

Surrogate Aggregation Points: Example and Issues

CRR Stakeholder Meeting April 13, 2004

CAISO Market Operations

- In CRR Study 1, the CAISO used surrogate aggregation points to breakdown the large standard load aggregation points prior to the CRR Allocation
- This same process is being proposed in CRR Study 2

- CRRs are balanced
 - Point to Point: Source MW = Sink MW
 - NSR: Σ (Source MW) = Σ (Sink MW)
- Standard Load Aggregation Points
 - Allocation Factors are fixed
- During the Simultaneous Feasibility Test (SFT) there may be large reductions in the CRR MW to alleviate a constraint violation

- During the Simultaneous Feasibility Test (SFT) there may be large reductions in the CRR MW to alleviate a constraint violation
- The MW amount of reduction may be quite large relative to the amount that needs to be alleviated because the Allocation Factors are fixed
- Example given in CRR educational class, presentation #9

- Two CRRs
- CRR1
 - 100 MW
 - Source = Bus A
 - Sink = Load Aggregation Point 1 (LAP1)
- CRR2
 - 100 MW
 - Source = Bus B
 - Sink = Load Aggregation Point 1
- Load Aggregation Point 1 is comprised of 15 buses

5%

Bus B to LAP1

10%

9%

Underlying DC Network with

Buses and Lines

Allocation Process Results

- By placing the CRRs on the network model assume there are 2 constraint overloads (not shown on diagram)
- Constraint 1 violated by 10 MW
- Constraint 2 violated by 20 MW
- Both CRR1 and CRR2 need to be reduced to alleviate constraint violations
- Minimize the MW of reduction
 - Since the Allocation Factors are fixed and the CRRs are balanced, assume
 - CRR1 is reduced by 60 MW
 - CRR2 is reduced by 90 MW

- Break down the larger Standard Load Aggregation
 Points into smaller Load Aggregation Points
 - Smaller in terms of the number of nodes defined under the Load Aggregation Point
 - Intention is less overall CRR reduction to alleviate constraints
- The smaller Load Aggregation Points are called Surrogate Aggregation Points
- Developed by studying historical congestion patterns
 - Most congestion occurs on the inter-Surrogate interfaces
 - Nodal price clustering

- Assume that Load Aggregation Point 1 is comprised of three Surrogate Aggregation Points (SAP)
 - SAP1
 - SAP2
 - SAP3
 - Surrogate Allocation Factors
 - Define the decomposition of the original Load Aggregation Point to the Surrogate Aggregation Points
 - Based on the Allocation Factors of the original Load Aggregation Point
 - Add up the LAP Allocation Factors per SAP

Market Ops - RTT

- Surrogate Allocation Factors
 SAP1
 - **49%**
 - = 10% + 15% + 5% + 5% + 9% + 5%
 - SAP2
 - **22%**
 - SAP3
 - **29%**

Break Down of CRRs

- Based on the Surrogate Allocation Factors the CRRs are decomposed
- CRR1: Bus A to LAP1 of 100 MW
 - 3 new CRRs
 - Bus A to SAP1 of 49 MW (49% * 100 MW)
 - Bus A to SAP2 of 22 MW (22% * 100 MW)
 - Bus A to SAP3 of 29 MW (29% * 100 MW)
- CRR2: Bus B to LAP1 of 200 MW
 - 3 new CRRs
 - Bus B to SAP1 of 98 MW (49% * 200 MW)
 - Bus B to SAP2 of 44 MW (22% * 200 MW)
 - Bus B to SAP3 of 58 MW (29% * 200 MW)

- The Allocation Factors of each Surrogate Aggregation Points are derived by re-normalizing the original Allocation Factors with respect to the Surrogate Aggregations
- For example
 - SAP1 there are 6 nodes in SAP1
 - Total percentage to original LAP is 49%
 - Surrogate Allocation Factors are
 - **10/49**
 - 15/49
 - **5/49**
 - **5/49**
 - 9/49
 - 5/49

- The *initial* MW amount of injection and withdrawal are the same with the large Load Aggregation Points or the Surrogate Aggregation Points
- Take Bus C for example for CRR1 (100 MW)
 - LAP1 (from LAP1 to Bus C)
 - Bus C withdrawal = 100 MW * 10% = 10 MW
 - SAP1
 - 100 MW * 49% = 49 MW (from LAP1 to SAP1)
 - 49 MW * (10/49) = 10 MW (From SAP1 to Bus C)
- The difference is when reductions are made in the SFT to relieve any constraints
- The new CRRs based on the Surrogate Aggregation Points are independent of each other

Reductions: **Assume** the following reductions using the Surrogate Aggregations

CRR1:	Initial	Reduced Amount	Final
SAP1	49	10	39
SAP2	22	2	20
SAP3	29	0	29
CRR2:			
SAP1	98	8	90
SAP2	44	4	40
SAP3	58	18	40

- There is a significant gain in the clearing of CRR MW
- Original reduction of 60 + 90 = 150 MW
- With Surrogate Aggregations 12 + 30 = 42 MW

Final Surrogate percentages relative to each other

	SAP1	SAP2	SAP3
CRR1	80%	91%	100%
CRR2	92%	91%	69%

- What to do with the final Surrogate CRRs?
- Should they be combined?
 - Add the MW back up to the LAP level
 - For example for CRR1
 - CRR from Bus A to LAP1 of (39 + 20 + 29 = 88 MW)
 - The CRR is then from the Source to the LAP

Should the CRRs stay at the Surrogate level?

For settlements need to calculate Surrogate
 Aggregate prices and then settle the CRR revenue
 stream based on these prices

