Overview of Reliability Demand Response Resource

Radha Madrigal
Customer Service Department

May 8, 2014
Agenda

• Product overview and purpose
• Define Reliability Demand Response Resource
• Agreements & registration
• Participating in the day-ahead and real-time markets
• Accessing the Demand Response System (DRS)
• Meter data submission
• Baseline methodology for RDRR
• Settlements – Default Load Adjustment (DLA)
PRODUCT OVERVIEW AND PURPOSE
Overview
Reliability Demand Response Resource

• Wholesale demand response product allowing emergency responsive demand response resources to integrate into the ISO market

• Created as a result of a multi-party, cross-industry settlement agreement approved by the California Public Utilities Commission (CPUC)

• Resolves issues concerning quantity, use and resource adequacy treatment of retail emergency-triggered demand response programs
Overview
Reliability Demand Response Resource

• Modeled like a supply resource relying on the functionality and infrastructure designed for *proxy demand resources* (PDR)

• Enables *reliability demand response resources* (RDRR) to offer energy economically in the day-ahead market

• Enables RDRR to offer remaining uncommitted capacity as energy in the real-time market
RDRR is…

Compatible with existing retail emergency-triggered demand response programs including:

- Investor-Owned Utilities’ interruptible load programs
- Direct-load control programs
- Agriculture and interruptible pumping program

Demand response resources that are configurable to offer day-ahead energy and respond to reliability event in real-time

- Large-single resource
- Aggregated resources
Purpose
Reliability Demand Response Resource

• Reliability-only uses include:
 – System emergencies
 • transmission emergencies on ISO controlled grid
 • mitigation of imminent or threatened operating reserve deficiencies
 – Resolving local transmission and distribution system emergencies
Purpose
Reliability Demand Response Resource

• Resources provide additional value to respond economically in the day-ahead timeframe yet can curtail real-time load when required under a system or local emergency

• ISO can utilize full available capacity of RDRR in the markets
Comparison of PDR and RDRR Designs

<table>
<thead>
<tr>
<th>Design</th>
<th>Acronym</th>
<th>Services</th>
<th>Market dispatch</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proxy Demand Demand Resource</td>
<td>PDR</td>
<td>Energy, non-spin, residual unit commitment (RUC)</td>
<td>Economic day-ahead and real-time</td>
<td>Bids into ISO markets as supply</td>
</tr>
<tr>
<td>Reliability Demand Response Resource</td>
<td>RDRR</td>
<td>Energy</td>
<td>Economic day-ahead, reliability real-time</td>
<td>Bids into ISO markets; used for reliability purposes</td>
</tr>
</tbody>
</table>
RDRR Real-Time Example

SC submits bids between $950 - $1000/MW

The ISO has a system or local emergency

RDRR bids are added to the bid pool

Resources are dispatched...

And settled like generation
DEFINE RELIABILITY DEMAND RESPONSE RESOURCE
Resource Characteristics

- Minimum load curtailment ≥ 500kW per RDRR
- Must be capable of delivering reliability energy in real-time, reaching full curtailment within 40 minutes
- Cannot have a minimum run time of greater than one (1) hour
- Must have sustained response period or maximum run time of at least four (4) hours
Resource Characteristics

• Must be dispatchable by the ISO’s automated dispatch system (ADS) within a geographic location sub-load aggregation point (Sub-LAP) for a specific MW quantity

• In Master File, all RDRR resources will:
 – Have a Pmin Value of 0MW
 – Have $0 minimum load cost compensation value registered
Resource Characteristics

• Must be available for up to 15 Events and/or 48 hours per term

• A term is a 6 month period (summer and winter)
 – Summer term runs from June through September
 – Winter term runs from October through May

• Economic participation in the day-ahead market will not reduce availability limits

• RDRR automatically roll-over each term unless demand response provider opts out
Resource Characteristics

- RDRR may elect to participate as a resource that receives discrete dispatches (all or nothing) modeled similar to constrained output generators
 - Resource will be limited in size up to 50MW
- RDRR that do not elect to have discrete dispatches will have no ISO specified megawatt size limitation
- Discrete dispatch election through Generator Resource Data Template and maintained in Master File
- Discrete dispatch option is for the real-time market only
AGREEMENTS & REGISTRATION
Securing Agreements for Wholesale Participation

• Before participating in the ISO’s wholesale markets, Demand Response Provider (DRP) must:
 – Have an agreement with the Load Serving Entity (LSE) who serves the demand responsive load
 – Have an agreement with the Utility Distribution Company (UDC) who distributes the energy to the demand response locations
 – Execute a Demand Response Agreement with the ISO to participate in the wholesale markets
Obtaining California ISO Agreement, DRP ID and System Access

- A guide has been developed for DRP’s providing a checklist of tasks that must be completed prior to obtaining access to the Demand Response System (DRS)
 - http://www.caiso.com/participate/Pages/Load/Default.aspx

- Includes additional document links to initiate processes to obtain a DRP agreement and system access

- Documents are in the Proxy Demand Resource section of the page (the registration process is the same)
Key Points

- Demand response locations are site specific
- Different LSEs or sub-LAPs require different registrations
- Different contract dates require different registrations
Example 1 – DRP1 contracted with 4 locations in San Diego to provide DR in the wholesale market

DRP1 will complete a registration for LSE1 and another registration for LSE2
Example 2 – DRP2’s locations are all with the same LSE but, the contract dates are not the same.

DRP2 will complete 2 separate registrations based on the contract dates.
Establishing a Portfolio

- Once agreements are executed and accepted
- DRP requests system access (see checklist)
- Enters customer specific information into DRS to add demand response locations and create registrations
- Using an RDRR Registration, ISO assigns an RDRR Resource ID used in the ISO’s wholesale markets
- DRP completes an ISO Generator Resource Data Template (GRDT)
 - Details resource specific characteristics
Periodic Performance Testing

- One unannounced test dispatch per year to ensure availability and performance of resource
- Test events will count toward RDRR availability limit of 15 events and/or 48 hours per RDRR term
- Test events instructed through exceptional dispatch and settled as test energy
- Availability standards apply for RDRR identified as resource adequacy resources
PARTICIPATING IN THE DAY-AHEAD AND REAL-TIME MARKETS
Market Rules for RDRR

• Minimum load curtailment must be at least 500kW
• ISO will apply a generation distribution factor to all aggregated RDRR; this is not a biddable parameter
• May not submit RUC availability or ancillary service bids
• May not self-provide ancillary services
• RDRR may receive an exceptional dispatch if system conditions warrant the action
Bidding Rules for RDRR
Day-Ahead Market

- Energy may not be self-scheduled
- Multi-segment energy bid curves may be submitted in the day-ahead market
- Day-ahead energy bids will not be constrained to be in the range of the ISO bid cap and 95% of the bid cap
- Economic participation in the day-ahead market will not reduce availability limits for the RDRR term
Bidding Rules for RDRR
Real-Time Market

- RDRR resources electing to receive discrete dispatches must submit a single segment bid in real-time
- Multi-segment bids may be submitted for RDRR resources not under a discrete dispatch election
- Real-Time energy bids for all RDRR resources must be in the range of the ISO bid cap and 95% of the ISO bid cap
Real-Time Dispatches for Reliability

- Real-time dispatch of RDRR in event of imminent or actual system or transmission emergency as specified in ISO Operating Procedure 4420
- RDRR may be a marginal resource and may be dispatched as such, unless the resource has a discrete dispatch election
- RDRR identified as marginal resource may set the LMP
- RDRR dispatched in real-time settled on a 15-minute (FMM) or 5-minute time scale (RTD)
Real-Time Dispatches for Reliability

- Real-time RDRR dispatches will be received through ADS
- Dispatches of RDRR in real-time will be based solely on the energy bids of RDRR between the ISO bid cap and 95% of the ISO bid cap
- Upon system conditions returning to normal, RDRR returned to “emergency-only” status
- Event (#) and event duration (hours) will be recorded in DRS and counted against total RDRR eligible availability limits of 15 and/or 48 hours within any six (6) month RDRR term
ACCESSING THE DEMAND RESPONSE SYSTEM (DRS)
Purpose of DRS

DRP and SC must provide an external point of contact

- Registration
- Meter Data Submission
- Calculate energy measurement

Participants need a digital certificate for access to DRS
DRPs may perform the following functions in DRS:

- Create & modify locations
- Create & modify registrations
- Review and comment by LSE and UDC
- Upload & download meter data
- Calculate & download customer baseline information
- Evaluate compliance and event information
Defining the Terms – Demand Response System

- **Locations**
 - Physical location of the demand responsive entity
 - Includes customer data like UDC account number, physical service location, curtailable load amounts

- **Registration**
 - May be comprised of a single location or an aggregation of many locations
 - Aggregation of locations must be served by same LSE and located in same Sub-LAP for approval by LSE and UDC
 - Meter Data information submitted at registration level for baseline calculation prior to market participation
Defining the Terms

• Registration submitted for LSE, UDC review and ISO approval

• RDRR Resource ID assigned by ISO
 – One Registration to One RDRR Resource ID
 – Unique RDRR Resource ID used as identifier for the ISO wholesale markets
 – RDRR Resource ID is utilized for participation in the wholesale markets (scheduling/bidding and settlement)
 – Resource specific information for RDRR Resource ID resides in the ISO Master File
DRS Application Updates

Fields

• Registration Details Screen:
 – Program
 – Season (visible when Reliability program is selected)
 – Discrete Dispatch (visible when Reliability program is selected)
 – Start Date (defaults to today’s date)
 – End Date (populated based on end of season date)

• Performance Tab:
 – Method
DRS Application Updates

Fields

- Name
- Registration Id: R2561
- DRP
- Status: Pending
- Discrete Dispatch
- Program
- Season
- Start Date
- End Date
- Reliability (1/1/09-5/31/20)
- Program:
 - Select Season:
 - Winter 2013
 - Summer 2014
 - Winter 2014
 - Summer 2015
 - Winter 2015
 - Summer 2016
 - Winter 2016
 - Summer 2017
 - Winter 2017
 - Summer 2018
 - Winter 2018
 - Summer 2019
- Locations:
 - UDC
 - LSE
 - SubLAP
 - PDR_ID
 - DRP SCID
 - Reserve ID
DRS Application Updates

Fields
DRS Application Updates
Screens

• Seasonal Resource Usage (new)
 – Displays season summary data

• Event Search page
 – Season column added to this page

• Performance Search page
 – Season column added to this page
DRS Application Updates

Seasonal Resource Usage

<table>
<thead>
<tr>
<th>Resource</th>
<th>Sub LAP</th>
<th>Program Performance Hours</th>
<th>Pending Cap (MW)</th>
<th>Confirmed Cap (MW)</th>
<th>Season</th>
<th>Discrete Dispatch Flag</th>
<th>DRP</th>
<th>Capacity Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table above illustrates the seasonal resource usage and capacity thresholds. Each row represents a different resource and column specifies various parameters such as sub LAP, performance hours, pending and confirmed capacity, season, discrete dispatch flag, DRP, and capacity threshold.
DRS Application Updates

Event Search Page

![Event Search Page](image)

Table: Event Search

<table>
<thead>
<tr>
<th>ID</th>
<th>Date</th>
<th>Event Type</th>
<th>Status</th>
<th>Reg Id</th>
<th>Registration Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Season](image)

Total: 2
DRS Application Updates
Performance Search Page
Using the Demand Response System

• Instructions for submitting/retrieving information from DRS can be found in the user guide:

• Technical interface specifications for DRS Exchange Services v20111001 are available:
METER DATA
Meter Data Submission

• A RDRR is a scheduling coordinator metered entity
 – SCs submit Settlement Quality Meter Data (SQMD) to the DRS for DRPs they represent

• Used to establish Customer Baseline Load
 – Baseline established using “10 in 10” methodology
 – Simple average of 10 similar non-event days using most recent days prior to an “event”

• A written application may be submitted to the ISO for approval of a methodology for deriving Settlement Quality Meter Data that consists of a statistical sampling of energy usage data
Meter Data Submission - Post Market

- Only the scheduling coordinator for the DRP may submit meter data.

- DRP must identify their SC during the registration process and submit User Application Authorization Request Form (AARF) on the SC’s behalf.

- Only the scheduling coordinator for the LSE can retrieve meter data for the RDRRs associated to their DLAP Resource IDs.

- Scheduling coordinator for LSE will need to obtain DRS access (AARF) to see active RDRR resources that impact DLAP Resource IDs.
Meter Data Submission - Post Market

- Actual SQMD must be submitted into DRS for the RDRR Resource ID following the ISO meter data submittal timelines
 - T+8B
 - T+48B
 - T+168B - 172B resubmittal window
 - Data submitted during this time period will be subject to the Rules of Conduct, which include a penalty of $1000 per Trade Date affiliated with an SCID

- RDRR resources participating in the day-ahead market may submit data in 60-minute (hourly) interval format for each of the 24 hours in a day

- RDRR resources must submit sufficient SQMD after an event has occurred (historical/event day data)

- All meter data submitted in GMT
Meter Data Submission

• Data needs to be provided for 24 hours for each day
 – hourly intervals for day ahead only, 5-minute intervals for real-time

• Meter data submittal file will accommodate multiple resources and multiple trade days

• For multiple locations in a registration, meter data must be aggregated from underlying loads and submitted

• Meter data is used for different calculations in DRS

• Meter data may be uploaded to DRS in XML format or submitted via API

• XSD Technical specifications for meter data submission can be found in the technical interface specifications
How Meter Data is Used

- Raw Customer Baseline
- Load Point Adjustment (Morning Adjustment)
- RDRR Energy Measurement
Validating Performance

- Performance calculation based on a 10-in-10 baseline methodology with a bi-directional morning adjustment capped at 20%

- If approved by the ISO, a DRP may use a different methodology for deriving performance measurement
 - Conform to North American Energy Standards Board (NAESB) standards
 - Will require FERC approval of tariff amendment
 - “Hourly Gen” choice in DRS to accommodate this option
Baseline Methodology for RDRR
Standard Baseline Types

- RDRR will rely on 2 North American Energy Standards Board measurement and verification standard baseline types
 - Baseline Type – I
 - Performance evaluation based on historical interval meter data
 - Baseline Type – II
 - Performance evaluation based on statistical sampling to estimate energy consumption of aggregated demand resource where interval metering is not available
Baseline methodology for RDRR Resources using Baseline Type – I
Using Interval Meter Data to Settle for RDRR Resources

Baseline Type – I

• Raw baseline will be calculated

• After the event, the Load Point Adjustment will be calculated for the resource

• Meter data will be used to measure performance

• Resource will be paid based on performance
Defining a Customer Baseline

• A customer baseline is an average performance measurement of RDRR when the resource is in a “non-event” state

• Events are defined as anything that would change the performance output of a resource.
 – SLIC outage
 – Day-ahead schedule
 – Real-time dispatch
 – Capacity award

• Calculated using Settlement Quality Meter Data

• Requires 45 days of historic meter data
Defining a Customer Baseline

• When an event occurs, DRS selects the most recent, similar non-event days

• Customer baseline established using “10-in-10” methodology

• Simple average of 10 similar non-event days using most recent days prior to an “event”

• The raw customer baseline can be adjusted up or down by no more than 20% - called a Load Point Adjustment (Morning Adjustment) for the day

• Revised customer baseline is used for the RDRR energy measurement
Example of How to Calculate the Baseline

Meter Data Submission HE 16 for 45-Day Historical Customer Baseline Calculation

Trade Date: 6/15 - HE 16

<table>
<thead>
<tr>
<th>May 2010</th>
<th>June 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUN</td>
<td>SUN</td>
</tr>
<tr>
<td>MON</td>
<td>MON</td>
</tr>
<tr>
<td>TUES</td>
<td>TUES</td>
</tr>
<tr>
<td>WED</td>
<td>WED</td>
</tr>
<tr>
<td>THUR</td>
<td>THUR</td>
</tr>
<tr>
<td>FRI</td>
<td>FRI</td>
</tr>
<tr>
<td>SAT</td>
<td>SAT</td>
</tr>
</tbody>
</table>

- **NE** = Non-Event Day
- **E** = Event Day
- **WE** = Weekend
- **H** = Holiday

<p>| | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.75</td>
<td>14.75</td>
<td>15.50</td>
<td>14.20</td>
<td>14.50</td>
<td>13.85</td>
<td>6.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.75</td>
<td>13.75</td>
<td>14.75</td>
<td>15.50</td>
<td>15.25</td>
<td>15.75</td>
<td>15.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.75</td>
<td>14.75</td>
<td>15.50</td>
<td>14.20</td>
<td>14.50</td>
<td>13.85</td>
<td>6.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.75</td>
<td>13.75</td>
<td>14.75</td>
<td>15.50</td>
<td>15.25</td>
<td>15.75</td>
<td>15.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14.80</td>
<td>15.75</td>
<td></td>
</tr>
</tbody>
</table>

Trade Date: 6/15 - HE 16
Example of How to Calculate the Raw Baseline

<table>
<thead>
<tr>
<th>Date</th>
<th>Type</th>
<th>Event</th>
<th>HE 16 Meter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/25/2010</td>
<td>Weekday</td>
<td>N</td>
<td>14.75</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>Weekday</td>
<td>N</td>
<td>15.50</td>
</tr>
<tr>
<td>5/27/2010</td>
<td>Weekday</td>
<td>N</td>
<td>15.25</td>
</tr>
<tr>
<td>5/28/2010</td>
<td>Weekday</td>
<td>N</td>
<td>15.75</td>
</tr>
<tr>
<td>6/1/2010</td>
<td>Weekday</td>
<td>N</td>
<td>13.75</td>
</tr>
<tr>
<td>6/2/2010</td>
<td>Weekday</td>
<td>N</td>
<td>14.00</td>
</tr>
<tr>
<td>6/3/2010</td>
<td>Weekday</td>
<td>N</td>
<td>14.75</td>
</tr>
<tr>
<td>6/7/2010</td>
<td>Weekday</td>
<td>N</td>
<td>13.75</td>
</tr>
<tr>
<td>6/8/2010</td>
<td>Weekday</td>
<td>N</td>
<td>15.50</td>
</tr>
<tr>
<td>6/10/2010</td>
<td>Weekday</td>
<td>N</td>
<td>14.50</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>147.5</td>
</tr>
<tr>
<td>Average for Baseline</td>
<td></td>
<td></td>
<td>14.75</td>
</tr>
</tbody>
</table>

- Baseline calculation used for performance evaluation of RDRR resource for Trade Date 6/15/10 – HE 16

- Raw Customer Baseline = 14.75
How the Baseline is Used

• Raw customer baseline is established as an average of normal (no curtailment) load use

• A Load Point Adjustment (morning adjustment) ratio is applied to the Raw Customer Baseline once per day for each hourly event

• Revised customer baseline establishes basis against which actual meter data is used to determine RDRR energy measurement
Defining the Load Point Adjustment (Morning Adjustment)

- Load Point Adjustment (morning adjustment) triggered by first event of a trade day

- Ratio applied to the raw Customer Baseline based on how the load is behaving on the event day
 - Based on a calculation using 3 prior hours (excludes hour immediately prior to event start) of average load compared with average RDRR Customer Baseline for the same hours
 - Load Point Adjustment ratio has a floor at 80% and a ceiling of 120%
 - If the Load Point Adjustment remains between 80% and 120%, then the calculated ratio is used
Calculating the Load Point Adjustment
ABC Company’s Resource

Using ABC Company’s RDRR:
Event Day/Hour: June 15, 2010 – HE 16

<table>
<thead>
<tr>
<th>Load</th>
<th>DR Meter</th>
<th>Raw Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>HE12</td>
<td>13.00</td>
<td>14.00</td>
</tr>
<tr>
<td>HE13</td>
<td>12.50</td>
<td>14.20</td>
</tr>
<tr>
<td>HE14</td>
<td>14.75</td>
<td>15.50</td>
</tr>
<tr>
<td>Average</td>
<td>13.42</td>
<td>14.57</td>
</tr>
</tbody>
</table>

Load Point Adjustment = $\frac{13.42}{14.57}$
= 0.9210 or 92.10%

Load Point Adjustment will use 0.9210 multiplier against raw Customer Baseline to establish adjusted Customer Baseline
Calculating the Load Point Adjustment

- Load Point Adjustment factors in actual performance conditions of the trade date (weather-related or other conditions that would affect the RDRR performance)
- Re-adjusts the raw baseline to provide a more accurate adjusted baseline for the event to measure RDRR energy measurement

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>14.75</td>
<td>X</td>
<td>0.92</td>
<td>13.57</td>
<td>12.42</td>
</tr>
</tbody>
</table>
Comparison – Raw Baseline and Baseline with Load Point Adjustment

Raw Baseline

Metered Load

Adjusted Baseline Using Load Point Adjustment

06:00 Noon 18:00

Represents actual RDRR performance
SETTLEMENTS – DEFAULT LOAD ADJUSTMENT (DLA)
Unique Settlement Rules for Demand Response

- FERC Order 745 required the ISO to implement a Net Benefits Test (NBT)
- NBT establishes price threshold above which demand response resource bids are deemed cost effective
- Settlement impact is to LSE’s only
Default Load Adjustment

• Net benefits test price is used to determine whether or not a Default Load Adjustment (DLA) is applied

• DLA represents the amount of load curtailed (not meeting the net benefits test) within a Default LAP for a specific LSE

• When applicable, a resource-specific DLA will be applied to the LSE’s Default LAP Resource ID’s metered load
Default Load Adjustment

• LSE will see the DLA in the SC bill determinant file

• Detailed information on the calculation and application of the DLA to calculate the LSE Uninstructed Imbalance Energy (UIE) can be found in the BPM configuration guide for pre-calculation of the real-time energy quantity
 – Variable name is: Resource STLMT Interval PDR NBT Load Adjustment Quantity
WRAPPING IT UP
Course Summary

- Wholesale demand response product allowing emergency responsive demand response resources to integrate into the ISO market
- Enables Reliability Demand Response Resources (RDRR) to participate in the day-ahead and real-time energy markets
- May not offer RUC capacity
- May not offer ancillary services capacity
- Must complete agreements with LSE, UDC, and ISO
- Registration through the Demand Response System (DRS)
Course Summary

• RDRR design is compatible with existing retail emergency-triggered demand response programs including:
 – Investor-Owned Utilities interruptible load programs
 – Direct-load control programs
 – Agriculture and interruptible pumping program

• RDRR respond to a reliability event for the delivery of “reliability energy” in real-time
 – May be dispatched due to system emergencies
 – May be dispatched to resolve local transmission and distribution emergencies
Course Summary

• Meter data submission through DRS
• Performance evaluated against 10-in-10 baseline methodology
• RDRR is settled similar to generators
• Default Load Adjustment may be applied to Load Serving Entities’ metered load based on net benefits test
REFERENCES
References

- Reliability Demand Response (initiative page)
 - http://www.caiso.com/participate/Pages/MeteringTelemetry/Default.aspx
- Implementation Link for RDRR
- Market Simulation Structured Scenarios (updated May 1, 2014):
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADS</td>
<td>Automated Dispatch System</td>
</tr>
<tr>
<td>DLAP</td>
<td>Default Load Aggregation Point</td>
</tr>
<tr>
<td>FMM</td>
<td>Fifteen-Minute Market</td>
</tr>
<tr>
<td>DRP</td>
<td>Demand Response Provider</td>
</tr>
<tr>
<td>DRS</td>
<td>Demand Response System</td>
</tr>
<tr>
<td>LMP</td>
<td>Locational Marginal Price</td>
</tr>
<tr>
<td>LSE</td>
<td>Load Serving Entity</td>
</tr>
<tr>
<td>PDR</td>
<td>Proxy Demand Resource</td>
</tr>
<tr>
<td>RDRR</td>
<td>Reliability Demand Response Resource</td>
</tr>
<tr>
<td>RTD</td>
<td>Real-Time Dispatch</td>
</tr>
<tr>
<td>RUC</td>
<td>Residual Unit Commitment</td>
</tr>
<tr>
<td>SC</td>
<td>Scheduling Coordinator</td>
</tr>
<tr>
<td>SQMD</td>
<td>Settlement Quality Meter Data</td>
</tr>
<tr>
<td>UDC</td>
<td>Utility Distribution Company</td>
</tr>
</tbody>
</table>