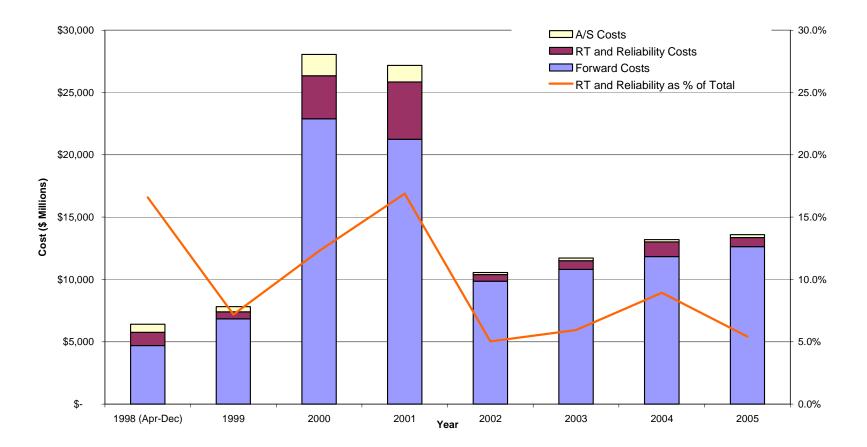


Appendix A

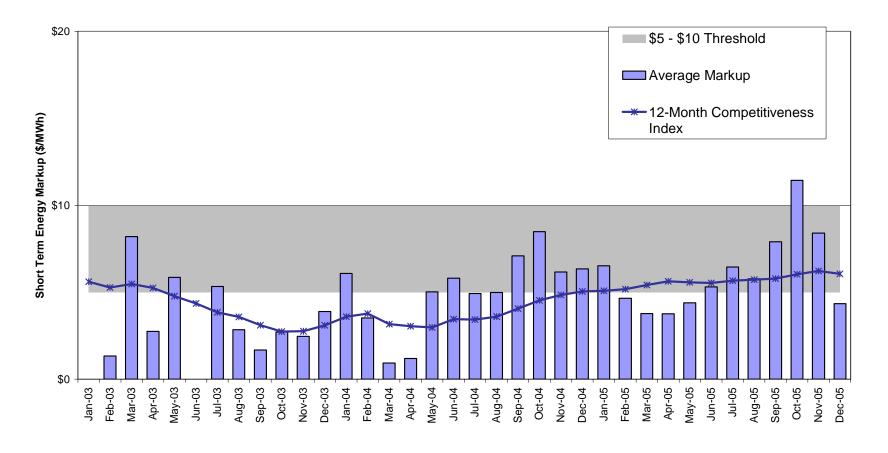
Market Monitoring Report 2005 Annual Report Summary



2005 Market Highlights

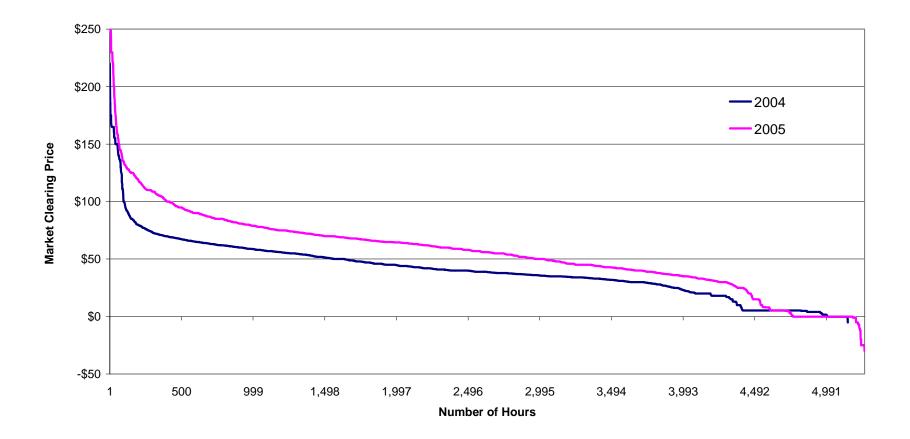
- Overall, CAISO markets were competitive and stable.
- Congestion costs reduced significantly.
- Concern that new generation investment over the next several years may not keep pace with demand growth and retirements.
- Significant market events in 2005:
 - Inter-tie bidding and settlements under RTMA "bid or better" rules (Amendment 66).
 - Load scheduling requirement (Amendment 72).
 - Gulf Coast Hurricanes impact on natural gas and energy prices.
- Analysis to date indicates RTMA performance consistent with design objectives but opportunities exist for future enhancements.

Total Wholesale Energy and A/S Costs

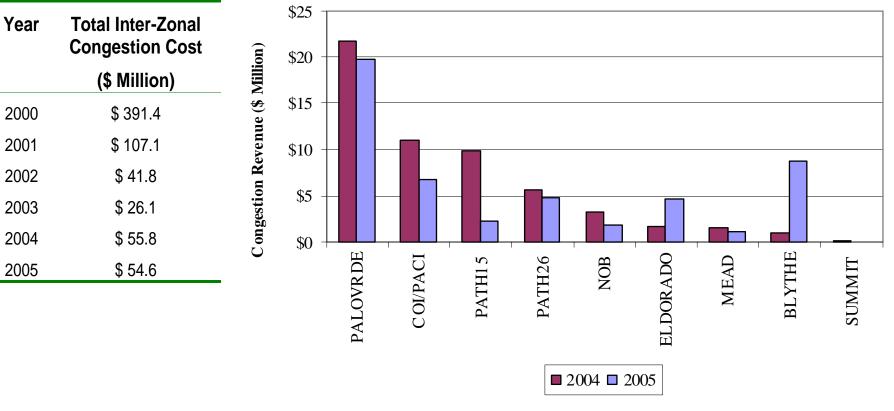


- All-in Price
 - All in price is expressed in \$/MWh of load in CAISO control area.
 - Total increase of 4.5% in 2005 compared to 2004.

	2002	2003	2004	2005	Change '04-'05
Est. Forward-Scheduled Energy Costs, excl. Interzonal Congestion and GMC	\$ 40.92	\$ 45.77	\$ 48.21	\$ 52.35	\$ 4.13
Interzonal Congestion Costs	\$ 0.18	\$ 0.12	\$ 0.23	\$ 0.23	\$ (0.00)
GMC (All charge types, including RT)	\$ 1.00	\$ 1.00	\$ 0.90	\$ 0.84	\$ (0.06)
Incremental In-Sequence RT Energy Costs	\$ 0.49	\$ 0.63	\$ 1.47	\$ 1.60	\$ 0.13
Explicit MLCC Costs (Uplift)	\$ 0.26	\$ 0.54	\$ 1.21	\$ 0.52	\$ (0.68)
Out-of-Sequence RT Energy Redispatch Premium	\$ 0.02	\$ 0.19	\$ 0.43	\$ 0.15	\$ (0.28)
RMR Net Costs (Include adjustments from prior periods)	\$ 1.60	\$ 1.95	\$ 2.67	\$ 1.95	\$ (0.73)
Less In-Sequence Decremental RT Energy Savings	\$ (0.08)	\$ (0.29)	\$ (0.86)	\$ (1.11)	\$ (0.25)
Total Energy Costs	\$ 44.39	\$ 49.90	\$ 54.27	\$ 56.53	\$ 2.26
A/S Costs (Self-Provided A/S valued at ISO Market Prices)	\$ 0.68	\$ 0.86	\$ 0.77	\$ 0.96	\$ 0.20
ISO-related Costs (Transmission, Reliability, Grid Mgmt.)	\$ 4.15	\$ 5.00	\$ 6.82	\$ 5.15	\$ (1.68)
Total Costs of Energy and A/S (\$/MWh load)	\$ 45.07	\$ 50.76	\$ 55.04	\$ 57.49	\$ 2.46
A/S Costs % of All-In Price Index	 1.5%	 1.7%	 1.4%	 1.7%	 7.9%



• 12-month market competitive index


• Real-time price duration curve for SP15

Review of Market Performance

Inter-Zonal Congestion Costs

Annual Intra-Zonal Congestion Costs

	MLCC			RMR			R-T Redispatch			Total		
	2003	2004	2005	2003	2004	2005	2003	2004	2005	2003	2004	2005
January	\$6	\$12	\$8	\$0	\$3	\$3	\$1	\$4	\$6	\$7	\$19	\$16
February	\$6	\$13	\$4	\$1	\$4	\$3	\$0	\$7	\$3	\$7	\$23	\$10
March	\$6	\$20	\$3	\$0	\$4	\$4	\$1	\$8	\$3	\$7	\$31	\$10
April	\$4	\$18	\$6	\$1	\$4	\$5	\$2	\$5	\$3	\$7	\$27	\$14
May	\$1	\$22	\$14	\$3	\$3	\$5	\$0	\$4	\$2	\$3	\$28	\$20
June	\$2	\$25	\$7	\$2	\$3	\$2	\$0	\$2	\$0	\$4	\$30	\$9
July	\$3	\$29	\$13	\$2	\$6	\$4	\$0	\$11	\$1	\$5	\$47	\$18
August	\$13	\$29	\$15	\$4	\$5	\$7	\$9	\$15	\$1	\$25	\$50	\$23
September	\$10	\$23	\$7	\$3	\$4	\$7	\$6	\$12	\$3	\$19	\$39	\$17
October	\$11	\$21	\$13	\$6	\$4	\$7	\$8	\$18	\$4	\$25	\$43	\$24
November	\$9	\$29	\$12	\$2	\$5	\$4	\$2	\$9	\$6	\$13	\$44	\$22
December	\$9	\$33	\$13	\$3	\$4	\$2	\$17	\$8	\$5	\$29	\$45	\$20
Totals	\$78	\$274	<mark>\$115</mark>	\$27	\$49	<mark>\$53</mark>	\$46	\$103	\$36	\$151	\$426	\$204

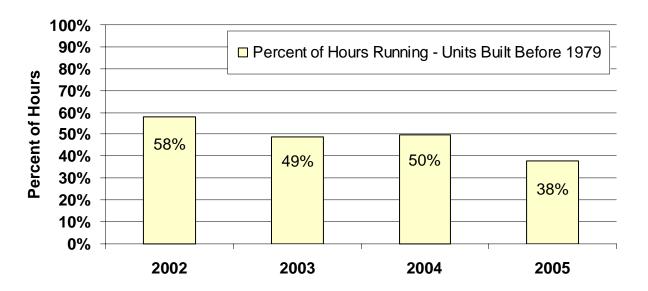
Average Hourly A/S Prices and Volumes

	Year	RD	RU	SP	NS	Average A/S Price
	1999	20.84	20.22	7.07	4.35	11.97
(/////\$)	2000	50.15	77.28	44.07	32.46	41.03
Ň	2001	42.33	66.72	34.69	30.03	36.42
\$	2002	13.76	13.41	4.66	2.15	7.08
Price	2003	18.43	18.08	6.62	4.20	9.81
P	2004	10.95	17.95	7.25	4.43	8.63
	2005	16.05	20.94	10.45	3.98	10.72
						Total Volume
	1999	769	903	942	735	3,687
(MM)	2000	594	633	818	861	3,479
Σ	2001	614	492	1,148	862	3,420
ne	2002	469	460	775	763	2,524
Iun	2003	416	381	767	722	2,309
Volume	2004	408	395	817	782	2,427
-	2005	363	386	841	839	2,428

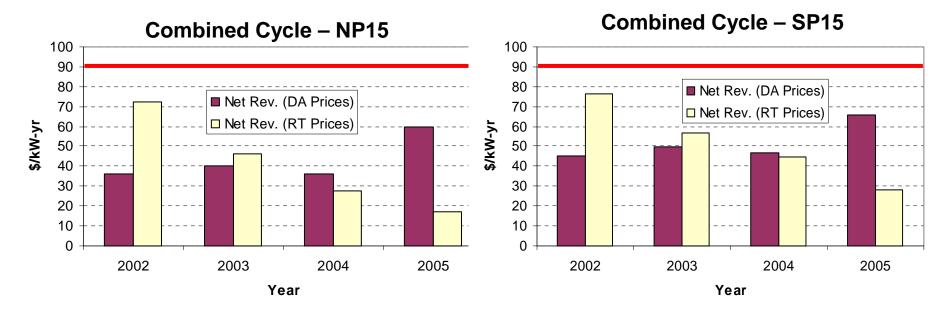
- Significant amount of new generation in 2005.
- New generation in SP15 through 2006 not keeping pace with load growth and retirements.

						Projected	Total Through
	2001	2002	2003	2004	2005	2006	2006
SP15							
New Generation	639	478	2,247	745	2,376	352	6,837
Retirements	0	(1,162)	(1,172)	(176)	(450)	(1,320)	(4,280)
Forecast Load Growth [*]	491	500	510	521	531	542	3,094
Net Change	148	(1,184)	565	48	1,395	(1,510)	(537)
NP26							
New Generation	1,328	2,400	2,583	3	919	89	7,322
Retirements	(28)	(8)	(980)	(4)	0	(215)	(1,235)
Forecast Load Growth*	389	397	405	413	422	430	2,456
Net Change	911	1,995	1,198	(414)	497	(556)	3,631

* Assumes 2% peak load growth using 2005 forecast from 2005 Summer Assessment.


 Very little new generation coming on-line in the next 3-years (2006-2008)... concern given load growth and potential retirement of older units in SP15.

- Long-term Contracting Remains Key to Revenue Adequacy and Generation Investment
 - CEC reports that IOUs have completed agreements to purchase over 2,700 MW of new or turn-key power plants (CEC 2005 IEPR on p.44).
 - Also, IOUs have signed over 80 long-term energy contracts, however only 2,000 MW are for 5+ years (CEC 2005 IEPR).

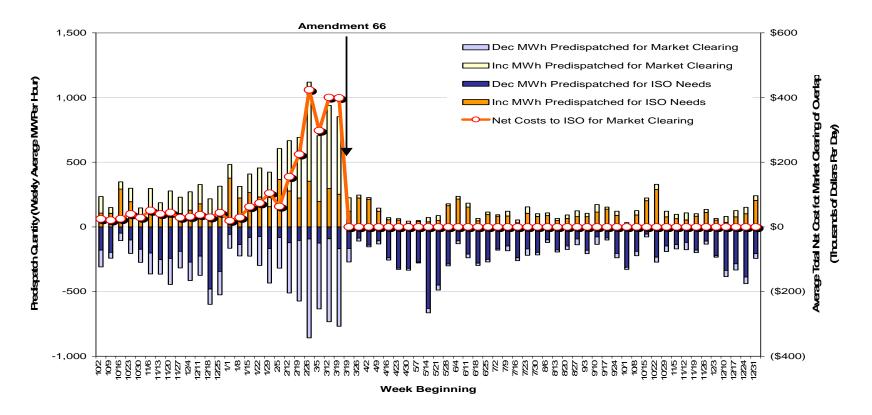

- Long-term Contracting Remains Key to Revenue Adequacy and Generation Investment
 - Procurement efforts to increase long-term contracts (10+ years) would improve incentives for investment.
 - CAISO currently relies on older units in load pockets that are at risk of retiring. New generation will be needed in these areas as retirements ensue.

Generation Investment - Spot Market Revenue Assessment

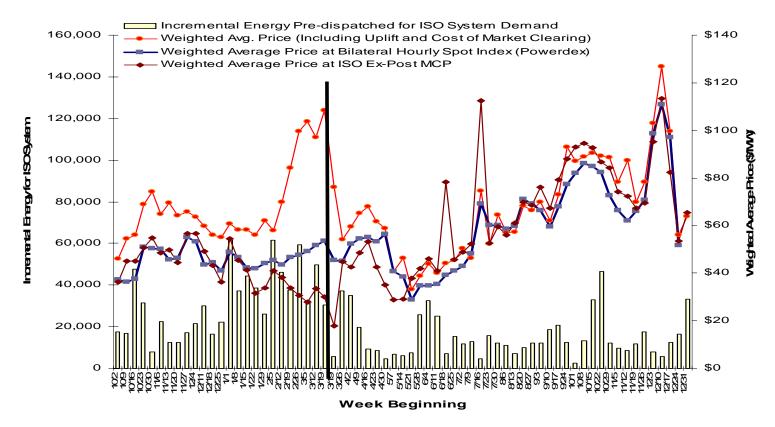
• Spot market net revenues continue to fall well short of the annualized fixed cost of new generation

• Revenue simulation for CC unit compared to benchmark \$90/kW-yr cost recovery figure reported by CEC.

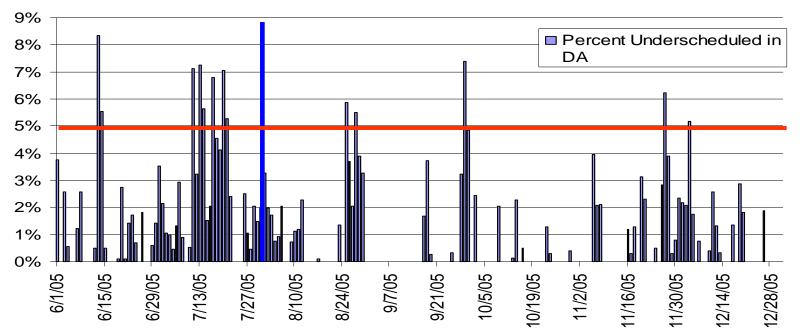
• IOU Procurement Framework


- "Energy-only" market framework has not provided sufficient revenues from spot market to attract new investment.
- Resource Adequacy Requirements are good start, but allow imports and Liquidated Damages Contracts to satisfy requirement, substituting for capacity contracts with generation internal to the CAISO control area.
- Location-specific Reliability Requirements are needed to provide revenue adequacy, and incentives for investment, to internal generation.

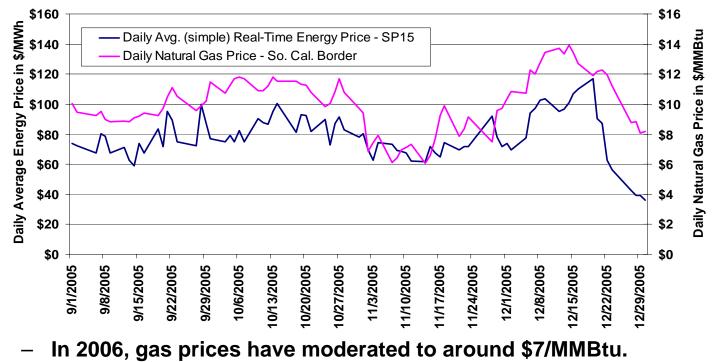
- IOU Procurement Framework (cont'd)
 - Procurement efforts to increase long-term contracts (10+ years) would improve incentives for investment. CEC 2005 Energy Report reports that IOUs have signed only 2,000 MW of energy contracts w/ terms greater than 5 years.
 - CAISO currently relies on older units in load pockets that are at risk of retiring. New generation will be needed in these areas as retirements ensue.



- Inter-tie bidding and settlement
 - Originally, import/export bids were cleared against each other in the pre-dispatch and settled 'bid or better'.



- Inter-tie bidding and settlement
 - Since implementation of 'as-bid', uplift costs have declined, and have observed price convergence between pre-dispatch and RT.


- Load scheduling in Day-Ahead
 - CAISO Grid Operations identified in Summer 2006 that load was significantly under-scheduled in the Day-Ahead.

- Figure represents actual final metered load DA scheduled load during peak hour of day.
- By end of 2005, total load scheduled in DA had increased to within the 95% threshold.

- Natural gas prices and impact on Real-Time market
 - Natural gas prices spiked in last quarter of 2005, nearing \$14/MMBtu, as a result of two hurricanes.
 - Real-time electricity prices increased during this time, reflecting increase in gas cost.

- RTMA Performance
 - RTMA has increased the volatility of prices and dispatches within each operating hour
 - Increased volatility the result of features of RTMA designed to increase the responsiveness of prices and dispatches.
 - Fluctuations in prices and dispatches under RTMA closely mirror actual system imbalance conditions.
 - Performance of RTMA seems to have improved since it was implemented on October 1, 2004, due to numerous modifications, however significant volatility in the morning ramping hours remains.
 - The absence of a fully optimized day ahead energy market may account for a higher level of real time market price and dispatch volatility (more re-dispatch required in real time).

Significant Market Events in 2005

• RTMA Performance – Unresolved Issues

- Further assessment of the interactions between regulation energy and RTMA dispatch to better understand why RTMA has not resulted in a significant reduction in the use of regulation;
- Further assessment of price and dispatch volatility within the first few pricing intervals of each hour;
- Establishing a relationship between load bias, regulation energy, 5-minute dispatch volatility, and pre-dispatched tie bids; and
- Additional benchmarking with data from other ISOs.

- RTMA Performance Lessons learned for MRTU
 - Dispatch software should recognize non-compliant units.
 - Default prices should reflect market conditions when applied.
 - Operator interaction with market inputs should be tracked and periodically assessed to determine impact on operational and market outcomes.
 - Data generated by market software should be easily accessible for analysis by various ISO departments across large periods of time.