

2018-2019 Transmission Planning Process Increased Capabilities for Transfers of Low Carbon Electricity between the Pacific Northwest and California Informational Study

Ebrahim Rahimi

Lead Regional Transmission Engineer

Stakeholder Call

April 18, 2018

Background and Objective:

- CEC and CPUC issued a letter to CAISO *
- A informational special study is included in the 2018-2019 TPP
- Evaluating options to increase transfer of low carbon electricity between the Pacific Northwest and California
- Assess what role AC and DC interties can play in displacing generation whose reliability is tied to Aliso Canyon.

^{* &}lt;a href="http://www.caiso.com/Documents/CPUCandCECLettertolSO-Feb152018.pdf">http://www.caiso.com/Documents/CPUCandCECLettertolSO-Feb152018.pdf

Study Scope:

- The impact of the followings on Increased Capabilities for Transfers of Low Carbon Electricity between the Pacific Northwest and California, will be evaluated:
 - Increase transfer capacity of AC and DC interties
 - Increase dynamic transfer limit on AC interties
 - Automating manual controls on key BPA infrastructure
 - Assigning RA value to firm zero-carbon imports or transfers

Study Horizon:

- The study will be done for a 10 year horizon
- Short term
 - Utilizing the existing system capability under favorable conditions
- Long term
 - Review resource availability in Pacific Northwest in the long term that could be utilized with increased transfer capability
 - Evaluate alternatives to increase the AC and DC intertie capacity

Study Assumptions:

- Near term and long term horizon
- Applicable standards
- Study area includes WECC paths and the network to transfer power to/from paths
- California Load forecast will be based on 2017 IEPR
- California Generation forecast based on Default Scenario or 42 MMT Scenario
- The latest load and generation forecast for other entities will be used in the study.

Study Scenarios in Near Term:

- Favorable conditions in Pacific Northwest for N-S flows:
 - Expected in the spring season
 - More generation comes from southern PNW system
 - Lower load in central and southern Oregon
 - Westbound flow on Hemingway Summer Lake
- South to North flow
 - High solar generation in California
 - Less generation in the south PNW system
 - Higher loads in central and southern Oregon
 - Eastbound flow on Hemingway Summer Lake

Study Scenarios in Long Term:

- Analyze availability of excess hydro resources in Pacific Northwest system to either provide energy or resource shaping to California.
- Under resource shaping scenario, solar power will be transferred to PNW system during the day and hydro power will be transferred to California during evening ramp.
- If production simulation results determines that higher capacity on AC and DC interties are required beyond existing path rating, snapshots to test alternatives to increase the capability will be developed.

Study Methodology

Increase the Capacity of AC and DC Interties

- Review Common Corridor Contingency on COI. Conditionally credible P7 contingency versus P6 contingency.
- Review existing congestion due to physical or market limitation (Day Ahead vs. Real Time)
- In the short term
 - Utilizing favorable conditions in PNW by increasing COI limit to around 5100 MW in the N-S direction
 - Addressing PDCI operational limits in the S-N direction
- In the long term (If production simulation indicated increased intertie capacity was required)
 - Increase PDCI rating
 - Increasing AC intertie capability, such as greenfield projects

Increase Dynamic Transfer Capability (DTC)

- DTC is the amount of within-hour change in power flows a system can tolerate over short periods of time (i.e. five minute) without causing an unacceptable voltage excursion or some other adverse system condition.*
 - BPA currently limits the DTC on COI to 400 MW. The limit may increase in near future to 600 MW.
- Identify market needs for increased DTC
- Develop and assess alternatives to increase the DTC
 - Leveraging real-time voltage stability analysis
 - Adding voltage support
 - Assess impact and use of BPA synchrophasor RAS

^{*} https://www.bpa.gov/Finance/RateCases/BP-18/Meetings/BP-18_TxRateCaseWorkshop_20160713.pdf

Control Automation on PDCI

- Determine the market needs and the potential reliability and ramping benefits of the intra-hour scheduling on PDCI
- Determine the required MW of intra-hour scheduling
- Discussions with facility owners to determine the control upgrades/automation required to facilitate intra-hour scheduling on PDCI.
- Evaluate if there are any reinforcements required in the rest of the system to accommodate intra-hour scheduling on PDCI.

Assigning Resource Adequacy Value to Import

- Discussions with CEC/CPUC is underway to further define the scope
- Explore the maximum annual expected Northwest hydro import capability of the California ISO grid to estimate an upper bound on avoided GHG emissions assuming that RA/RPS counting criteria are not limiting
- Extent to which system capacity and flexibility needs can be met by increased utilization of existing capability and potential increased capability
- Explore if this changes gas retirement headroom

Next Steps

- Comments are due on 4/25/2018
 - Submit comments to <u>RegionalTransmission@caiso.com</u>
- Final scope to be posted on 5/1/2018
- Preliminary results presentation: November 16, 2018.
- Final results: January 31, 2019
- Final results presentation: February 2019 stakeholder meeting
- Final report: March 2019 final board-approved 2018-2019 Transmission Plan

Questions

Your comments and questions are welcome.

For written comments, please send to: RegionalTransmission@caiso.com

Stay connected

@California_ISO

Download ISO Today mobile app

Sign up for the Daily Briefing at www.caiso.com

ISO Public