

Transmission Service and Market Scheduling Priorities: Monthly ATC Values Review for June 2024 and Beyond

Stakeholder call January 17, 2024

Housekeeping Reminders

- This call is being recorded for informational and convenience purposes only. Any related transcriptions should not be reprinted without ISO's permission.
- For technical assistance, please send a chat to the event producer.

Instructions for raising your hand to ask a question

- If you are connected to audio through your computer, select the raise hand icon located on the bottom of your screen.
- If you dialed in to the meeting through your phone, press #2 to raise your hand.
- Please remember to state your name and affiliation before making your comment.
- You may also send your question via chat to all panelists.

Agenda

Time	Topic	Presenter
1:00 – 1:10	Welcome & introductions	Isabella Nicosia
1:10 – 1:30	Process for establishing wheeling through priority & manual implementation activities	Milos Bosanac
1:30 – 3:00	Monthly ATC numbers: June 2024 through January 2025	Abdul Mohammed-Ali Licheng Jin Guillermo Bautista- Alderete Milos Bosanac
3:00 – 3:30	January request submission window	Abdul Mohammed-Ali Milos Bosanac
3:30 – 4:00	Next steps	Milos Bosanac

New process for establishing wheeling through priority starting for June 2024 and beyond

- On October 30th, 2023, FERC approved a new process for establishing market clearing priority for wheeling through transactions.
 - Effective June 1, 2024.
- Under the new process, Available Transfer Capability (ATC) is secured in advance on the ISO interties to establish wheeling through priority equal to ISO load.
 - ATC can be reserved in Monthly increments (13-month horizon) or Daily increments (7-day horizon).
- Wheeling through transactions without secured ATC in advance will have a lower market clearing priority.

Manual Implementation Activities

- Implementation of wheeling through priority process supports load service planning for Summer 2024.
- ISO will begin implementation through <u>manual</u> processes in January.
 - Publication of Monthly ATC values for June 2024 and beyond.
 - Request window opening on January 18
- New automation functionality will be available in April to support reservation of Monthly and Daily ATC in June and beyond.

The ISO will manually calculate and post monthly ATC values across a 13-month horizon

- The ISO has posted monthly ATC values for June 2024 to January 2025 (13-month horizon).
- During the manual calculation process, ATC will be posted for a limited set of interties representative of those points where Wheeling Through Priority was established in prior years.
- The monthly ATC values for select interties are posted on the <u>reliability requirements webpage</u>.

Monthly ATC Numbers: June 2024 through January 2025

Monthly ATC: June 2024 – January 2025

ATC = TTC - ETComm - TRM

	6/2024	7/2024	8/2024	9/2024	10/2024	11/2024	12/2024	1/2025
CFEROA	376	376	376	376	376	376	376	376
CFETIJ	376	376	376	376	376	376	376	376
CTW230	1230	1230	1230	1230	1230	1498	1498	1498
MALIN500	248	77	149	0	599	1594	1539	1535
MIR2	448	428	459	499	524	483	522	451
NOB	1057	729	569	266	1123	0	1525	1507
SYLMAR	2015	2004	2044	2013	2033	2039	2027	2036
TESLA230	917	916	916	914	914	1086	1087	1064
TRCYCOTP	3283	3286	3289	3292	3288	5279	5278	5272
TRCYPGAE	3054	3044	3031	3084	3126	5193	5201	5176

Calculation of Total Transfer Capability (TTC)

 The TTC is reduced by known planned transmission outages represented by the Operating Transfer Capability (OTC) on an intertie.

	6/2024	7/2024	8/2024	9/2024	10/2024	11/2024	12/2024	1/2025
CFEROA	400	400	400	400	400	400	400	400
CFETIJ	400	400	400	400	400	400	400	400
CTW230	1308	1308	1308	1308	1308	1594	1594	1594
MALIN500	2617	2600	2967	2300	2300	3048	2967	2967
MIR2	750	750	750	750	750	750	750	750
NOB	1622	1622	1622	1622	1622	0	1622	1622
SYLMAR	2600	2600	2600	2600	2600	2600	2600	2600
TESLA230	1314	1314	1314	1314	1314	1492	1492	1492
TRCYCOTP	3862	3862	3862	3862	3862	5976	5976	5976
TRCYPGAE	3862	3862	3862	3862	3862	5976	5976	5976

Existing Transmission Commitments (ETCcomm) are honored

- **ETComm** consists of the following components:
 - ETC and TOR commitments (legacy contracts) that are currently recognized in the market
 - Wheeling Through Priority reservations (whether in daily or monthly horizon) which have already accessed ATC for a specific period
 - Native Load commitments consisting of historical RA imports, contracted non-RA imports and accounting for load growth

Accounting for ETCs and TORs on Interties

	6/2024	7/2024	8/2024	9/2024	10/2024	11/2024	12/2024	1/2025
CFEROA								
CFETIJ								
CTW230								
MALIN500	1100	1096	1194	1016	1016	1200	1194	1194
MIR2								
NOB								
SYLMAR	368	368	368	368	368	368	368	368
TESLA230	46	46	46	46	46	46	46	46
TRCYCOTP	300	300	300	300	300	300	300	300
TRCYPGAE	300	300	300	300	300	300	300	300

Native Load set-aside as part of ETComm

 Native Load transmission capacity set-aside based on historical RA imports, non-RA imports and load growth.

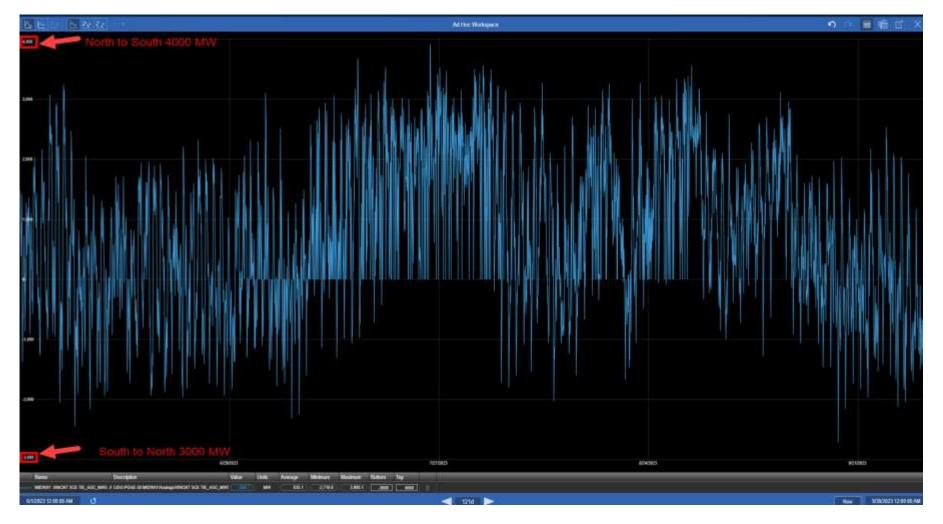
	6/2024	7/2024	8/2024	9/2024	10/2024	11/2024	12/2024	1/2025
CFEROA								
CFETIJ								
CTW230								
MALIN500	1089	1248	1444	1958	506	71	51	55
MIR2	257	277	246	206	181	222	183	254
NOB	468	796	956	1259	402	0	0	18
SYLMAR	61	72	32	63	43	37	49	40
TESLA230	272	273	273	275	275	270	269	292
TRCYCOTP	47	44	41	38	42	38	39	45
TRCYPGAE	276	286	299	246	204	124	116	141

Transmission Reliability Margin (TRM)

- The TRM sets aside transmission capacity for different types of uncertainty that may materialize on the system, consistent with NERC MOD-008-1.
- For purposes of calculating reservation-based ATC in advance of market operations, the ISO sets the starting TRM at 6% of TTC.
 - 3% for forecast uncertainty in transmission system topology
 - Accounting for risk of forced outage on intertie
 - Ability to account for known limitations on Path 26
 - 3% for variations in generation dispatch
 - Accounting for unavailability of supply during peak load periods

TRM values across identified paths

	6/2024	7/2024	8/2024	9/2024	10/2024	11/2024	12/2024	1/2025
CFEROA	24	24	24	24	24	24	24	24
CFETIJ	24	24	24	24	24	24	24	24
CTW230	78	78	78	78	78	96	96	96
MALIN500	179	179	179	179	179	183	183	183
MIR2	45	45	45	45	45	45	45	45
NOB	97	97	97	97	97	97	97	97
SYLMAR	156	156	156	156	156	156	156	156
TESLA230	79	79	79	79	79	90	90	90
TRCYCOTP	232	232	232	232	232	359	359	359
TRCYPGAE	232	232	232	232	232	359	359	359



Path 26 Assessment: Sensitivity Power-flow Analysis

Impact Analysis of Malin Wheel Through on Path 26

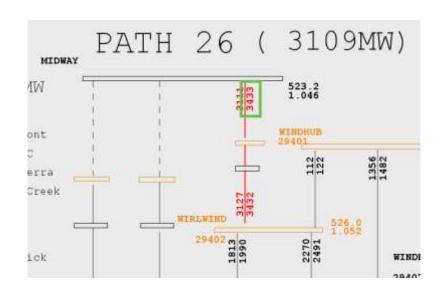
- Path 26 Historical Flow Review
- Malin Maximum PWTATC for Summer 2024
- Path 26 PWT Impact Assessment Assumptions
- Path 26 PWT Impact Assessment Results Review
- Conclusions

2023 Summer Path 26 flow

2023 Summer Path 26 flow

Path 26 PWT Impact Assessment Assumptions

- ➤ Wheel Through Source: Malin500 (BPA)
- Wheel Through Sink: PV West (APS)
- ➤ Wheel Through Increases Path 26 North to South Flow
- > From 6/1/2023 till 9/30/2023
 - Path 26 North to South highest daily peak flow: 3850 MW
 - There were 90 days Path 26 North to South daily peak flow less than 3000 MW
- > Two scenarios studied based on 2024 OSS summer assessment base case:
 - Path 26 North to South flow at 2023 highest: 3850 MW, 800MW wheel from Malin to PV West,
 - Path 26 North to South flow at most common Daily Peak level:
 3000 MW, 1270 MW wheel from Malin to PV West

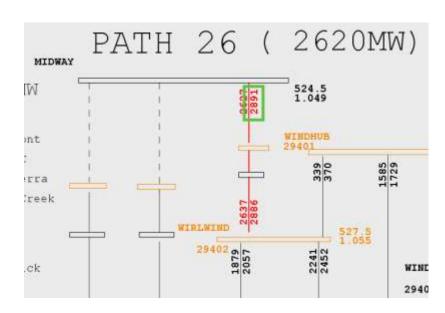


Path 26 PWT Impact Assessment Results Review

- Scenario 1: Path 26 North to South flow at 2023 highest: 3850 MW
- After applying 800MW wheel from BPA to APS, Path 26 North to South flow becomes 4544MW
- Increase the Path 26 North to South flow further will lead to post-contingency instability
- ➤ By simulating the next worst credible multiple contingency of Midway-Vincent #1 and #2 500kV lines the results are as follows:

Post-contingency flow on Midway-Whirlwind 500kV line is 3433Amps.

It is about 116% overload comparing to the 30min emergency rating of the line (2964Amps)


Path 26 PWT Impact Assessment Results Review

- Scenario 2: Path 26 North to South flow at most common Daily Peak level: 3000 MW
- After applying 1271MW wheel from BPA to APS, Path 26 North to South flow becomes 4033MW
- ➤ By simulating the next worst credible multiple contingency of Midway-Vincent #1 and #2 500kV lines the results are as follows:

Post-contingency flow on Midway-Whirlwind 500kV line is 2891Amps.

It is less than the 30min emergency rating of the line (2964Amps)

There is no thermal overload concern in this scenario.

Conclusions

- ➤ In most instances during summer season when Path 26 North to South flow is below 3000MW there is no reliability concern to apply near 1300 MW PWT ATC wheel from BPA to APS
- When Path 26 North to South flow is above 3000MW applying extra wheel from BPA to APS may cause potential post-contingency thermal overload.
- ➤ Notice that this potential thermal overload is protected by Procedure 6410 CP#1. In this scenario market mitigation could be utilized to lower the North to South flow on Path 26.

January Request Submission Window: January 18 – January 31

Request window opens on January 18 to support requests for monthly Wheeling Through Priority

- The ISO will open the request window consistent with section 23 of the tariff to support submission of requests for monthly ATC.
- Request window opens January 18th through January 31st, 2024.
- Requests for Monthly ATC cover the following period:
 - June 2024 through January 2025
- Results will be communicated to scheduling coordinators submitting requests within three (3) business days of window closing.
 - By February 5th

Requests for Monthly ATC will be submitted via the CIDI tool

- Requests for ATC will be submitted during the reservation window through the CIDI functionality with the following requested information:
 - MW quantity of the request
 - Intertie point of receipt and export point of delivery
 - Duration (start and stop date) in months
 - Underlying duration/hours of the supply contract supporting the request
 - Whether willing to accept partial service (partial duration or partial MW)
 - Attestation to the accuracy of information submitted
- The ISO has posted a template for submission of the information on the Reliability Requirements webpage.

Processing Requests and Results Notification

- The ISO will inform Scheduling Coordinators with submitted requests of the results of the assessment.
 - Within 3 business days of close of window (Feb. 5)
- The request assessment consists of competing requests based upon duration of the supporting supply contract hours to the extent there is not sufficient ATC to accommodate all requests.
- Submitter can indicate willingness to accept partial service (partial duration or partial MW).

Available documents and information

- Market Operations BPM <u>PRR 1548</u> posted outlining process for request submission.
- ATC ID and TRM ID have been published and announced via market notice.
 - Describe these components of ATC and TRM calculation.
- Request submission template and request window calendar have been posted on the ISO <u>reliability</u> <u>requirements webpage</u>.

Next Steps

Next Steps

- Wheeling Through Priority ATC request window opens January 18 through January 31.
 - Monthly ATC published for June 2024 January 2025
- ISO will communicate results of the request process to requesting Scheduling Coordinators by February 5th.
- February request window opens February 18 March 2.
 - Monthly ATC published for June 2024 February 2025