# Proposed SCE Submittals into the 2023-2024 Transmission Planning Process

## 2023-2024 CAISO TPP September 27, 2023



Energy for What's Ahead<sup>™</sup>

# Summary of Proposed Projects

SCE conducts its Annual Transmission Reliability Assessment (ATRA) in coordination with the California ISO (CAISO). Based on the results, SCE is submitting the following reliability projects into the annual California ISO Transmission Planning Process (TPP) window:

| # | Project                                                    | Driver  | Estimated<br>Cost | Proposed<br>In-Service<br>Date |
|---|------------------------------------------------------------|---------|-------------------|--------------------------------|
| 1 | Eldorado 500 kV Bus Short Circuit Duty (SCD)<br>Mitigation | SCD     | \$20M             | 12/31/2028                     |
| 2 | Mira Loma 500 kV Bus SCD Mitigation                        | SCD     | \$5M              | 6/30/2027                      |
| 3 | Etiwanda 230 kV Bus SCD Mitigation                         | SCD     | \$40M             | 12/31/2027                     |
| 4 | Inyo 230 kV Shunt Reactor                                  | Voltage | \$20M             | 12/31/2027                     |

All costs are in 2023 dollars and estimated according to the SCE 2023 Draft Per Unit Cost Guide:

https://www.caiso.com/InitiativeDocuments/SCE2023DraftPerUnitCostGuide.xlsx

# Proposed Reliability Projects

Energy for What's Ahead<sup>ss</sup>



# Eldorado 500 kV Bus Short Circuit Duty (SCD) Mitigation

#### **Area Challenges**

 The short-circuit duty at the Eldorado joint owned 500 kV bus has been calculated to be 72.5 kA for end of Queue Cluster 14

#### **Proposed Scope**

- Relocate the Mohave 500 kV line from Position 6S to Position 5S
- Add a middle circuit breaker to Position 5
- Open North and South circuit breakers on Position 5
- Update the Lugo-Victorville CRAS
- Add functionality to provide grid operators real-time short circuit duty levels in and around the area

#### **Impact of Proposed Project**

• The de-loop option is relatively inexpensive and allows significant generation and other planned TPP projects to reliably connect in the area



| Main System                              | Estimated Cost (\$M)                 | Proposed In-Service Date |  |
|------------------------------------------|--------------------------------------|--------------------------|--|
| Eldorado 500 kV 20<br>Dus SCD Mitigation |                                      | 12/31/2028               |  |
|                                          | Energy for What's Ahead <sup>™</sup> |                          |  |

# Eldorado 500 kV Bus Short Circuit Duty (SCD) Mitigation

### **SCD Calculation Results**

| Compris                                 | Pre Eldora  | ado 500 kV SCD | Post Eldorado 500 kV SCD |          |
|-----------------------------------------|-------------|----------------|--------------------------|----------|
| Scenario                                | Eff 3PH SCD | % Loaded       | Eff 3PH SCD              | % Loaded |
| End of Queue Cluster 14<br>(June 2022)* | 72.5 kA     | 115%           | 40.2 kA                  | 64%      |

\*The CAISO queued local generation (total resources) modeled in this area is approximately 13,000 MW and the CPUC 2023-2024 TPP portfolio is 8,535 MW, which shows directionally the same resource assumptions in the area.

### **Alternatives and Risks**

| Alternatives (Non-exhaustive list)                                                                                                                             | Risks                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Eldorado-Victorville De-loop Option                                                                                                                            | This alternative reduces SCD similarly and shows preliminary benefits, but implementation is outside of the CAISO controlled grid (the scope of work is at McCullough substation) |
| Build a new substation and move some lines to that substation                                                                                                  | High cost, licensing issues, and long lead time to build, this alternative was dismissed                                                                                          |
| Upgrade substation to 80 kA capability                                                                                                                         | High cost, long lead time to construct, loss of bay positions due<br>to size of circuit breakers and need to rebuild the entire bus rack<br>for all associated equipment          |
| Split the north and south buses and add 17 $\Omega$ reactors                                                                                                   | This option was dismissed because the size of reactors prevents<br>the installation of required protection and isolation equipment<br>within the existing switch rack             |
| Change the bypass mechanism on series capacitors to bypass at<br>an earlier fault level to decrease the short circuit fault duty at<br>Eldorado and McCullough | Due to lack of industry experience and potential system instability with this alternative, this option was dismissed                                                              |
|                                                                                                                                                                |                                                                                                                                                                                   |

5

# Mira Loma 500 kV Bus SCD Mitigation

#### Area Challenges

- In the 2022-2023 TPP, the CAISO approved the Mira Loma 500 kV Circuit Breaker Upgrade Project to address the short circuit duty concerns on 500 kV circuit breakers at Mira Loma 500/230 kV substation that are loaded to greater than 95% and 100% of the rated short circuit duty capability in the near-term and the longer-term planning horizons
- The scope of the approved project consists of replacing four 500 kV circuit breakers at Mira Loma with new higher rated circuit breakers
- After field verification, 500 kV circuit breakers were identified as potentially being loaded to greater than 100% of the rated short circuit duty capability in the near-term and the longer-term planning horizons

#### **Proposed Scope**

• Replace two (2) 500 kV circuit breakers at Mira Loma with new higher rated circuit breakers (two in addition to the four already approved in the 2022-2023 TPP)

#### **Impact of Proposed Project**

- Increases SCD margin at Mira Loma 500 kV
- Enables renewable generation and transmission interconnection in the area

| Main System                         | Estimated Cost (\$M) | Proposed In-Service Date |
|-------------------------------------|----------------------|--------------------------|
| Mira Loma 500 kV Bus SCD Mitigation | 5                    | 6/30/2027                |

# Mira Loma 500 kV Bus SCD Mitigation

### **SCD Calculation Results**

| Conneria | Pre Mira Loma 500 kV Bus SCD Mitigation |          | Post Mira Loma 500 kV Bus SCD Mitigation |          |
|----------|-----------------------------------------|----------|------------------------------------------|----------|
| Scenario | Eff 3PH SCD                             | % Loaded | Eff 3PH SCD                              | % Loaded |
| 2025     | 47.5 kA                                 | 118.7%   | 47.5 kA                                  | 75.4%    |
| 2035     | 54.9 kA                                 | 137.2%   | 54.9 kA                                  | 87.1%    |

### **Alternatives and Risks**

| Alternatives                                                               | Risks                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Develop operating procedure to open 500 kV transmission lines in real time | Opening 500 kV transmission lines during peak<br>times would be burdensome to Grid Operators,<br>may not be possible due to other real time<br>system issues, and could result in significant<br>curtailment of renewable resources |

# Etiwanda 230 kV Bus SCD Mitigation

#### Area Challenges

- Twelve (12) 230 kV circuit breakers at Etiwanda Substation are expected to be loaded to greater than 95% of their rated three-phase SCD capability in the near term (2025) and to 100% in the long term (2035)
- Anticipated SCD exceeds 100% of the 63 kA capability in current generation queue cluster studies (QC14)
- SCD could exceed 100% before the currently identified triggering cluster due to system changes and short circuit equivalent updates
- Supply chain challenges have increased the lead time for 230 kV circuit breakers, which limits SCE ability to quickly complete the required mitigation and the associated delay could become a barrier to new generation

#### **Proposed Scope**

• Replace twelve (12) 230 kV circuit breakers at Etiwanda currently rated 63 kA tested at X/R ratio of 17 with new 63 kA rated circuit breakers tested at X/R ratio of 35

#### **Impact of Proposed Project**

- Increases SCD margin at Etiwanda 230 kV
- Enables renewable generation and transmission interconnections in the area

| Eastern                            | Estimated Cost (\$M) | Proposed In-Service Date |
|------------------------------------|----------------------|--------------------------|
| Etiwanda 230 kV Bus SCD Mitigation | 40                   | 12/31/2027               |

# Etiwanda 230 kV Bus SCD Mitigation

### **SCD Calculation Results**

| Compris  | Pre Etiwanda 230 kV Bus SCD Mitigation |          | Post Etiwanda 230 k | / Bus SCD Mitigation |
|----------|----------------------------------------|----------|---------------------|----------------------|
| Scenario | Eff 3PH SCD                            | % Loaded | Eff 3PH SCD         | % Loaded             |
| 2025     | 60.6 kA                                | 96.2%    | 56.6 kA             | 89.8%                |
| 2035     | 63.0 kA                                | 100.0%   | 58.0 kA             | 92.1%                |

### **Alternatives and Risks**

| Alternatives                                                               | Risks                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Develop operating procedure to open 230 kV transmission lines in real time | Opening 230 kV transmission lines during peak times<br>would be burdensome to Grid Operators, may not be<br>possible due to other real time system issues, and<br>could result in significant curtailment of renewable<br>resources |

# Inyo 230 kV Shunt Reactor

### **Area Challenges**

- In the 2022-2023 TPP, the CAISO approved the Control 115 kV Shunt Reactor Project to mitigate high voltage issues following P6 contingencies at Inyo 230 kV bus. Based on the historical Inyo 230 kV bus voltage data, the Inyo area has been experiencing high voltage issues in real time operation
- The scope of the TPP approved project consist of installing a 45 MVAr 115 kV shunt reactor at Control Substation
- Upon further evaluation, installing a shunt reactor on the SCE side of the Inyo 230 kV Substation instead of at the Control 115 kV Substation was found to be more effective in addressing the high voltage issues and a more viable location for construction

### **Proposed Scope**

 Replace the 45 MVAR shunt reactor at Control 115 kV with a 25 MVAR shunt reactor at Inyo 230 kV Substation

### **Impact of Proposed Project**

- Mitigates high voltages in the Inyo area
- Alleviates need to coordinate with CAISO on reducing area generation to mitigate high voltage issues



| North of Lugo Area           | Estimated<br>Cost (\$M) | Proposed In-Service<br>Date |
|------------------------------|-------------------------|-----------------------------|
| Inyo 230 kV Shunt<br>Reactor | 20                      | 12/31/2027                  |

# Inyo 230 kV Shunt Reactor

### **Voltage Results**

| Substation           | SCE 25 MVAR shunt reactor at Inyo 230 kV |       |  |
|----------------------|------------------------------------------|-------|--|
| Substation           | OFF                                      | ON    |  |
| Inyo 230 kV          | 242.6                                    | 231.3 |  |
| W&E LTC Tap Position | 7                                        | 7     |  |
| Kramer 230 kV        | 230.4                                    | 230.0 |  |
| Barren Ridge 230 kV  | 245.4                                    | 244.1 |  |
| Inyo 115 kV          | 122.2                                    | 117.7 |  |
| Control 115 kV       | 122.0                                    | 117.6 |  |

### **Alternatives and Risks**

| Alternatives                                                                                                                                                                                                  | Risks                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Continue to utilize the existing system operating bulletins (SOB 80 and SOB 17)                                                                                                                               | <ul> <li>Coordinate with CAISO on reducing area generation to maintain voltage</li> <li>SCE system operators can't manage the voltage issue without accepting about 10 MVARs from LADWP's system, although the Inyo intertie contracted capacity is 0 MW when the phase shifter is inservice</li> </ul> |
| Install a 45 MVAr shunt reactor at SCE Control 115 kV Substation.                                                                                                                                             | <ul> <li>There is no physical space at Control Substation; expansion outside the existing fence line is required.</li> <li>Project would be significantly delayed past 2027 due to existing planned work at Control Substation.</li> </ul>                                                              |
| LADWP recently confirmed plans to install a +/- 200 MVAr STATCOM<br>by the end of 2023 at their Barren Ridge substation. This STATCOM<br>was considered in the Inyo 230 kV high voltage mitigation assessment | <ul> <li>The voltage setpoint and droop characteristic for the LADWP's<br/>STATCOM have yet to be defined. Moreover, this STATCOM is unlikely<br/>to resolve the high voltage issue at Inyo because it will be located<br/>~150 miles from the Inyo 230 kV station</li> </ul>                           |
|                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                         |