

Overview of Reliability Demand Response Resource

Radha Madrigal
Customer Service Department

Agenda

- Product overview and purpose
- Define Reliability Demand Response Resource
- Agreements & registration
- Participating in the day-ahead and real-time markets
- Accessing the Demand Response System (DRS)
- Meter data submission
- Baseline methodology for RDRR
- Settlements Default Load Adjustment (DLA)

PRODUCT OVERVIEW AND PURPOSE

Overview Reliability Demand Response Resource

- Wholesale demand response product allowing emergency responsive demand response resources to integrate into the ISO market
- Created as a result of a multi-party, cross-industry settlement agreement approved by the California Public Utilities Commission (CPUC)
- Resolves issues concerning quantity, use and resource adequacy treatment of retail emergency-triggered demand response programs

Overview Reliability Demand Response Resource

- Modeled like a supply resource relying on the functionality and infrastructure designed for proxy demand resources (PDR)
- Enables reliability demand response resources (RDRR) to offer energy economically in the day-ahead market
- Enables RDRR to offer remaining uncommitted capacity as energy in the real-time market

RDRR is...

Compatible with existing retail emergency-triggered demand response programs including:

- Investor-Owned Utilities' interruptible load programs
- Direct-load control programs
- Agriculture and interruptible pumping program

Demand response resources that are configurable to offer day-ahead energy and respond to reliability event in real-time

- Large-single resource
- Aggregated resources

Purpose Reliability Demand Response Resource

- Reliability-only uses include:
 - System emergencies
 - transmission emergencies on ISO controlled grid
 - mitigation of imminent or threatened operating reserve deficiencies
 - Resolving local transmission and distribution system emergencies

Purpose Reliability Demand Response Resource

- Resources provide additional value to respond economically in the day-ahead timeframe yet can curtail real-time load when required under a system or local emergency
- ISO can utilize full available capacity of RDRR in the markets

Comparison of PDR and RDRR Designs

Design	Acronym	Services	Market dispatch	Description
Proxy Demand Resource	PDR	Energy, non-spin, residual unit commitment (RUC)	Economic day-ahead and real-time	Bids into ISO markets as supply
Reliability Demand Response Resource	RDRR	Energy	Economic day-ahead, reliability real- time	Bids into ISO markets; used for reliability purposes

RDRR Real-Time Example

SC submits bids between \$950 -\$1000/MW The ISO has a system or local emergency

RDRR bids are added to the bid pool

Resources are dispatched...

And settled like generation

DEFINE RELIABILITY DEMAND RESPONSE RESOURCE

Minimum load curtailment ≥ 500kW per RDRR

Must be capable of delivering reliability energy in real-time, reaching full curtailment within 40 minutes

Cannot have a minimum run time of greater than one (1) hour

Must have sustained response period or maximum run time of at least four (4) hours

- Must be dispatchable by the ISO's automated dispatch system (ADS) within a geographic location sub-load aggregation point (Sub-LAP) for a specific MW quantity
- In Master File, all RDRR resources will:
 - Have a Pmin Value of 0MW
 - Have \$0 minimum load cost compensation value registered

- Must be available for up to 15 Events and/or 48 hours per term
- A term is a 6 month period (summer and winter)
 - Summer term runs from June through September
 - Winter term runs from October through May
- Economic participation in the day-ahead market will not reduce availability limits
- RDRR automatically roll-over each term unless demand response provider opts out

- RDRR may elect to participate as a resource that receives discrete dispatches (all or nothing) modeled similar to constrained output generators
 - Resource will be limited in size up to 50MW
- RDRR that do not elect to have discrete dispatches will have no ISO specified megawatt size limitation
- Discrete dispatch election through Generator Resource Data Template and maintained in Master File
- Discrete dispatch option is for the real-time market only

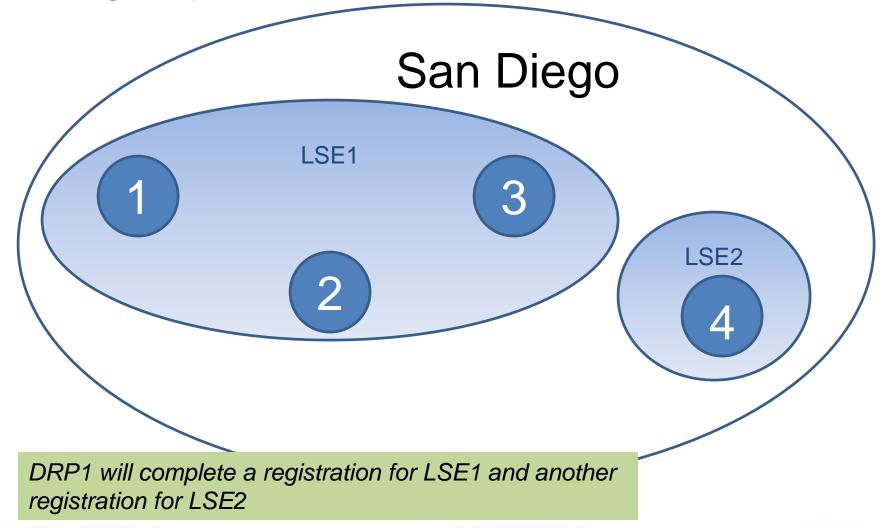
AGREEMENTS & REGISTRATION

Securing Agreements for Wholesale Participation

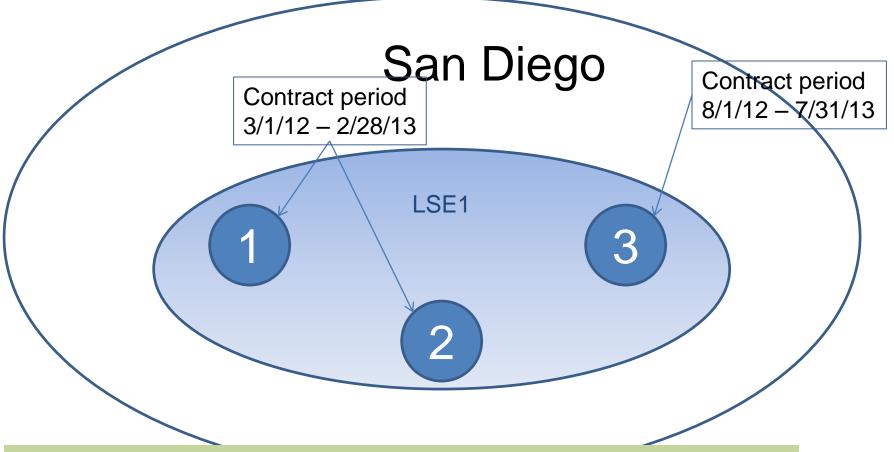
- Before participating in the ISO's wholesale markets,
 Demand Response Provider (DRP) must:
 - Have an agreement with the Load Serving Entity (LSE) who serves the demand responsive load
 - Have an agreement with the Utility Distribution
 Company (UDC) who distributes the energy to the demand response locations
 - Execute a Demand Response Agreement with the ISO to participate in the wholesale markets

Obtaining California ISO Agreement, DRP ID and System Access

- A guide has been developed for DRP's providing a checklist of tasks that must be completed prior to obtaining access to the Demand Response System (DRS)
 - http://www.caiso.com/participate/Pages/Load/Default.aspx
- Includes additional document links to initiate processes to obtain a DRP agreement and system access
- Documents are in the Proxy Demand Resource section of the page (the registration process is the same)



Key Points



Example 1 – DRP1 contracted with 4 locations in San Diego to provide DR in the wholesale market

Example 2 – DRP2's locations are all with the same LSE but, the contract dates are not the same

DRP2 will complete 2 separate registrations based on the contract dates

Establishing a Portfolio

- Once agreements are executed and accepted
- DRP requests system access (see checklist)
- Enters customer specific information into DRS to add demand response locations and create registrations
- Using an RDRR Registration, ISO assigns an RDRR Resource ID used in the ISO's wholesale markets
- DRP completes an ISO Generator Resource Data Template (GRDT)
 - Details resource specific characteristics
 - http://www.caiso.com/Documents/GeneratorResourceDataTemplate.xls

Periodic Performance Testing

- One unannounced test dispatch per year to ensure availability and performance of resource
- Test events will count toward RDRR availability limit of 15 events and/or 48 hours per RDRR term
- Test events instructed through exceptional dispatch and settled as test energy
- Availability standards apply for RDRR identified as resource adequacy resources

PARTICIPATING IN THE DAY-AHEAD AND REAL-TIME MARKETS

Market Rules for RDRR

- Minimum load curtailment must be at least 500kW
- ISO will apply a generation distribution factor to all aggregated RDRR; this is not a biddable parameter
- May not submit RUC availability or ancillary service bids
- May not self-provide ancillary services
- RDRR may receive an exceptional dispatch if system conditions warrant the action

Bidding Rules for RDRR Day-Ahead Market

- Energy may not be self-scheduled
- Multi-segment energy bid curves may be submitted in the day-ahead market
- Day-ahead energy bids will not be constrained to be in the range of the ISO bid cap and 95% of the bid cap
- Economic participation in the day-ahead market will <u>not</u> reduce availability limits for the RDRR term

Bidding Rules for RDRR Real-Time Market

- RDRR resources electing to receive discrete dispatches must submit a single segment bid in real-time
- Multi-segment bids may be submitted for RDRR resources not under a discrete dispatch election
- Real-Time energy bids for all RDRR resources must be in the range of the ISO bid cap and 95% of the ISO bid cap

Real-Time Dispatches for Reliability

- Real-time dispatch of RDRR in event of imminent or actual system or transmission emergency as specified in ISO Operating Procedure 4420
- RDRR may be a marginal resource and may be dispatched as such, unless the resource has a discrete dispatch election
- RDRR identified as marginal resource may set the LMP
- RDRR dispatched in real-time settled on a 15-minute (FMM) or 5-minute time scale (RTD)

Real-Time Dispatches for Reliability

- Real-time RDRR dispatches will be received through ADS
- Dispatches of RDRR in real-time will be based solely on the energy bids of RDRR between the ISO bid cap and 95% of the ISO bid cap
- Upon system conditions returning to normal, RDRR returned to "emergency-only" status
- Event (#) and event duration (hours) will be recorded in DRS and counted against total RDRR eligible availability limits of 15 and/or 48 hours within any six (6) month RDRR term

ACCESSING THE DEMAND RESPONSE SYSTEM (DRS)

https://portal.caiso.com/

Market Participant Portal CAISO.com

Application Access

Access and Identity Management

Inquiries & Disputes

CIDI

Customer Inquiry Dispute and Information

Market & Operations

CMRI

Customer Market Results Interface

CRR

Congestion Revenue Rights

SIBR

Scheduling Infrastructure & Business Rules

SIBR Reports Scheduling Infrastructure & Business Rules Reports

Metering

Operational Meter Analysis & Reporting

OASIS

MO OASIS

OMAR

Open Access Same-Time Information System

Outage Coordination

SLIC

Scheduling & Logging for ISO of California

Reliability Requirements

CIRA

California ISO Interface for Resource Adequacy

RAAM

Resource Adequacy Availability Management

Information available

Limitted availability

Renewables & Demand Response

DRS

Demand Response System

Participating Intermittent Resource Program

Settlements

MRI-S

Market Results Interface -Settlements

Systems & Resource Modeling

Transmission Registry

Master File

RIMS

Resource Interconnection Management System

Resource Interconnection Management System -Generation

Scheduled maintenance or outage

Unscheduled Outage

Purpose of DRS

DRP and SC must provide an external point of contact Registration Meter Data Submission Calculate energy measurement

Participants need a digital certificate for access to DRS

DRPs may perform the following functions in DRS:

Create & modify locations

Create & modify registrations

Review and comment by LSE and UDC

Upload & download meter data

Calculate & download customer baseline information

Evaluate compliance and event information

Defining the Terms – Demand Response System

Locations

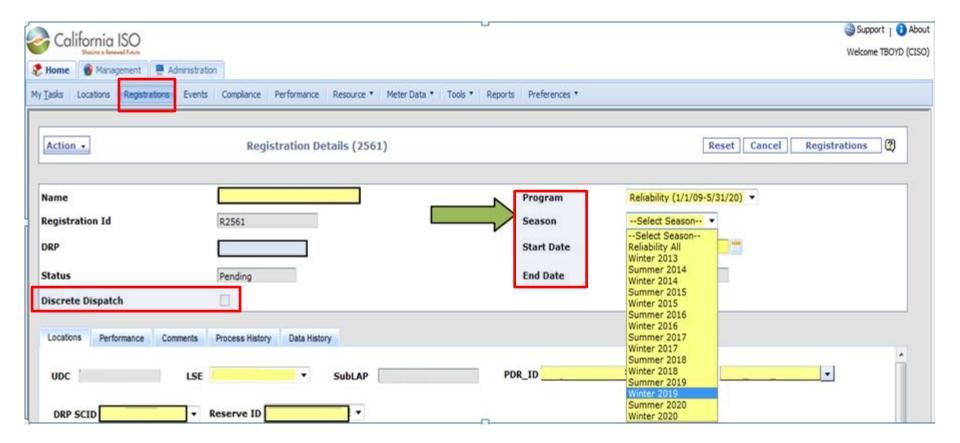
- Physical location of the demand responsive entity
- Includes customer data like UDC account number, physical service location, curtailable load amounts

Registration

- May be comprised of a single location or an aggregation of many locations
- Aggregation of locations must be served by same LSE and located in same Sub-LAP for approval by LSE and UDC
- Meter Data information submitted at registration level for baseline calculation prior to market participation

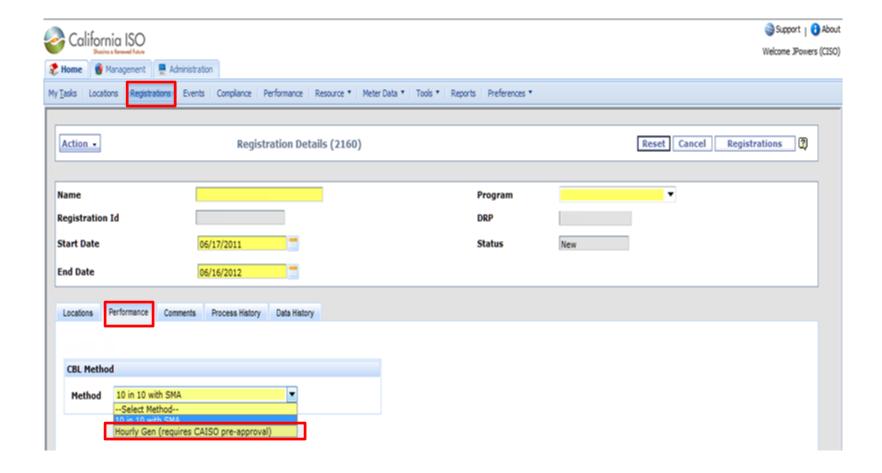
Defining the Terms

- Registration submitted for LSE, UDC review and ISO approval
- RDRR Resource ID assigned by ISO
 - One Registration to One RDRR Resource ID
 - Unique RDRR Resource ID used as identifier for the ISO wholesale markets
 - RDRR Resource ID is utilized for participation in the wholesale markets (scheduling/bidding and settlement)
 - Resource specific information for RDRR Resource ID resides in the ISO Master File



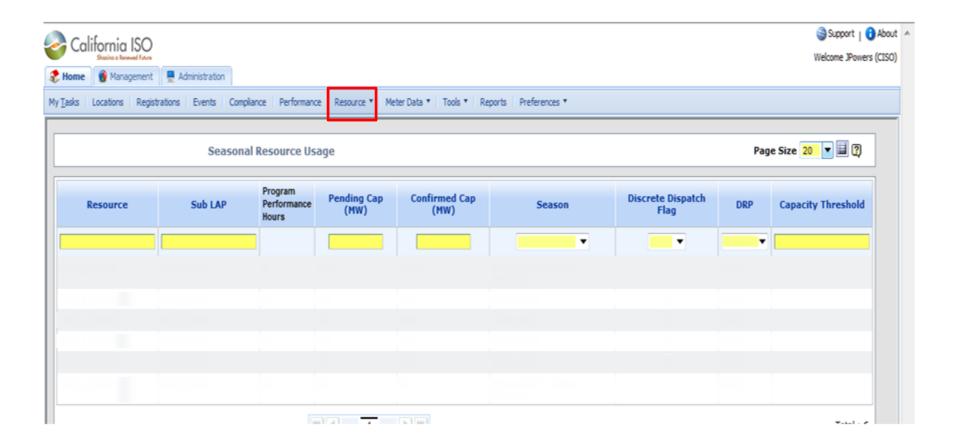
DRS Application Updates Fields

- Registration Details Screen:
 - Program
 - Season (visible when Reliability program is selected)
 - Discrete Dispatch (visible when Reliability program is selected)
 - Start Date (defaults to today's date)
 - End Date (populated based on end of season date)
- Performance Tab:
 - Method



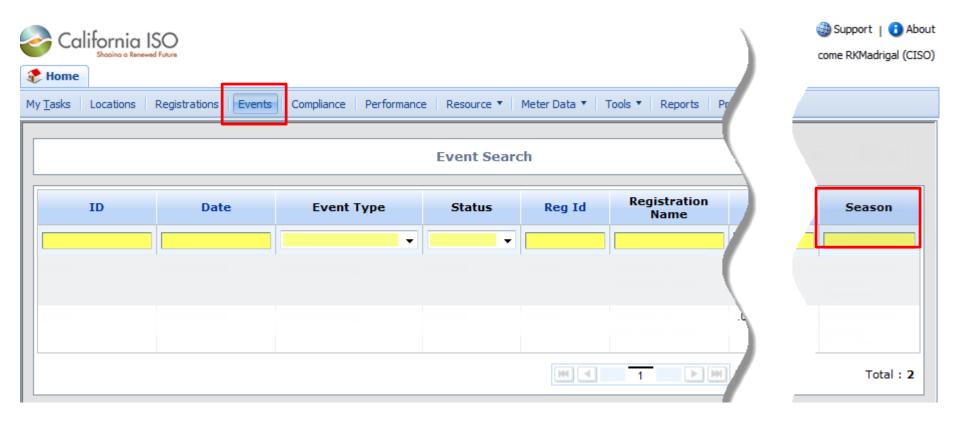
DRS Application Updates Fields

DRS Application Updates Fields

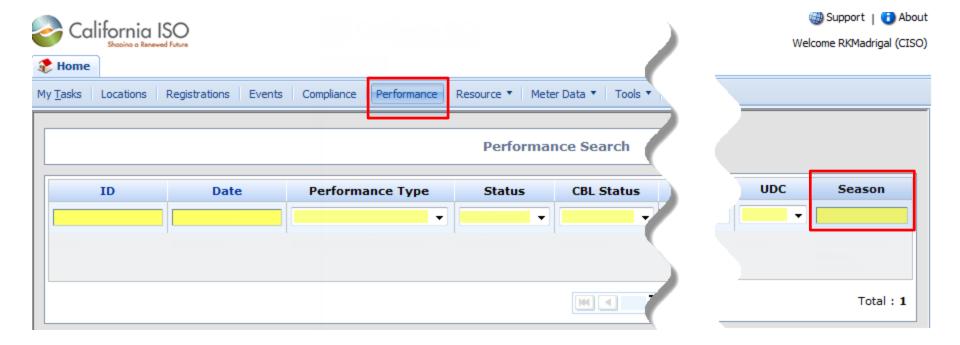


DRS Application Updates Screens

- Seasonal Resource Usage (new)
 - Displays season summary data
- Event Search page
 - Season column added to this page
- Performance Search page
 - Season column added to this page



DRS Application Updates Seasonal Resource Usage



DRS Application Updates Event Search Page

DRS Application Updates Performance Search Page

Using the Demand Response System

- Instructions for submitting/retrieving information from DRS can be found in the user guide:
 - http://www.caiso.com/Documents/DemandResponse
 System_DRS_ISOUserGuideVersion2_0.pdf
- Technical interface specifications for DRS Exchange Services v20111001 are available: http://www.caiso.com/Documents/TechnicalInterfaceSpecification_DRS_ExchangeServices_20111001_v1-0-1_Clean.pdf

METER DATA

Meter Data Submission

- A RDRR is a scheduling coordinator metered entity
 - SCs submit Settlement Quality Meter Data (SQMD) to the DRS for DRPs they represent
- Used to establish Customer Baseline Load
 - Baseline established using "10 in 10" methodology
 - Simple average of 10 similar non-event days using most recent days prior to an "event"
- A written application may be submitted to the ISO for approval of a methodology for deriving Settlement Quality Meter Data that consists of a statistical sampling of energy usage data

Meter Data Submission - Post Market

- Only the scheduling coordinator for the DRP may submit meter data
- DRP must identify their SC during the registration process and submit User Application Authorization Request Form (AARF) on the SC's behalf
- Only the scheduling coordinator for the LSE can retrieve meter data for the RDRRs associated to their DLAP Resource IDs
- Scheduling coordinator for LSE will need to obtain DRS access (AARF) to see active RDRR resources that impact DLAP Resource IDs

Meter Data Submission - Post Market

- Actual SQMD must be submitted into DRS for the RDRR Resource ID following the ISO meter data submittal timelines
 - T+8B
 - T+48B
 - T+168B 172B resubmittal window
 - Data submitted during this time period will be subject to the Rules of Conduct, which include a penalty of \$1000 per Trade Date affiliated with an SCID
- RDRR resources participating in the day-ahead market may submit data in 60-minute (hourly) interval format for each of the 24 hours in a day
- RDRR resources must submit sufficient SQMD after an event has occurred (historical/event day data)
- All meter data submitted in GMT

Meter Data Submission

- Data needs to be provided for 24 hours for each day
 - hourly intervals for day ahead only, 5-minute intervals for real-time
- Meter data submittal file will accommodate multiple resources and multiple trade days
- For multiple locations in a registration, meter data must be aggregated from underlying loads and submitted
- Meter data is used for different calculations in DRS
- Meter data may be uploaded to DRS in XML format or submitted via API
- XSD Technical specifications for meter data submission can be found in the technical interface specifications

How Meter Data is Used

- Raw Customer Baseline
- Load Point Adjustment (Morning Adjustment)
- RDRR Energy Measurement

Validating Performance

- Performance calculation based on a 10-in-10 baseline methodology with a bi-directional morning adjustment capped at 20%
- If approved by the ISO, a DRP may use a different methodology for deriving performance measurement
 - Conform to North American Energy Standards Board (NAESB) standards
 - Will require FERC approval of tariff amendment
 - "Hourly Gen" choice in DRS to accommodate this option

BASELINE METHODOLOGY FOR RDRR

Standard Baseline Types

- RDRR will rely on 2 North American Energy Standards Board measurement and verification standard baseline types
 - Baseline Type I
 - Performance evaluation based on historical interval meter data
 - Baseline Type II
 - Performance evaluation based on statistical sampling to estimate energy consumption of aggregated demand resource where interval metering is not available

BASELINE METHODOLOGY FOR RDRR RESOURCES USING BASELINE TYPE — I

Using Interval Meter Data to Settle for RDRR Resources Baseline Type – I

- Raw baseline will be calculated
- After the event, the Load Point Adjustment will be calculated for the resource
- Meter data will be used to measure performance
- Resource will be paid based on performance

Defining a Customer Baseline

- A customer baseline is an average performance measurement of RDRR when the resource is in a "nonevent" state
- Events are defined as anything that would change the performance output of a resource.
 - SLIC outage
 - Day-ahead schedule
 - Real-time dispatch
 - Capacity award
- Calculated using Settlement Quality Meter Data
- Requires 45 days of historic meter data

Defining a Customer Baseline

- When an event occurs, DRS selects the most recent, similar non-event days
- Customer baseline established using "10-in-10" methodology
- Simple average of 10 similar non-event days using most recent days prior to an "event"
- The raw customer baseline can be adjusted up or down by no more than 20% - called a Load Point Adjustment (Morning Adjustment) for the day
- Revised customer baseline is used for the RDRR energy measurement

Example of How to Calculate the Baseline

Meter Data Submission HE 16 for 45-Day Historical Customer Baseline Calculation

Trade Date: 6/15 - HE 16

May 2010

June 2010

		•				
SUN	MON	TUES	WED	THUR	FRI	SAT
						1 15.00 WE
2 6.75 WE	3 14.75 E	4 15.50 NE	5 14.20 E	6 14.50 NE	7 13.85 E	8 6.75 WE
9 8.75 WE 16 6.75 WE	10 13.75 NE 17 14.75 E	11 14.75 NE 18 15.50 NE	12 15.50 NE 19 14.20 E	13 15.25 NE 20 14.50 NE	14 15.75 NE 21 13.85	15 15.00 WE 22 6.75 WE
23 8.75 WE	24 13.75 NE	25 14.75 NE	26 15.50 NE	27 15.25 NE	28 15.75 NE	29 15.00 WE
30 14.80 WE	31 15.75 H					

SUN	MON	TUES	WED	THUR	FRI	SAT
		1	2	3	4	5
		13.75	14.00	14.75	14.00	6.25
		NE	NE	NE	Е	WE
6	7	8	9	10	11	12
8.75	13.75	15.50	14.20	14.50	13.85	6.75
WE	NE	NE	Ε	NE	Ε	WE
13	14	15	16	17	18	19
6.75	14.75					
WE	Е					
20	21	22	23	24	25	26
27	28	29	30			

NE = Non-Event Day
E = Event Day
WE = Weekend
H = Holiday

Example of How to Calculate the Raw Baseline

Date	Туре	Event	HE 16 Meter Value
5/25/2010	Weekday	N	14.75
5/26/2010	Weekday	N	15.50
5/27/2010	Weekday	N	15.25
5/28/2010	Weekday	N	15.75
6/1/2010	Weekday	N	13.75
6/2/2010	Weekday	N	14.00
6/3/2010	Weekday	N	14.75
6/7/2010	Weekday	N	13.75
6/8/2010	Weekday	N	15.50
6/10/2010	Weekday	N	14.50
	Total		147.5
	Average for	Baseline	14.75

 Baseline calculation used for performance evaluation of RDRR resource for Trade Date 6/15/10 – HE 16

Raw Customer
Baseline = 14.75

How the Baseline is Used

- Raw customer baseline is established as an average of normal (no curtailment) load use
- A Load Point Adjustment (morning adjustment) ratio is applied to the Raw Customer Baseline once per day for each hourly event
- Revised customer baseline establishes basis against which actual meter data is used to determine RDRR energy measurement

Defining the Load Point Adjustment (Morning Adjustment)

- Load Point Adjustment (morning adjustment) triggered by first event of a trade day
- Ratio applied to the raw Customer Baseline based on how the load is behaving on the event day
 - Based on a calculation using 3 prior hours (excludes hour immediately prior to event start) of average load compared with average RDRR Customer Baseline for the same hours
 - Load Point Adjustment ratio has a floor at 80% and a ceiling of 120%
 - If the Load Point Adjustment remains between 80% and 120%, then the calculated ratio is used

Calculating the Load Point Adjustment ABC Company's Resource

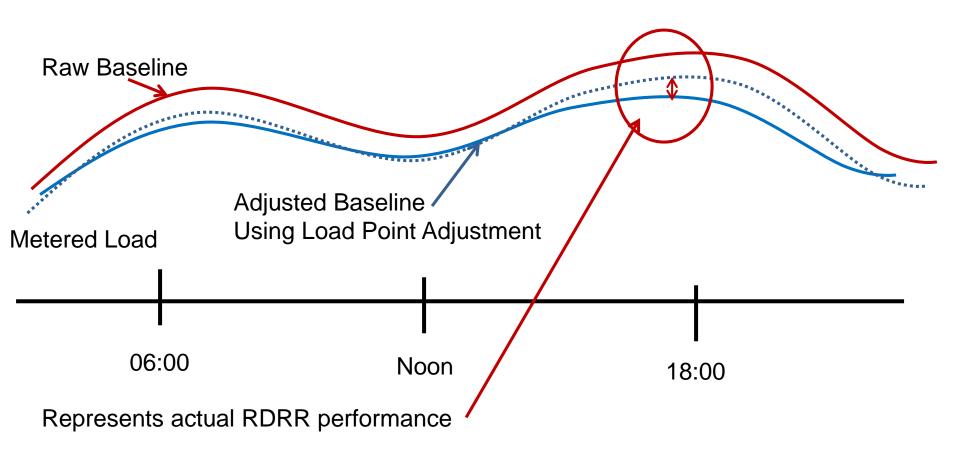
Using ABC Company's RDRR:

Event Day/Hour: June 15, 2010 – HE 16

Load	DR Meter	Raw Baseline
HE12	13.00	14.00
HE13	12.50	14.20
HE14	14.75	15.50
Average	13.42	14.57

Load Point Adjustment = 13.42 / 14.57 = .9210 of 92.10%

Load Point Adjustment will use 0.9210 multiplier against raw Customer Baseline to establish adjusted Customer Baseline


Calculating the Load Point Adjustment

- Load Point Adjustment factors in actual performance conditions of the trade date (weather-related or other conditions that would affect the RDRR performance)
- Re-adjusts the raw baseline to provide a more accurate adjusted baseline for the event to measure RDRR energy measurement

Raw Customer Baseline	Load Point Adjustment	Adjusted Customer Baseline	Meter Load (6/15/10 – HE16)	RDRR Resource Energy Measurement
(14.75) X	0.92	= (13.57) -	12.42	1.15 MWH

Comparison – Raw Baseline and Baseline with Load Point Adjustment

SETTLEMENTS — DEFAULT LOAD ADJUSTMENT (DLA)

Unique Settlement Rules for Demand Response

- FERC Order 745 required the ISO to implement a Net Benefits Test (NBT)
- NBT establishes price threshold above which demand response resource bids are deemed cost effective
- Settlement impact is to LSE's only
- More information on NBT available on ISO website: http://www.caiso.com/informed/Pages/StakeholderProcesses/ http://www.caiso.com/informed/Pages/StakeholderProcesses/ http://www.caiso.com/informed/Pages/StakeholderProcesses/ http://www.caiso.com/informed/Pages/StakeholderProcesses/ http://www.caiso.com/informed/Pages/StakeholderProcesses/ ses/DemandResponseNetBenefitsTest.aspx http://www.caiso.com/informed/Pages/StakeholderProcesses/DemandResponseNetBenefitsTest.aspx ses/DemandResponseNetBenefitsTest.aspx ses/DemandResponseNetBenefitsTest.aspx ses/DemandResponseNetBenefitsTest.aspx ses/DemandResponseNetBenefitsTest.aspx ses/DemandResponseNetBenefitsTest.aspx ses/DemandResponseNetBenefitsTest.aspx https://ocea.pub.com/demandresponseNetBenefitsTest.aspx ses/DemandResponseNetBenefitsTest.aspx ses/DemandresponseNetBenefitsTest.aspx ses/DemandresponseNetBenefitsTest.aspx

Default Load Adjustment

- Net benefits test price is used to determine whether or not a Default Load Adjustment (DLA) is applied
- DLA represents the amount of load curtailed (not meeting the net benefits test) within a Default LAP for a specific LSE
- When applicable, a resource-specific DLA will be applied to the LSE's Default LAP Resource ID's metered load

Default Load Adjustment

- LSE will see the DLA in the SC bill determinant file
- Detailed information on the calculation and application of the DLA to calculate the LSE Uninstructed Imbalance Energy (UIE) can be found in the BPM configuration guide for pre-calculation of the real-time energy quantity
 - Variable name is: Resource STLMT Interval PDR NBT Load Adjustment Quantity

WRAPPING IT UP

Course Summary

- Wholesale demand response product allowing emergency responsive demand response resources to integrate into the ISO market
- Enables Reliability Demand Response Resources (RDRR) to participate in the day-ahead and real-time energy markets
- May not offer RUC capacity
- May not offer ancillary services capacity
- Must complete agreements with LSE, UDC, and ISO
- Registration through the Demand Response System (DRS)

Course Summary

- RDRR design is compatible with existing retail emergency-triggered demand response programs including:
 - Investor-Owned Utilities interruptible load programs
 - Direct-load control programs
 - Agriculture and interruptible pumping program
- RDRR respond to a reliability event for the delivery of "reliability energy" in real-time
 - May be dispatched due to system emergencies
 - May be dispatched to resolve local transmission and distribution emergencies

Course Summary

- Meter data submission through DRS
- Performance evaluated against 10-in-10 baseline methodology
- RDRR is settled similar to generators
- Default Load Adjustment may be applied to Load Serving Entities' metered load based on net benefits test

REFERENCES

References

- Reliability Demand Response (initiative page)
 - http://www.caiso.com/informed/Pages/StakeholderProcesses/ReliabilityDemand ResponseProduct.aspx
- Reliability Demand Response Product, Revised Draft Final Proposal, Version 2.0.
 October 14, 2010
 - http://www.caiso.com/Documents/RevisedDraftFinalProposalVersion2-ReliabilityDemandResponseProduct.pdf
- Demand Response System User Guide, Version 2.0, August 11, 2010
 - http://www.caiso.com/Documents/DemandResponseSystem_DRS_ISOUserGuid eVersion2_0.pdf
- Business Practice Manual for Metering, Version 9. February 3, 2014
 - http://www.caiso.com/participate/Pages/MeteringTelemetry/Default.aspx
- Implementation Link for RDRR
 http://www.caiso.com/Pages/documentsbygroup.aspx?GroupID=951924EF-AFDA-49D1-93B2-675A3045ED69
- Market Simulation Structured Scenarios (updated May 1, 2014):
- http://www.caiso.com/Documents/FERCOrderNo745-ReliabilityDemandResponseProductStructuredScenario1_0.pdf

Acronyms

ADS	Automated Dispatch System
DLAP	Default Load Aggregation Point
FMM	Fifteen-Minute Market
DRP	Demand Response Provider
DRS	Demand Response System
LMP	Locational Marginal Price
LSE	Load Serving Entity
PDR	Proxy Demand Resource
RDRR	Reliability Demand Response Resource
RTD	Real-Time Dispatch
RUC	Residual Unit Commitment
SC	Scheduling Coordinator
SQMD	Settlement Quality Meter Data
UDC	Utility Distribution Company

