of the day from July to September 2019. The graph includes lines for hour-ahead load adjustment, 15-minute market load adjustment, 5-minute market load adjustment, and net load. The x-axis represents the hour of the day, while the y-axis represents the load adjustment in MW. The graph shows peaks in load adjustment around the middle of the day and a general decrease towards the evening.](image)
CAISO operators also commit extra gas-fired capacity after day-ahead market and ramp units up in real-time to create more upward ramping capacity.

These are referred to as **out-of-market** or **exceptional dispatches**.
At a given point in time, net load at a time in the future is a random variable with a range of uncertainty that can be characterized by a probability density function. A wider probability density function indicates wider range of uncertainty. CAISO characterizes upper end of range of possible outcomes using 97.5th percentile.
In real-time, the market software uses net load forecast for every interval up to 4.5 hours in future to determine optimal schedules at the current interval (e.g. 13:45 in this example).
At 13:45 the uncertainty over what net load may actually be at each point in time over the next 4.5 hours grows further out in the future.

![Graph showing net load forecast and uncertainty bands.](image-url)
Flexible ramping product has improved real-time software by considering some uncertainty around the net load forecast for every interval 4.5 hours in future used to determine optimal schedules at the current interval.

The “15-minute” uncertainty in the net load forecast made at 13:45 for 16:15 assumes forecast for 16:00 is accurate.
The “15 minute” uncertainty used by FRP is substantially less than actual uncertainty over what net load forecast may be 1 to 4 hours in future.
The real-time market software does not optimally position resource fleet to meet potential high net load outcomes 1 to 4 hours in the future.

- “15-minute” uncertainty that RT FRP schedules for at 13:45
- Actual net load realization
- Net load forecast at 13:45
For example, software will miss opportunity to start units with 3 hour start times that are needed by 17:00 to meet potential high net load outcomes—requires manual operator interventions.
Considering actual net load uncertainty 1 to 4 hours in future would allow the real-time software to position resources to meet higher potential net load outcomes.
For questions, comments, or more information:

• Department of Market Monitoring website:

• DMM quarterly and annual reports

• DMM comments on 2020 market design initiatives
 – http://www.caiso.com/Pages/documentsbygroup.aspx?GroupID=E0E702C8-DC83-4625-98E2-36230535B44A

• Email for Ryan Kurlinski
 – rkurlinski@caiso.com