

Draft 2025 Flexible Capacity Needs and Availability Assessment Hours Technical Study

Clyde Loutan Principal, Renewable Energy Integration

Hong Zhou Lead Market Development Analyst, Short-Term Forecasting

Jessica Stewart Senior Energy Meteorologist, Short-Term Forecasting

April 15, 2024

Housekeeping reminders

- This call is being recorded for informational and convenience purposes only. Any related transcriptions should not be reprinted without ISO's permission.
- These meeting are intended to stimulate open dialogue and engage different perspectives.
- Please keep comments professional and respectful.
- Please try and be brief and refrain from repeating what has already been said so that we can manage the time efficiently.
- If you need technical assistance during the meeting, please send a chat to the event producer

Instructions for raising your hand to ask a question

- If you are connected to audio through your computer or used the "call me" option, select the raise hand icon located on the bottom of your screen.
 - Note: #2 only works if you dialed into the meeting
- Please remember to state your name and affiliation before making your comment.

Discuss the assumptions, methodology, and draft results of the monthly flexible capacity requirement and Availability Assessment Hours Technical Study.

Specifically

Calculating monthly flexible capacity requirements for all LRAs within the ISO footprint for RA compliance year 2025 and advisory requirements for compliance years 2026 and 2027

Agenda / Overview

- Background
- Process review
 - Expected build out from all LSEs (CPUC jurisdictional and nonjurisdictional)
 - Load, wind and solar profiles
 - Calculate three-hour net load upward ramps
 - Add the larger of either the spinning reserve portion of contingency reserves or the most severe contingency
 - Calculate monthly Flexible Capacity requirement
- Overview of methodology used for system/local availability assessment hours
 - 2025 availability assessment hours
 - 2026-2027 draft availability assessment hours

Each LSE Scheduling Coordinator shall make a year-ahead and month-ahead showing of flexible capacity for each month of the compliance year

Resource Adequacy (RA)

- Ensure LSEs contract for adequate capacity to meet expected flexible capacity needs
- Year ahead: LSEs need to secure a minimum of 90% of the next years monthly needs
- Month ahead: LSEs need to secure adequate net qualified capacity to serve their peak load including a planning reserve margin and flexible capacity to address largest three-hour net load ramps plus contingency reserves
- All resources participating in the ISO markets under an RA contract will have an RA must-offer-obligation
- Required to submit economic bids into the ISO's real-time market consistent with the category of flexible capacity

The ISO used the following data to determine the flexible capacity needs

- CEC's IEPR demand forecast for 2025 through 2027
- LSE SCs updated renewable build-out for 2023 through 2027
- The Analysis of Flex Capacity Needs included:
 - Existing VERs capacity
 - Expected installed capacity by technology and expected operating date (e.g. Solar thermal, solar PV tracking, solar PV non-tracking, estimate of behind-the-meter solar PV, co-located and renewable components of hybrids) for all variable energy resources under contract
 - Operational date or expected on-line date
 - Dynamically scheduled resources located outside ISO's BAA

Expected hybrid renewable buildout through December 2027 based on LSE's submittal

Hybrid resources were included in the flexible needs assessment

For more details on hybrid and co-located resources, visit the stakeholder page: https://stakeholdercenter.caiso.com/StakeholderInitiatives/Hybrid-resources

Expected co-located renewable buildout through December 2027 based on LSE's submittal

Co-Located resources were included in the flexible needs assessment

For more details on hybrid and co-located resources, visit the stakeholder page: https://stakeholdercenter.caiso.com/StakeholderInitiatives/Hybrid-resources

Expected LSEs rooftop solar PV capacity vs. CEC's estimated production

Summary of LSEs submittal showing the expected capacity at the end of each year

Resource Type	Existing 2023	Expected 2024	Expected 2025
ISO Solar PV	11,757	11,800	11,966
ISO Solar Thermal	860	858	858
ISO Wind	4,626	4,663	4,870
Co-Located Resources (Wind)	0	0	0
Co-Located Resources (Solar)	4,524	5,676	6,314
Hybrid Resources (Wind)	30	30	30
Hybrid Resources (Solar)	337	672	738
Total Variable Energy Resource Capacity within the ISO	22,133	23,698	24,775
Cumulative Non ISO Wind/Solar Resources that's Dynamically Scheduled into the ISO	1,770	1,907	1,950
Total Internal and Dynamically Scheduled VERs in Flexible Capacity Needs Assessment	23,903	25,606	26,725
Incremental New VERs Additions Each Year (Included in Flexible Capacity Needs Assessment)		1,703	1,119
Maximum Expected BTM Solar PV Production in the CEC's Forecast		14,094	15,338
Cumulative behind-the-meter Solar PV Capacity reported by LSEs	15,370	16,857	18,268

The ISO is comparing the data submitted by the LSEs below to data in the interconnection que and current capacity to ensure alignment. The ISO may perform additional outreach to LSEs based on the data submitted to ensure all resources are being included.

The ISO flexibility capacity assessment is based on current LSE's RPS build-out data

- Uses the most current data available for renewable build-out obtained from all LSE SCs
 - The SC for each *LSE* in the CAISO BAA [to identify] each *wind and solar resource...* that is owned, in whole or in part, by the LSE, or under contractual commitment to the LSE or the Load-following MSS LSE, for all or a portion of its capacity
- For new renewable installation, scale 2023 actual production data based on the expected installed capacity in subsequent years
- Generate net-load profiles for 2025 through 2027
 - Generate load profiles for 2025 through 2027
 - Generate solar profiles for 2025 through 2027
 - Generate wind profiles for 2025 through 2027

The ISO will use the CEC's 1-in-2 IEPR forecast to develop the monthly flexible capacity

- CEC IEPR Load Forecast
 - <u>California Energy Commission : Docket Log</u>
 - Title of File: "CED 2023 Hourly Forecast CAISO Planning Scenario"
 - CAISO will be using Managed Net Load (column T) within the spreadsheet
 - Managed Net Load (col T) = Baseline Net Load (col O)
 + AAEE (col P)
 + AAFS (col Q)
 + AATE_LDV (col R)
 + AATE_MDHD (col S)
 Baseline Net Load (col O) = Baseline Consumption (col K)
 - BTM PV (col L)
 - BTM Storage Res (col M)
 - BTM Storage NonRes (col N)
 - Baseline Consumption (col K) = unadjusted consumption (col E)
 - + Pumping (col F)
 - + climate change (col G)
 - + light EV (col H)
 - + medium heavy EV (col I)
 - + other adjustments (col J)

Building expected one-minute load profile requires actual 2023 hourly and one-minute data and CEC's hourly forecast

Hourly load forecast to one-minute load forecast

- Used 2023 actual one-minute load data to build one-minute load profiles for subsequent years
- Scaled the hourly CEC load forecast value of each hour into one-minute forecast data using a smoothing equation looking at the differences between the forecasted year and the 2023 one-minute actuals.

2025 Load One-Minute Forecast

- 2025 L_{CECfcst_1-min} = 2023 L_{Act_1-min} + X
 - Where X = Interpolated 1-min profile from the difference

(2025 L_{CECfcst_hourly} - 2023 L_{actual_hourly})

2026 Load One-Minute Forecast

- 2026 $L_{CECfcst_1-min}$ = 2023 L_{Act_1-min} + X
 - Where X = Interpolated 1-min profile from the difference

(2026
$$L_{CECfcst_hourly}$$
 - 2023 L_{actual_hourly})

*See slide 8 for more graphs showing steps to calculate

For this year's study, no changes were made to the CEC load forecast or 3-hour ramp forecast

• The CEC made updates to the IEPR methodology for the demand forecast used in this study

California ISO

Net-load is a NERC accepted metric¹ for evaluating additional flexibility needs to accommodate VERs

- Net load is defined as load minus wind and solar power production
- Net load variability increases as more and more wind and solar resources are integrated into the system
- The monthly three-hour flexible capacity need equates to the largest upward change in net load when looking across a rolling three-hour evaluation window
- The ISO dispatches flexible resources (including renewable resources with energy bids) to meet net load
- 1 NERC Special Report Flexibility Requirements and Metrics for Variable Generation: Implications for System Planning Studies, August 2010. <u>https://www.nerc.com/files/IVGTF_Task_1_4_Final.pdf</u>

The flexible capacity methodology is expected to provide the ISO with sufficient flexible capacity

Methodology

Flexible Req_{MTHy}= Max[(3RR_{HRx})_{MTHy}] + Max(MSSC, 3.5%*E(PL_{MTHy})) + ε

Where:

 $Max[(3RR_{HRx})_{MTHy}]$ = Largest three-hour contiguous ramp starting in hour x for month y

E(PL) = Expected peak load

 $MTH_y = Month_y$

MSSC = Most Severe Single Contingency

 ϵ = Annually adjustable error term to account for load forecast errors and variability. ϵ is currently set at zero

Monthly Three-Hour upward ramps and total flexible capacity requirements for 2025

Actual 3-hour ramps 2020 through 2023

California ISO

Actual maximum monthly ramps for 2023 and 2024 vs. forecast ramp capacity for 2025 through 2027

Actual maximum monthly flexible capacity for 2023 and 2024 vs. forecast flexible capacity for 2025 through 2027

🌛 California ISO

ISO continues to consider how we account for curtailments in Flex RA Study

2023 forecast 3-Hour ramps were derived from the 2021 flex-analysis study using 2020 actual 1-minute data

Maximum 3-Hour upward ramps are not evenly distributed each hour demonstrating the need for faster ramping capability

- Three hour-upward ramps have been steadily increasing over the years
- Ramps are not evenly distributed across three hours
- One hour upward ramp is now over 50% of the three hour ramps in some months

2020-2023: Highest levels of curtailments typically occur during the spring months

Total Wind/Solar Curtailment: 2020 - 2023

2020-2023: Higher levels of curtailments occur between sunrise and sunset

Example of actual net-load variability for seven consecutive days in March 2023

Page 27

The actual net-load and 3-hour ramps are years ahead of the ISO's original estimate primarily due to under forecasting rooftop solar PV installation

Maximum net-load 3-hour upward ramp in 2023 occurred on September 24

Forecasted monthly 2025 ISO system-wide flexible capacity needs

🍣 California ISO

CAISO RA working group is evaluating potential changes to Flex RA process

 RA working group was developed to review RA program health and make recommendations for changes within the RA program

Any changes will be through a stakeholder initiative

- As the resource fleet has evolved, the group will evaluate the overall need for Flex RA, including:
 - If the current process provides reliability benefits
 - Potential enhancements to the design
 - Where the process may need to be altered to obtain reliability objectives

Preliminary Results

Hong Zhou Lead Market Development Analyst, Short-Term Forecasting

Jessica Stewart Senior Energy Meteorologist, Short-Term Forecasting

Components of the flexible capacity needs

Month	Load contribution 2025	Wind contribution 2025	Solar contribution 2025	Total percent 2025
January	33.21%	-2.71%	-64.08%	100%
February	38.03%	0.76%	-62.73%	100%
March	44.09%	0.95%	-56.86%	100%
April	37.56%	-0.58%	-61.86%	100%
Мау	33.27%	-2.70%	-64.02%	100%
June	34.36%	2.67%	-68.31%	100%
July	28.41%	3.27%	-74.86%	100%
August	28.95%	0.38%	-71.43%	100%
September	34.23%	0.06%	-65.83%	100%
October	35.74%	-0.21%	-64.05%	100%
November	34.69%	-0.04%	-65.27%	100%
December	28.29%	-0.30%	-71.41%	100%

Δ Load – Δ Wind – Δ Solar = 100

Flexible capacity categories allow a wide variety of resources to provide flexible capacity

- <u>Category 1 (Base Flexibility</u>): Operational needs determined by the magnitude of the largest three-hour secondary net load ramp
- <u>Category 2 (Peak Flexibility</u>): Operational need determined by the difference between 95 percent of the maximum three-hour net load ramp and the largest three-hour secondary net load ramp
- <u>Category 3 (Super-Peak Flexibility</u>): Operational need determined by five percent of the maximum three-hour net load ramp of the month

Seasonal breakout of flexible capacity needs

	Act	ual Contributi	ons	Seasonal Contribution			
		Unadjusted		Adjusted			
Month	Base Flexibility	Peak Flexibility	Super-Peak Flexibility	Base Flexibility	Peak Flexibility	Super-Peak Flexibility	
January	27%	68%	5%	29%	66%	5%	
February	31%	64%	5%	29%	66%	5%	
March	42%	53%	5%	29%	66%	5%	
April	29%	66%	5%	29%	66%	5%	
Мау	30%	65%	5%	41%	54%	5%	
June	39%	56%	5%	41%	54%	5%	
July	43%	52%	5%	41%	54%	5%	
August	53%	42%	5%	41%	54%	5%	
September	39%	56%	5%	41%	54%	5%	
October	24%	71%	5%	29%	66%	5%	
November	20%	75%	5%	29%	66%	5%	
December	28%	67%	5%	29%	66%	5%	

Decreased weighting observed in Peak Category

Month	2021	2022	2023	2024	2025
January	57.30%	55.06%	62.74%	68.11%	66.43%
February	57.30%	55.06%	62.74%	68.11%	66.43%
March	57.30%	55.06%	62.74%	68.11%	66.43%
April	57.30%	55.06%	62.74%	68.11%	66.43%
May	45.62%	45.39%	49.28%	57.75%	54.29%
June	45.62%	45.39%	49.28%	57.75%	54.29%
July	45.62%	45.39%	49.28%	57.75%	54.29%
August	45.62%	45.39%	49.28%	57.75%	54.29%
September	45.62%	45.39%	49.28%	57.75%	54.29%
October	57.30%	55.06%	62.74%	68.11%	66.43%
November	57.30%	55.06%	62.74%	68.11%	66.43%
December	57.30%	55.06%	62.74%	68.11%	66.43%

Total flexible capacity needed in each category – seasonally adjusted

California ISO

CPUC jurisdictional flexible capacity allocation by flexible capacity category

DRAFT CPUC Flexible Capacity Allocation by Category

🎯 California ISO

Start time of three-hour net load ramp to evaluate seasonal must offer obligations

	Three Hour Net Load Ramp Start Hour (Hour Ending)									
Month	14:00	15:00	16:00	17:00	18:00					
January	2	27	2							
February		17	11							
March		3	11	17						
April			1	29						
Мау				31						
June			3	27						
July			1	30						
August		2	9	18	2					
September		1	29							
October		10	21							
November	7	22	1							
December	4	27								

Seasonal must-offer obligations for peak and superpeak flexible capacity

• Recommended must-offer obligation hours in hour ending

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
HE15-HE19	х	х									Х	Х
HE16-HE20									Х	Х		
HE17-HE21			X	X	Х	х	X	Х				

Review of preliminary assessment results

- Flexible Capacity need is largest in January through June
 - Flexible capacity makes up a greater percentage of resource adequacy needs during the off-peak months
 - Increase almost exclusively caused by three-hour ramp, not increase in peak load
- Peak category has heavier weight this year
- The CEC IEPR hourly demand forecast, growth of behind-the-meter solar PV, and PV contributes to the larger flexible capacity requirements
- Using the ISO flexible capacity contribution calculation majority of threehour net load ramps are attributable to CPUC jurisdictional LSEs
- The Peak and Super-Peak MOO hours have not changed from the 2022 study (information below is in Hour Ending)
 - November through February: HE 15- HE 19 (2:00 p.m. to 7:00 p.m.)
 - March through August: HE 17 HE 21 (4:00 p.m. to 9:00 p.m.)
 - September through October: HE 16- HE 20 (3:00 p.m. to 8:00 p.m.)

AVAILABILITY ASSESSMENT HOURS

Availability assessment hours: Background and purpose

- Concept originally developed as part of the ISO standard capacity product (SCP)
 - Maintained as part of Reliability Service Initiative Phase 1 (i.e. RA Availability Incentive Mechanism, or RAAIM)
- Determine the hours of greatest need to maximize the effectiveness of the availability incentive structure
 - Resources are rewarded for availability during hours of greatest need
 - Hours determined annually by ISO and published in the BPM
 - See section 40.9 of the ISO Tariff

Methodology overview of system/local availability assessment hours

- Used CEC IEPR data accounting for DST shift
 - Hourly average load
 - By hour, by month
 - Years 2024-2027
 - Top 5% of load hours within each month using an hourly load distribution
- For 2025, the ISO proposes no changes to the AAH from last year with a three season approach

The ISO proposes continued use of three seasons for AAH

- For 2025, the ISO proposes three seasons for AAH:
 - HE17-HE21 for winter: Jan Feb, Nov Dec
 - HE18-HE22 for spring: Mar May
 - HE17-HE21 for summer: Jun Oct
 - Watching winter months for shift to HE18-22 for 2026 and 2027

2023 actual frequency of top 5% of load hours

H	lour	15	16	17	18	19	20	21	22	23	Season
	Jan			2	12	13	6	2			Winter
[Feb				7	8	8	5			Winter
	Mar				2	7	10	8	2		Spring
ſ	Apr				3	3	10	9	5	2	Spring
_[May			2	4	5	7	10	6	3	Spring
Ē	Jun	1	1	2	2	4	8	8	8	2	Summer
0 N	Jul		3	5	9	9	8	3			Summer
-	Aug	1	3	7	8	8	7	3			Summer
[Sep		3	4	9	8	6	5	1		Summer
	Oct	1	4	7	8	8	6	2	1		Summer
[Nov			5	16	9	6				Winter
	Dec			6	11	10	6	3			Winter
Т	otal	3	14	40	91	92	88	58	23	7	

2025 forecast frequency of top 5% of load hours

Н	our	15	16	17	18	19	20	21	22	23	Season	Recommendation
	Jan				8	17	10	2			Winter	HE17-HE21
	Feb				1	18	12	2			Winter	HE17-HE21
	Mar					5	15	13	4		Spring	HE18-HE22
	Apr				2	5	8	11	8	2	Spring	HE18-HE22
-	May		1	2	3	6	8	9	6	2	Spring	HE18-HE22
Ē	Jun	1	2	3	5	8	7	6	4		Summer	HE17-HE21
9	Jul	1	3	4	7	9	7	4	2		Summer	HE17-HE21
-	Aug		3	5	10	11	7	1			Summer	HE17-HE21
	Sep	2	3	5	7	8	6	3	2		Summer	HE17-HE21
	Oct		2	4	7	10	7	5	2		Summer	HE18-HE22
	Nov		1	3	13	14	4	1			Winter	HE17-HE21
	Dec				13	17	6	1			Winter	HE17-HE21
Т	otal	4	15	26	76	128	97	58	28	4		

Forecast vs. actual in winter months

2024 CAISO - Public

Page 46

Forecast vs. actual in spring months

Page 47

Forecast vs. actual in summer months

🍣 California ISO

Forecast vs. actual in summer months

Availability assessment hours draft recommendation

Summer and Winter Season Draft Recommendation

January – February, June - December

Spring Season Draft Recommendation

March – May

Year	Start	End	Year	Start	End
2024 (Final)	HE 17	HE 21	2024 (Final)	HE 18	HE 22
2025 (Draft)	HE 17	HE 21	2025 (Draft)	HE 18	HE 22

Availability assessment hours advisory recommendation

Summer Season Draft Recommendation

June - November

Spring and Winter Season Draft Recommendation

January - May, December

Year	Start	End	Year	Start	End
2026 (Estimate)	HE 17	HE 21	2026 (Estimate)	HE 18	HE 22
2027 (Estimate)	HE 17	HE 21	2027 (Estimate)	HE 18	HE 22

- Estimates for 2026, 2027 include a shift of January, February, and December to HE18-22 for based on CEC forecast
 - November remains in summer season estimate

Reliability Requirements; Section 7 – BPM Updates Needed

2025 System and Local Resource Adequacy Availability Assessment Hours

Analysis employed: Top 5% of load hours using average hourly load

Spring: March 1 – May 31 Availability Assessment Hours: 5pm – 10pm (HE18 – HE22)

Summer: June 1 - October 31 Availability Assessment Hours: 4pm – 9pm (HE17 – HE21)

Winter: January 1 – February 28, November 1 – December 31 Availability Assessment Hours: 4pm – 9pm (HE17 – HE21)

2025 Flexible Resource Adequacy Availability Assessment Hours and must offer obligation hours

Flexible RA Capacity Type	Category Designation	Required Bidding Hours	Required Bidding Days
January – February November – December			
Base Ramping	Category 1	5:00am to 10:00pm (HE6-HE22)	All days
Peak Ramping	Category 2	2:00pm to 7:00pm (HE15-HE19)	All days
Super-Peak Ramping	Category 3	2:00pm to 7:00pm (HE15-HE19)	Non-Holiday Weekdays*
March – August			
Base Ramping	Category 1	5:00am to 10:00pm (HE6-HE22)	All days
Peak Ramping	Category 2	4:00pm to 9:00pm (HE17-HE21)	All days
Super-Peak Ramping	Category 3	4:00pm to 9:00pm (HE17-HE21)	Non-Holiday Weekdays*
September – October			
Base Ramping	Category 1	5:00am to 10:00pm (HE6-HE22)	All days
Peak Ramping	Category 2	3:00pm to 8:00pm (HE16-HE20)	All days
Super-Peak Ramping	Category 3	3:00pm to 8:00pm (HE16-HE20)	Non-Holiday Weekdays*
California ISO		2024 CAISO - Public	Pa

alıtornıa ISO

Next steps

- Draft Flexible Capacity Needs Assessment and Draft AAH for 2024 published on April 11, 2024
- Comments due by end of day April 29, 2024

Submit comments through the ISO's commenting tool, using the template provided on the process webpage:

https://stakeholdercenter.caiso.com/RecurringStakeholderProces ses/Flexible-capacity-needs-assessment-2025

 Publish Final Flexible Capacity Needs Assessment and AAH for 2025 on May 17th, 2024

Save the Date - California New Resource Implementation

We will host a hybrid California New Resource Implementation (NRI) stakeholder meeting on May 1, 2024.

We aim to bolster collaboration with our stakeholder community in preparation for the upcoming summer operations. Our objective is to improve transparency surrounding the NRI process and outline expectations.

If you plan to attend the working group in person, please <u>register</u> by end of day April 26, 2024.

The final agenda and a presentation will be available prior to the meeting on the **public forums webpage**.

The California ISO Stakeholder Symposium will be held on Oct. 30, 2024 at the Safe Credit Union Convention Center in Sacramento, California.

A welcome reception for all attendees will be held the evening of Oct. 29.

Additional information, including event registration and sponsorship opportunities, will be provided in a future notice and on the ISO's website.

Please contact Symposium Registration at symposiumreg@caiso.com with any questions.

Questions

Stay connected

@California_ISO

Download ISO Today mobile app

Sign up for the Daily Briefing at www.caiso.com

2024 CAISO - Public

Page 56