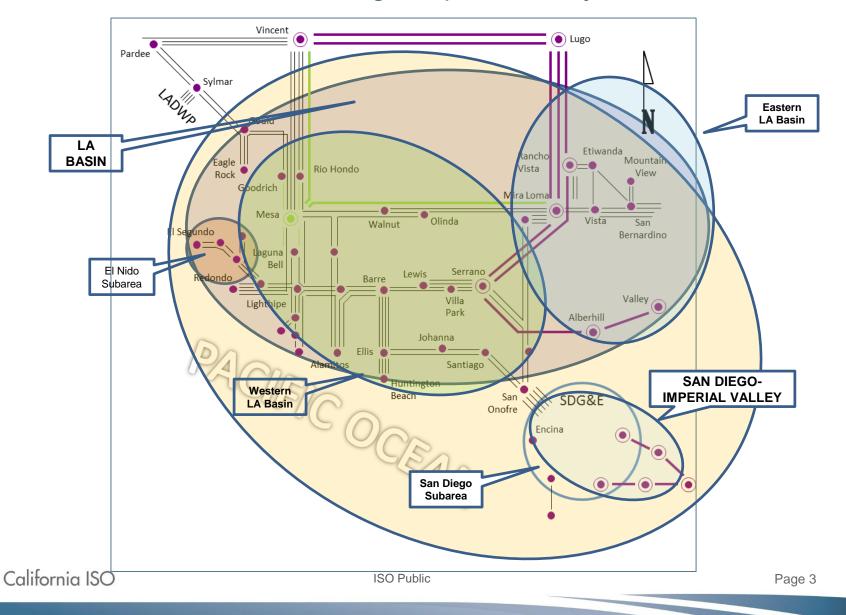


2022 & 2026 Draft LCR Study Results for LA Basin and San Diego-Imperial Valley Areas

David Le Senior Advisor Regional Transmission Engineer


Stakeholder Call March 11, 2021

Overview of the Draft Results

- Providing draft study results for the LA Basin and San Diego-Imperial Valley LCR areas and their bulk sub-areas
- Providing load shapes and estimated charging capability for energy storage for the LCR areas and sub-areas

LA Basin and San Diego-Imperial Valley Areas

Major New Transmission and Resource Assumptions

Project Name	Service Areas	Expected ISD	Modeled in 2022 LCR case	Modeled in 2026 LCR case
New Transmission Projects				
Mesa Loop-In Project (230kV Loop-In)	SCE	6/1/2021	\checkmark	\checkmark
Mesa Loop-In Project (500kV Loop-In)	SCE	3/2022	\checkmark	\checkmark
Imperial Valley – El Centro 230 kV ("S" line) upgrades	IID / SDG&E	Q3 2023		
South Orange County Reliability Enhancement	2023			
New Resource Projects				
Alamitos Repowering Project	SCE	2/7/2020	\checkmark	
Huntington Beach Repowering Project	SCE	2/4/2020	\checkmark	
Stanton Energy Reliability Center	SCE	6/1/2020	\checkmark	
Alamitos 100 MW Battery Energy Storage System	SCE	1/2021	\checkmark	
Local Capacity Area Preferred Resources in western LA Basin (EE, DR, BTM BESS)	SCE	6/1/2021	\checkmark	\checkmark
Q1170 250 MW (1-hr.) or 62.5 MW (4-hr.) Battery Energy Storage	SDG&E	8/1/2021	\checkmark	\checkmark
Additional energy storage projects (total of 389 MW/615 MWh)	SDG&E	12/31/2024		

LA Basin Area: Loads and Resources

Loads (MW)	2022	2026	2026 Resources NQC* (MW)		2026
Gross Load	20233	21380	Market, Net Seller, Wind, IFM Battery	7838	5597
AAEE	-158	-382	Muni	1056	1056
Behind the meter DG (production)	-1450	-2159	QF	141	141
Net Load	18625	18839	LTPP LCR Preferred Resources (BTM BESS, EE, DR, PV)	331	331
Transmission Losses	284	287	Existing Demand Response	287	287
Pumps	20	20	Solar generation	11	11
Loads + Losses + Pumps	18929	19146	Total Qualifying Capacity	9664	7423

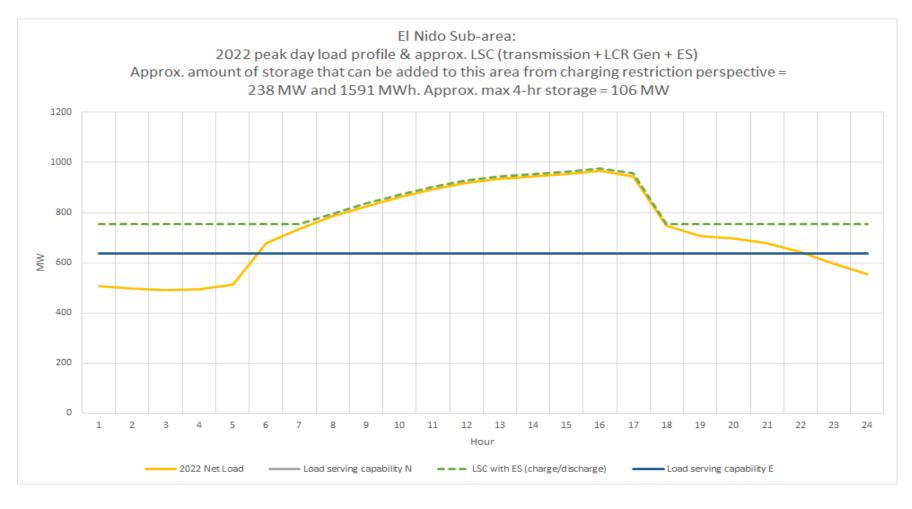
*August NQC for RA accounting purpose

San Diego-Imperial Valley Area: Loads and Resources

Loads (MW)	2022	2026	Resources NQC* (MW)	2022	2026
Gross Load	4514	4642	Market, Net Seller, Battery, Wind	3996	4431
AAEE	-28	-66	Solar (Production is "0" at 20:00 hr. PDT)	356	378
Behind-the-meter DG	0	0	0 QF		2
Net Load	4486	4576	Muni	0	0
Transmission Losses	94	131	131 LTPP Preferred Resources		0
	0	0	Existing Demand Response	7	7
Pumps			Mothballed	0	0
Loads + Losses	4580	4707	Total Qualifying Capacity	4361	4818

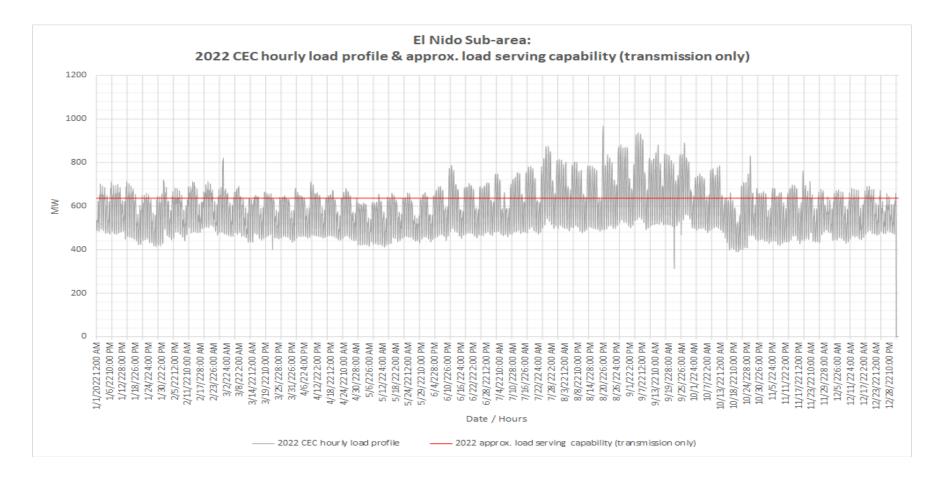
*August NQC for RA accounting purpose

El Nido Sub-area LCR (LA Basin)


Year	Category	Limiting Facility	Contingency	LCR (MW)	2021 and 2025 LCR (MW)
2022	P7	l a Fresa-La Cienega 230 kV	La Fresa – El Nido #3 & 4 230 kV lines	356	394
2026	P7	l a Fresa-La Cieneda 230 kV	La Fresa – El Nido #3 & 4 230 kV lines	361	409

Reasons for the changes in the LCR needs:

- LCR need decreases due to lower demand forecast for the El Nido sub-area.

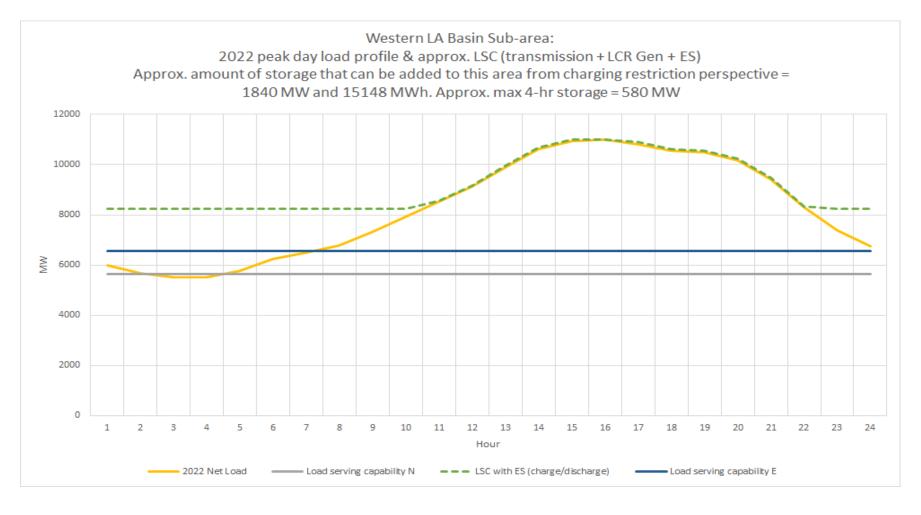


El Nido Subarea Load Shape and Estimated Energy Storage Charging Capability Under Critical Contingency

El Nido Subarea Load Shape and Estimated Energy Storage Charging Capability Under Critical Contingency (cont'd)

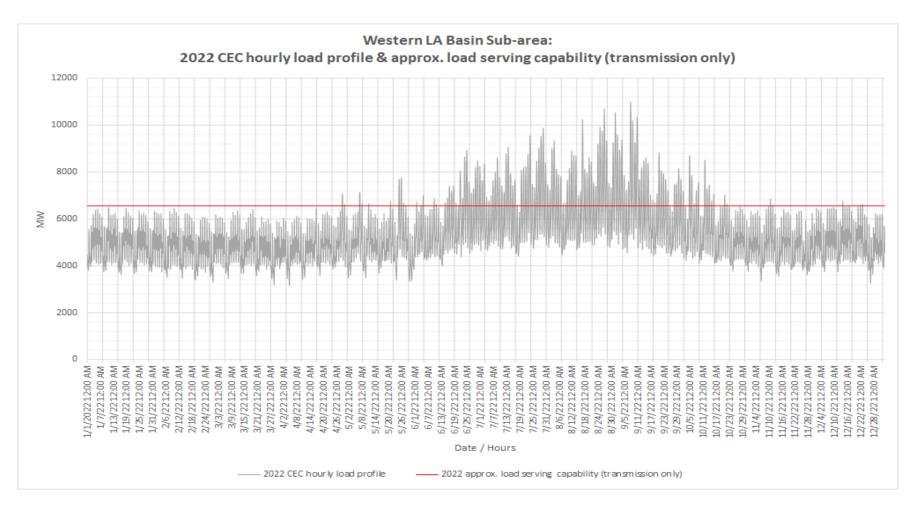
California ISO

Western LA Basin Sub-area LCR


Year	Category	Limiting Facility	Contingency	Draft LCR Results (MW)	2021 and 2025 LCR (MW)
2022	P3		Mesa-Redondo 230 kV, followed by Mesa-Lighthipe 230 kV line, or vice versa	4443	3303
2026	P6		Mesa-Redondo 230 kV, followed by Mesa-Lighthipe 230 kV line, or vice versa	3865	3943

Reasons for the changes in the LCR needs:

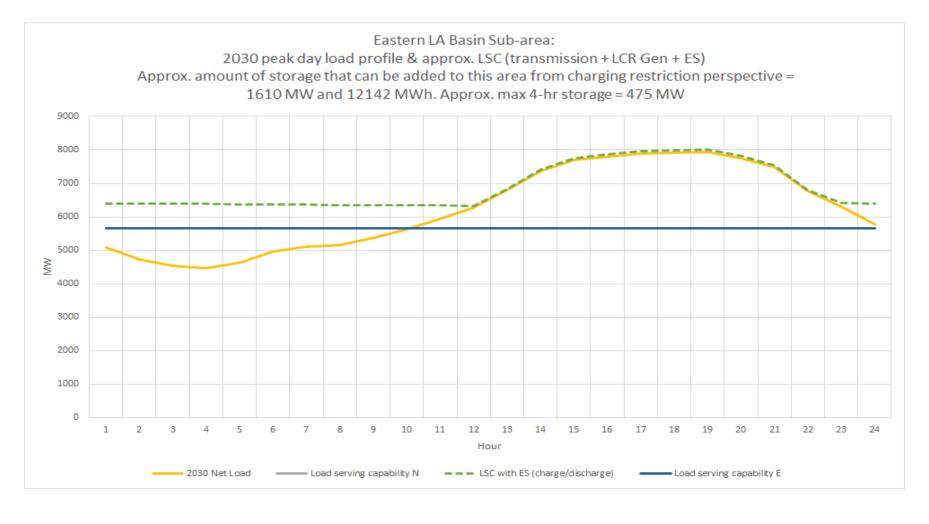
- 2022 the 2022 LCR need is higher than 2021 LCR need due the following:
 - The 230 kV bus tie breaker at Mesa Substation is operated in the open position to help mitigate short-circuit duty concern with the completion of the 500kV loop-in.
 - The CEC's demand forecast is higher compared to 2021 LCR study.
- 2026 the LCR need is slightly lower than the 2025 LCR need due to the following:
 - Higher flows from east of Serrano substation into western LA Basin due to retirement of OTC generation. This rebalances the flows into western LA Basin between flows from north of Mesa substation and flows from east of Serrano substation.



Western LA Basin Subarea Load Shape and Estimated Energy Storage Charging Capability Under Critical Contingency

Western LA Basin Subarea Load Shape and Estimated Energy Storage Charging Capability Under Critical Contingency (cont'd)

Eastern LA Basin Sub-area LCR

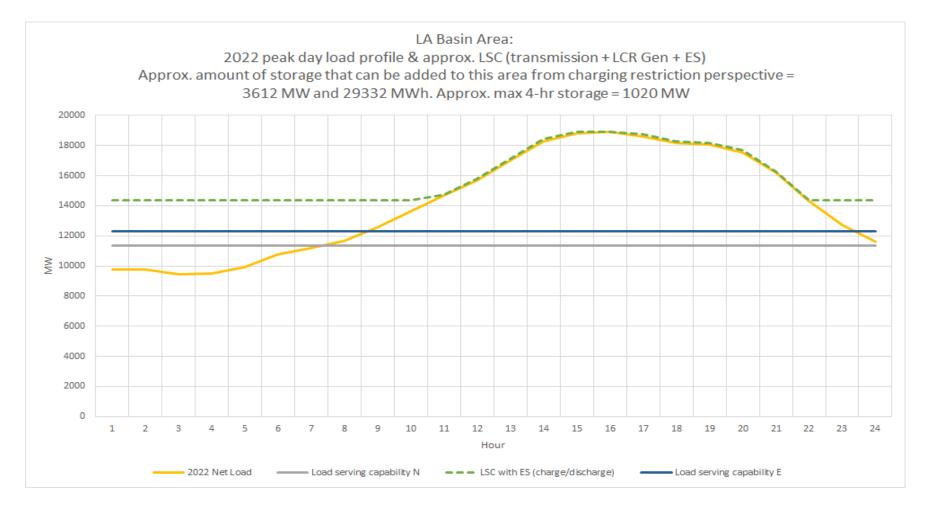

Year	Category	Limiting Facility	Contingency	LCR (MW) (deficiency)	2021 and 2025 LCR (MW)
2022	Extreme (N-1-2)		Serrano-Valley 500 kV line, followed by Devers – Red Bluff 500 kV #1 and 2 lines	2203	2867
2026	Extreme (N-1-2)		Serrano-Alberhill 500 kV line, followed by Devers – Red Bluff 500 kV #1 and 2 lines	2494	2366

Reasons for the changes in the LCR needs:

- 2022 the LCR need for the Eastern LA Basin is lower than the 2021 LCR due to the following:
 - Implementation of the Mesa Loop-In Project brings new source of power into the western LA Basin subarea. This helps reduce power flows from eastern to western LA Basin, thus reducing the LCR need in the eastern LA Basin.
- 2026 the LCR need for the Eastern LA Basin is higher due to the following reasons:
 - Higher demand forecast from the CEC

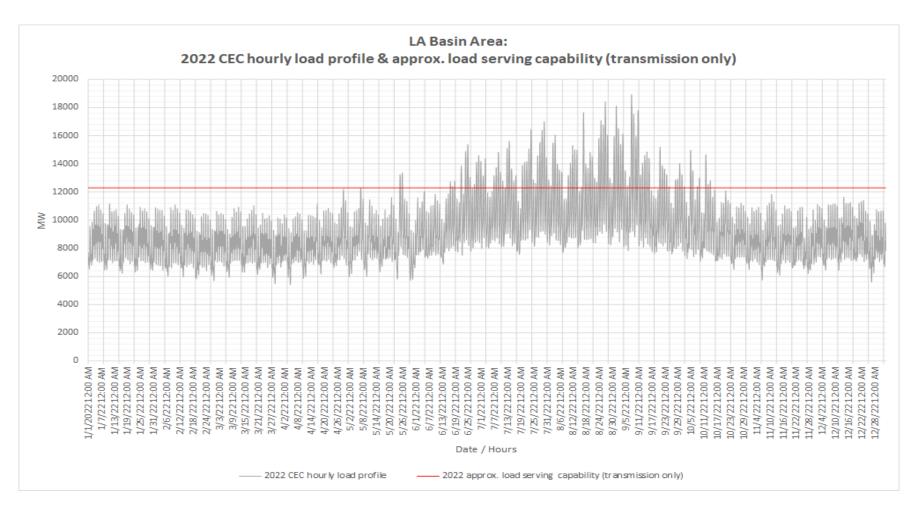
Eastern LA Basin Subarea Load Shape and Estimated Energy Storage Charging Capability Under Critical Contingency

Eastern LA Basin Subarea Load Shape and Estimated Energy Storage Charging Capability Under Critical Contingency (cont'd)


Overall LA Basin LCR Need

Year	Limiting Facility	Limiting Facility	Contingency	Draft LCR (MW)	2021 and 2025 LCR (MW)
2022	and Eastern I A		See Western and Eastern LA Basin LCR results	<u>6646</u>	6170
2022	P.1	Imperial Valley – El Centro 230 kV Line (S-Line)	TDM generation (G-1), system readjustment, followed by Imperial Valley-North Gila 500 kV line (N-1)	6198	6127
2026	and Eastern I A		See Western and Eastern LA Basin LCR results	<u>6359</u>	6309
2026	P3	El Centro 230/161 kV Transformer	TDM generation (G-1), system readjustment, followed by Imperial Valley-North Gila 500 kV line (N-1)	6315	6281

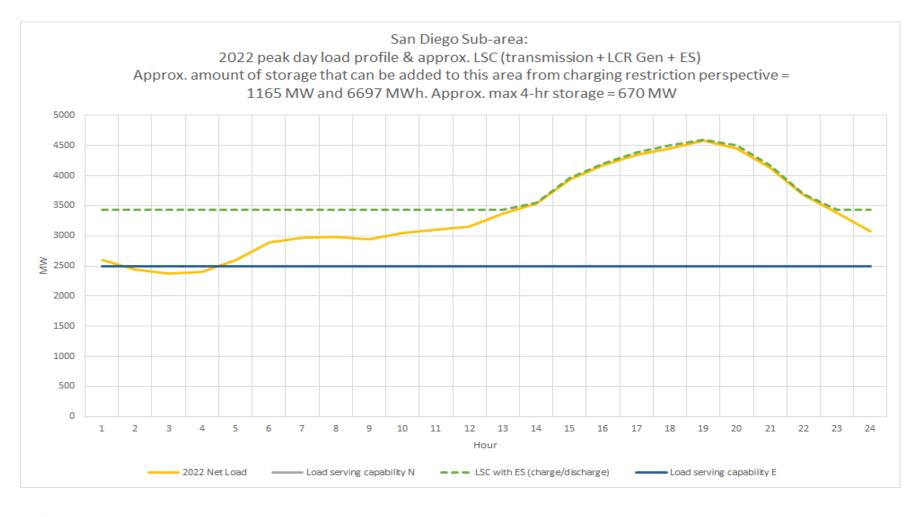
- The underlined values indicate the final LCR needs for the LA Basin for 2022 and 2026.
- 2022 higher overall LA Basin LCR need is driven by higher western LA Basin LCR need; for further details please see western LA Basin slide.
- 2026 higher overall LA Basin LCR need is driven by higher eastern LA Basin LCR need; for further details please see eastern LA Basin slide.



Overall LA Basin Area Load Shape and Estimated Energy Storage Charging Capability Under Critical Contingency

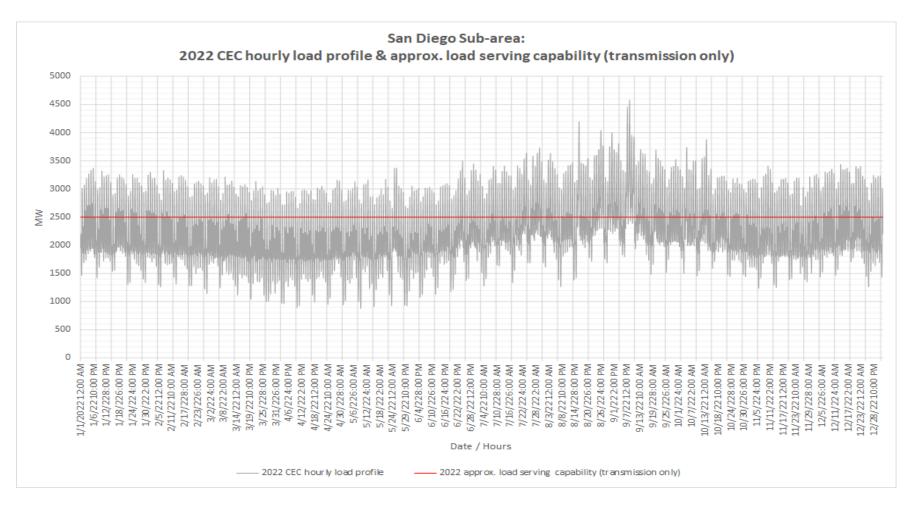
Overall LA Basin Area Load Shape and Estimated Energy Storage Charging Capability Under Critical Contingency (cont'd)

San Diego Bulk Sub-area LCR


Year	Category	Limiting Facility	Contingency	LCR (MW)	2021 and 2025 LCR (MW)
2022	Pn Pn	Remaining Sycamore- Suncrest 230 kV	ECO-Miguel 500 kV line, system readjustment, followed by one of the Sycamore-Suncrest 230 kV	2097	2270
2026	P6	Remaining Sycamore- Suncrest 230 kV	ECO-Miguel 500 kV line, system readjustment, followed by one of the Sycamore-Suncrest 230 kV	2790	2791

Reasons for the changes in the LCR needs:

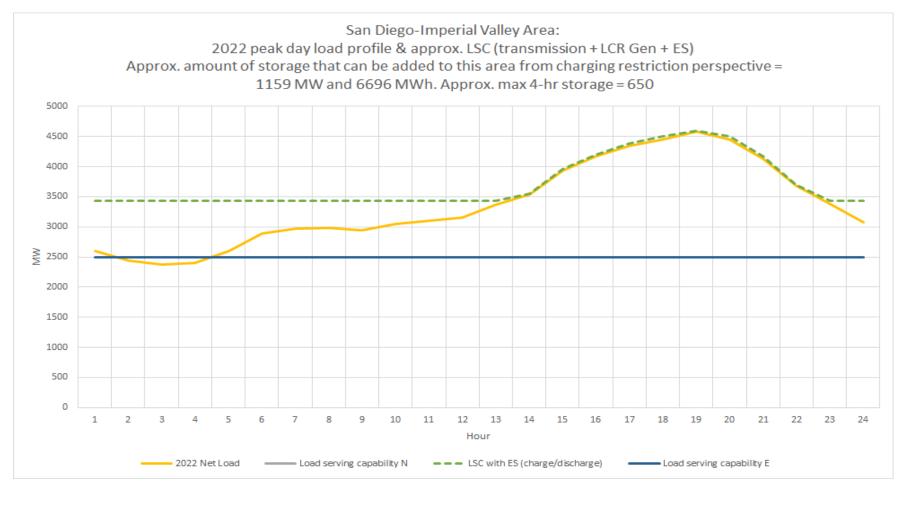
- 2022 the LCR needs are lower due to lower demand forecast from the CEC for the San Diego area. Implementation of the Mesa Loop-In Project that provides additional source of power into the western LA Basin also helps with additional southbound flow into San Diego area.
- 2026 the LCR needs are virtually the same as the 2025 LCR needs because the demand forecast is virtually unchanged between the 2026 (IEPR 2020) and the 2025 (IEPR 2019).



San Diego Bulk Subarea Load Shape and Estimated Energy Storage Charging Capability Under Critical Contingency

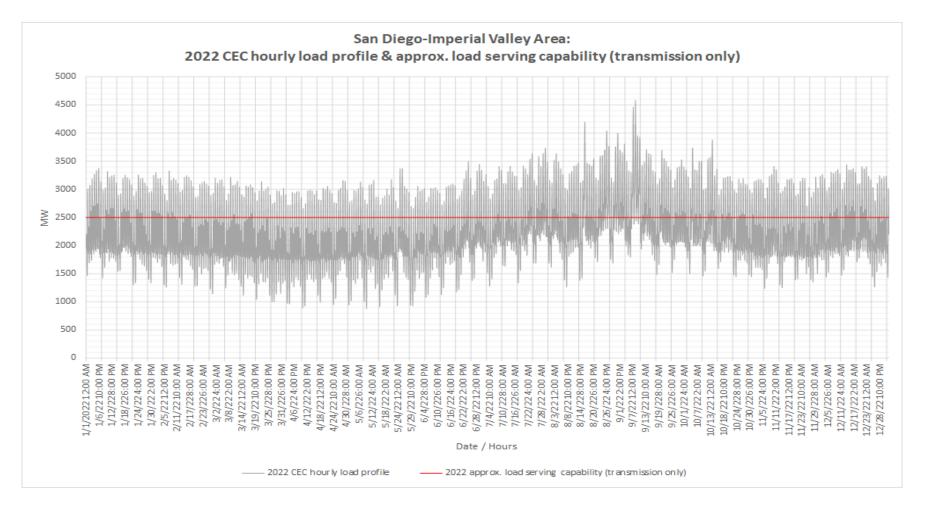
San Diego Bulk Subarea Load Shape and Estimated Energy Storage Charging Capability Under Critical Contingency (cont'd)

Overall San Diego – Imperial Valley Area LCR


Year	Category	Limiting Facility	Contingency	LCR (MW)	2021 and 2025 LCR (MW)
2022		Imperial Valley – El Centro 230 kV Line (S-Line)	G-1 of TDM generation, system readjustment, followed by Imperial Valley-North Gila 500 kV line (N-1)	3993	3888
2026	P3	El Centro 230/161 kV Transformer	TDM generation, system readjustment, followed by Imperial Valley-North Gila 500 kV line (N-1)	3394	3557

Reasons for the changes in the LCR needs:

- 2022 slightly higher LCR needs due to higher Maximum Import Capability (MIC) calculated and modeled between IID and CAISO (http://www.caiso.com/Documents/AdvisoryestimatesoffutureResourceAdequacyImportCapabilityforyears2 021-2030.pdf).
- 2026 lower LCR need for 2026 is attributed to lower net demand forecast from the CEC. Implementation
 of the S-Line upgrades is modeled based on the latest in-service date of Q3 2023 also helps lowering the
 LCR need for the overall San Diego-Imperial Valley.


咨 California ISO

Overall San Diego-Imperial Valley Area Load Shape and Estimated Energy Storage Charging Capability Under Critical Contingency

🍣 California ISO

Overall San Diego-Imperial Valley Area Load Shape and Estimated Energy Storage Charging Capability Under Critical Contingency (cont'd)

🍣 California ISO

Changes Compared to Previous LCR Requirements

Subarea	2021		2022		2025		2026	
Subarea	Load	LCR	Load	LCR	Load	LCR	Load	LCR
El Nido	1005	394	967	356	1596	409	978	361
Western LA Basin	11420	3303	11186	4443	11291	3943	11130	3865
Eastern LA Basin	7502	2867	7738	2203	7510	2366	8016	2494
Overall LA Basin	18922	6170	18924	6646	18801	6309	19146	6359
San Diego Subarea	4523	2270	4580	2097	4675	2791	4707	2790
Overall San Diego – Imperial Valley Area	4523	3888	4580	3993	4675	3557	4707	3394

• Please see the sub-areas and LCR area study result slides for further discussion on the reasons for the changes in LCR needs.

