

Summer 2022 Heatwave Discussion

Guillermo Bautista Alderete, Ph.D. Director, Market Analysis and Forecasting

Market Surveillance Committee Meeting General Session November 21, 2022

Introduction

Despite the sustained heat wave and unprecedented load levels, the California Independent System Operator (ISO) did not order rotating outages and maintained reliable system operations at all times during the September heatwave.

- This presentation discusses
 - the heatwave conditions
 - resource sufficiency evaluation
 - storage resources

CAISO was able to keep the lights on due to action steps and multiple external factors

- 1. Increased capacity through resource adequacy procurement
- 2. Enhanced coordination, awareness, and communications
- 3. Market enhancements developed and implemented over the past two years
- 4. The use of new state programs to provide non-market resources to address extreme events
- 5. Deployment of demand response and calls for conservation efforts, and
- 6. Geographic diversity of extreme heat across the West

CAISO set a record load of 52,061 MW on Sept. 6

A 10-day shattering heatwave drove record demands

- Multiple cities in California broke 100-year old records for maximum and minimum temperatures
- Using 28 years' worth of weather data, the ISO weighted 3-day temperature through September 6 was a 1-25 year event

California ISO

Many factors helped prevent the CAISO from ordering rotating outages, including conservation

Demand Response and conservation efforts may have reduced demand by up to 1,500 MW

Resource Sufficiency Evaluation

- Given the ongoing developments regarding the capacity test enhancements, this focuses on
 - CAISO area
 - Capacity test

CAISO area reached minimum levels of supply available during peak hours of the heatwave

Incremental supply was lower than incremental requirements in two intervals, leading to capacity test failures

CAISO failed the capacity test in two 15-minute market intervals on Sept. 6 while in energy emergency

The consequence of the failures were *de minimis is* given the levels of transfers optimally available

The capacity test projected available supply even during the critical hours of the emergency

A significant portion of the available capacity was incorrectly estimated from Storage resources

The main contributor was that capacity to support ancillary services, such as regulation up, was incorrectly accounted as available supply. This issue has been corrected.

Several issues impacted the capacity test resulting in over- and under-counting of available supply

- Calculation of MSG units capacity
 - Units coming from outages were still considered in the test due to staled start-up record. Over-counting
 - Upward transitions were not considered in the test due to complexities on possible permutations. Under-counting
- DC losses model as exports realized until the real-time market and, thus, are not considered in the test. Undercounting

Several issues impacted the capacity test resulting in over- and under-counting of available supply

- Imports and export reductions
 - Up to 460 MW of cleared imports considered in the test were curtailed after the fact by other areas. The test used the data known at that time. Over-counting
 - Export reductions projected in the market were not utilized in the test. Over-counting
 - Emergency imports and exports were inconsistently considered in the test due to their timing. Over- or under-counting
- Load arming in EEA3 resulted in additional supply in real-time not seen in the test. Under-counting

CAISO area would have failed four more intervals on Sept 6 if not for the miscalculations of capacity

The additional capacity test failures would have been immaterial to the real-time transfers since transfers were already cleared at much lower values

STORAGE RESOURCES

ISO Public

Page 18

Storage resources contributed to meet demand peaks of Sept 6

Real-time bids of storage resources adjusted through the heatwave and were **bound** at the bid cap of \$1,000MWh

Storage resources carried a significant share of regulation requirements

California ISO

September 6 observed a lower maximum SOC relative to adjacent days

The initial day-ahead state of charge can be very different to what realizes in real-time. It will influence what MSOC is imposed in real-time

A software issue prevented resources with bids above

Storage resources started to discharge early on Sept 6 as prices quickly increased making resources economical

RTD dispatches can only look ahead for next 50 minutes. RTD multi-interval optimization can only optimize through that horizon

Multiple storage resources became in merit after mitigation

🍣 California ISO

With mitigation multiple resources were considered for clearing at lower prices

Early discharges were driven by economics when resources were in merit across the optimized horizon

	Actuals	161	160	157	162	-2	-2	-2	124	-95	-166	
Hour	Interval			↑								
16	11	161		A								
16	12	163	163	+							Dispatches are in MW	
17	1	0	0	0							Green entry: Binding interval	1
17	2	0	94	0	0		_				Other entries: advisory interv	/als
17	3	0	0	0	0	0	В					
17	4	30	0	0	0	33	158	С				
17	5	163	8	0	0	163	163	-166			First RID run to see HE18 in the horizor	1
17	6	163	158	0	92	163	163	-166	-166			
17	7	163	163	64	162	163	119	-166	-166	-120		
17	8	163	163	163	163	163	163	-166	-166	-55	-166	
17	9		163	162	163	163	130	-117	-166	-55	-166	
17	10			163	163	163	71	-55	-117	-55	-110	
17	11							-110	-55	-55	-110	
17	12							-166	-110	-55	-110	
18	1							-166	-166	-3	-8	
18	2							-166	-166	-3	-166	
18	3								-166	-3	-34	
18	4									-3	-8	
18	5										-8	

The multi-interval horizon was too short to foresee and position resources more in advance

California ISO

Dispatches were driven to meet SOC constraints and regulation procurement

Hour	Interval											
16	11	402										
16	12	388	388					Firs	st RTD run	to see the	MSOC=47	72 in the horizon
17	1	388	388	371								
17	2	388	380	371	387							
17	3	388	380	371	387	385						
17	4	386	380	371	387	382	368	•				
17	5	372	379	371	387	369	355	378				
17	6	359	366	371	380	355	341	390	395			
17	7	345	353	366	366	342	331	402	405	394		
17	8	331	339	353	353	328	318	415	413	398	408	
17	9		326	339	339	314	307	423	418	402	420	
17	10			326	326	301	301	427	422	406	428	
17	11							436	426	410	436	
17	12							448	434	414	444	
18	1							460	447	415	445	
18	2							472	459	415	457	
18	3								471	415	460	
18	4									415	460	
18	5										461	
	MSOC			326				472				

Storage bids capped at \$1,000 even when bid caps increased to \$2,000 and clearing prices were above \$1,000

Resources on regulation depleted SOC faster than projected by RTD

Following AGC signal uses up more SOC and changes RTD projections

Several storage resources were manually dispatched to maintain state of charge

