

Flexible Capacity Needs and Availability Assessment Hours Technical Study for 2019

Clyde Loutan Principal, Renewable Energy Integration

Hong Zhou Market Development Analyst, Lead

April 16, 2018

What's the purpose of this call?

To discuss the assumptions, methodology, and draft results of the monthly flexible capacity requirement and Availability Assessment Hours Technical Study.

Specifically

Calculating requirements for all LRAs within the ISO footprint for RA compliance year 2019 and advisory flexible capacity requirements for compliance years 2020 and 2021

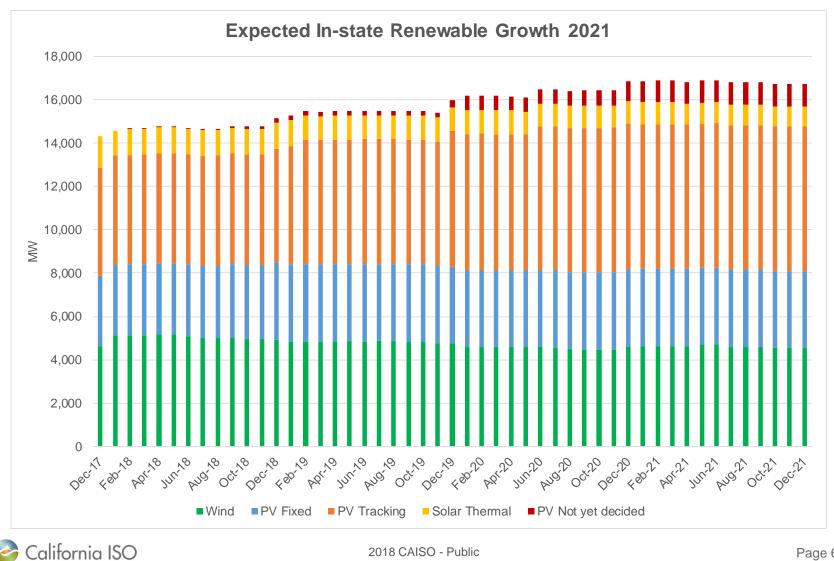
Agenda / Overview

- Background
- Process review
 - Expected build out from all LSEs (CPUC jurisdictional and non-Jurisdictional)
 - Load, wind and solar profiles
 - Calculate 3-hour net-load ramps
 - Add contingency reserves
 - Calculate monthly Flexible Capacity requirement
- Overview of methodology used for system/local availability assessment hours
 - 2019 availability assessment hours
 - 2020-2021 draft availability assessment hours

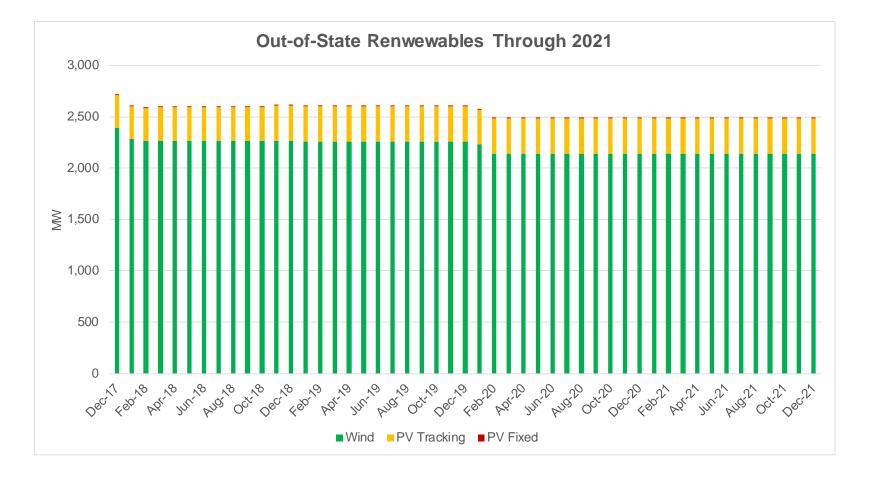
Each LSE Scheduling Coordinator shall make a year-ahead and month-ahead showing of flexible capacity for each month of the compliance year

Resource Adequacy (RA)

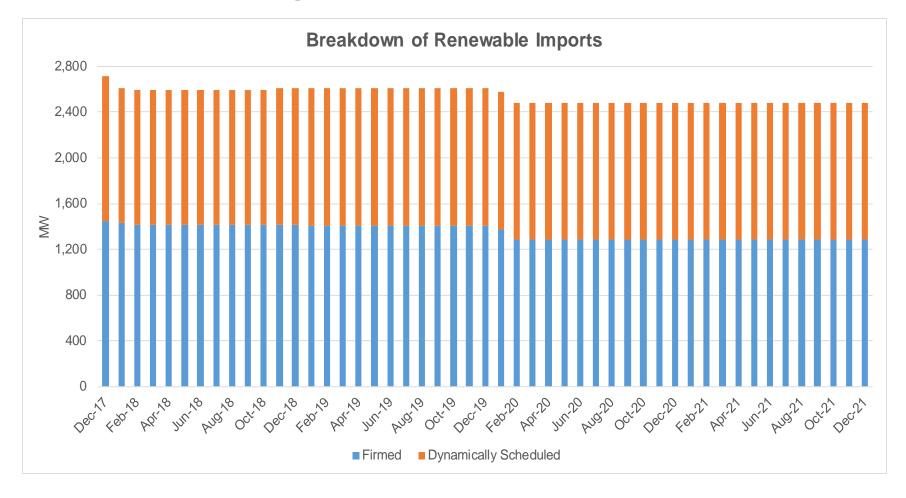
- Ensure LSEs contract for adequate capacity to meet expected flexible needs
- Year ahead: LSEs need to secure a minimum of 90% of the next years monthly needs
- Month ahead: LSEs need to secure adequate net qualified capacity to serve their peak load including a planning reserve margin and flexible capacity to address largest three hour net load ramps plus contingency reserves
- All resources participating in the ISO markets under an RA contract will have an RA must-offer-obligation
- Required to submit economic bids into the ISO's real-time market consistent with the category of flexible capacity



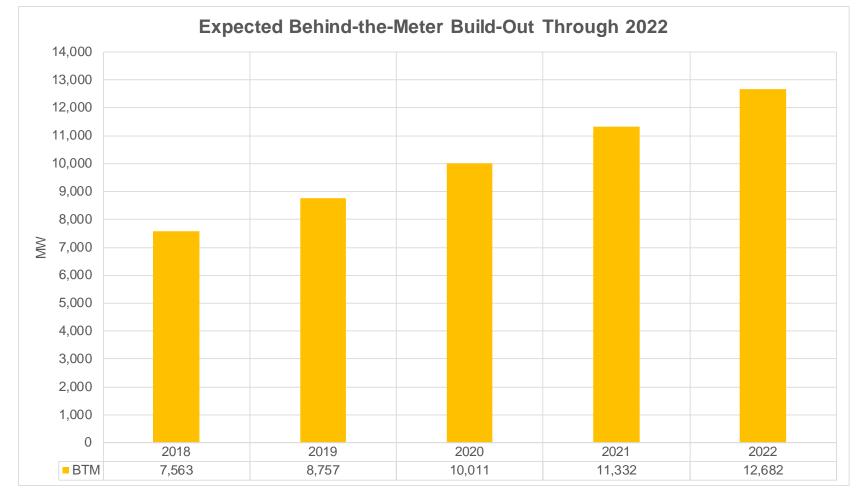
What data did the ISO collect?


- CEC's "1 in 2" Mid monthly demand forecast for 2017 through 2021
 - Behind-the-meter hourly solar PV production
 - Hourly AAEE
- LSE SCs updated renewable build-out for 2017 through 2021
- The data included:
 - Installed capacity by technology and expected operating date (e.g. Solar thermal, solar PV tracking, solar PV non-tracking, estimate of behindthe-meter solar PV etc.) for all variable energy resources under contract
 - Operational date or expected on-line date
 - Location of CREZ latitude and longitude coordinates
 - Resources located outside ISO's BAA indicated if the resources are firmed or non-firmed

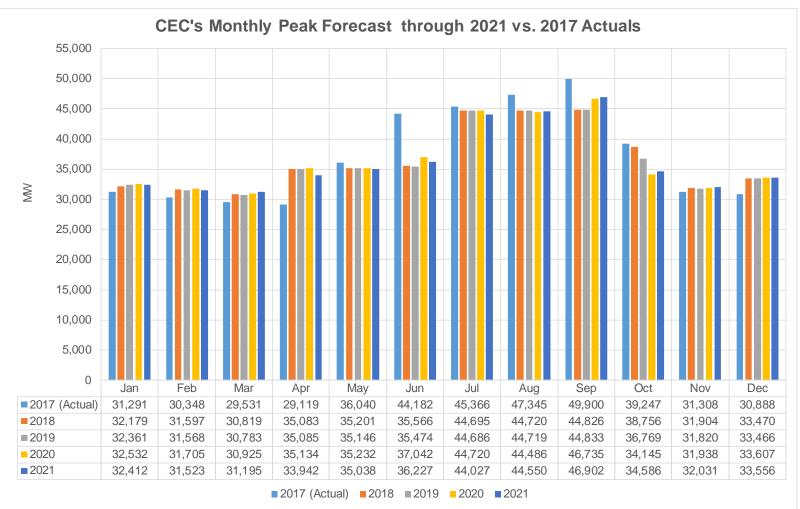
Renewable build-out through December 2021



Out of state contracted renewable through December 2021



Firmed and non-firmed out of state contracted renewables through December 2021



LSEs estimate of behind the meter solar PV capacity build-out through 2022

California ISO

CEC (mid baseline, mid AAEE) projected 1 in 2 CAISO coincident peak forecast

California ISO

The ISO flexibility capacity assessment is based on current LSE's RPS build-out data

- Used the most current data available for renewable build-out submitted by all LSE SCs
- For new renewable installation scale 2017 actual production data based on installed monthly capacity in subsequent years
- Used NEXANT production data to develop 1-minute profiles for new behind-the-meter solar PV
- Generated net-load profiles for 2018 through 2021 using the simulated:
 - Load profiles for 2018 through 2021
 - Solar profiles for 2018 through 2021
 - Wind profiles for 2018 through 2021
 - BTM profiles for 2018 through 2021

The ISO used the CEC's 1-in-2 monthly peak load forecast to develop the load forecast

- Used 2017 actual 1-minute load data to build 1-minute load profiles for 2018 through 2021
- Scaled the actual 1-minute 2017 load of each hour using a growth factor of CEC's hourly peak forecast divided by actual 2017 hourly peak for each year

2018 Load Growth Assumptions

 Scale the actual 1-minute load value of each hour of 2017 by the fraction (Hourly_{2018_Peak_Load_Forecast}/Hourly_{2017_Actual_Peak_Load})

2019 Load Growth Assumptions

 Scale the actual 1-minute load value of each hour of 2017 by the fraction (Hourly_{2019_Peak_Load_Forecast}/Hourly_{2017_Actual_Peak_Load})

The behind-the-meter solar PV 1-minute data was developed using the methodology outlined below

TRACK I DIRECT TESTIMONY OF MARK ROTHLEDER ON BEHALF OF THE CALIFORNIA INDEPENDENT SYSTEM OPERATOR CORPORATION (CORRECTED)

(Rulemaking 10-05-006)

Located at:

https://www.caiso.com/Documents/2011-08-10_ErrataLTPPTestimony_R10-05-006.pdf

Wind growth assumptions through 2021 based on the LSEs expected installations

- Used the actual 1-minute wind production data for 2017 to develop the 1-minute wind profiles for 2018 through 2021
- Wind projects installed in 2017 were modeled in 2018 for the months the projects were not yet in-service in 2017 (e.g. wind projects installed in May 2017 were included in January through April of 2018
- Scaled 1-minute wind data using the forecast monthly wind capacity for the new plants scheduled to be operational each year
- Repeated the above steps for 2019, 2020 & 2021

 $2018 W_{Mth_Sim_1-min} = 2017W_{Act_1-min} * 2018W_{Mth\ Capacity} / 2017W_{Mth\ Capacity}$ $2019 W_{Mth_Sim_1-min} = 2017W_{Act_1-min} * 2019W_{Mth\ Capacity} / 2017W_{Mth\ Capacity}$ $2020 W_{Mth_Sim_1-min} = 2017W_{Act_1-min} * 2020W_{Mth\ Capacity} / 2017W_{Mth\ Capacity}$ $2021 W_{Mth_Sim_1-min} = 2017W_{Act_1-min} * 2021W_{Mth\ Capacity} / 2017W_{Mth\ Capacity}$

Solar growth assumptions through 2021 based on the LSEs expected installations

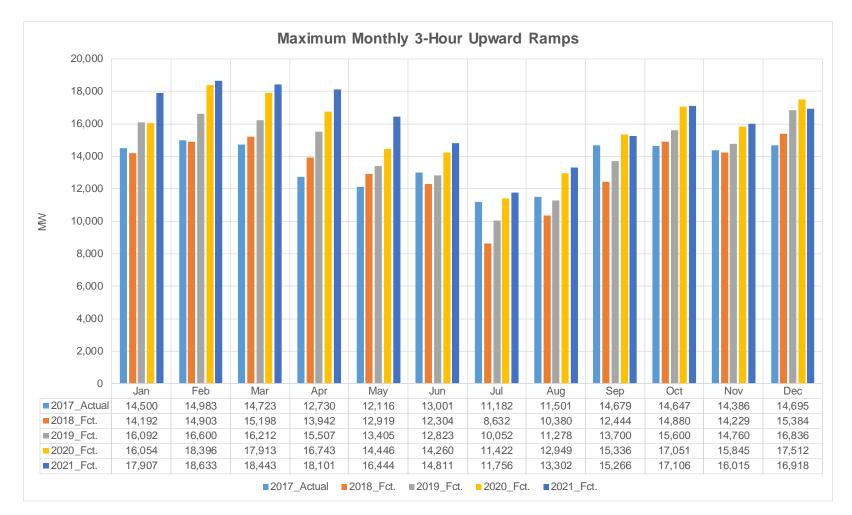
- Used the actual solar 1-minute solar production data for 2017 to develop the 1-minute solar profiles for 2018 through 2021
- Solar projects installed in 2017 were modeled in 2018 for the months the projects were not yet in-service in 2017 (e.g. solar projects installed in May 2017 was included in January through April of 2018
- Scaled 1-minute solar data using the forecast monthly solar capacity for the new plants scheduled to be operational in 2018
- Repeated the above steps for 2019, 2020 & 2021

 $2018 S_{Mth_Sim_1-min} = 2017S_{Act_1-min} * 2018S_{Mth_Capacity} / 2017S_{Mth_Capacity}$ $2019 S_{Mth_Sim_1-min} = 2017S_{Act_1-min} * 2019S_{Mth_Capacity} / 2017S_{Mth_Capacity}$ $2020 S_{Mth_Sim_1-min} = 2017S_{Act_1-min} * 2020S_{Mth_Capacity} / 2017S_{Mth_Capacity}$ $2021 S_{Mth_Sim_1-min} = 2017S_{Act_1-min} * 2021S_{Mth_Capacity} / 2017S_{Mth_Capacity}$

Net-load is a NERC accepted metric¹ for evaluating additional flexibility needs to accommodate VERs

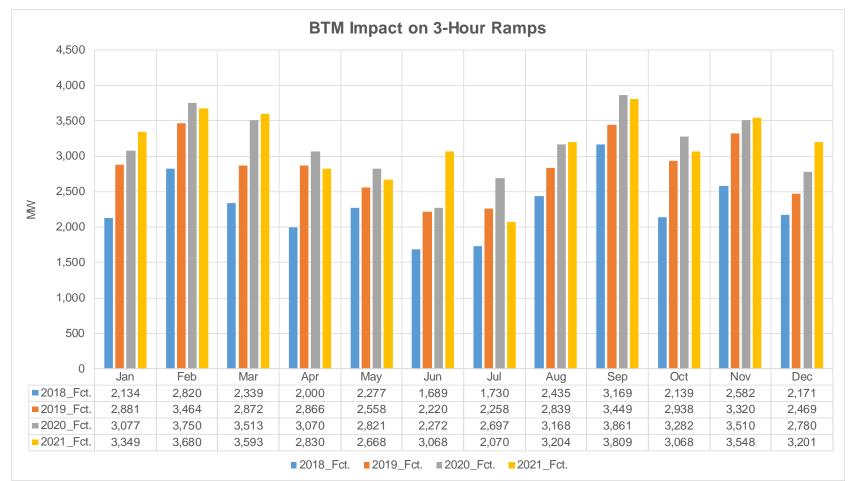
- Net load is the aggregate of customer demand reduced by variable generation power output
- Net-load is more variable than load itself and it increases as VER production increases
- The monthly three-hour flexible capacity need equates to the largest up-ward change in net-load when looking across a rolling three-hour evaluation window
- The ISO dispatches flexible resources to meet net-load

¹ NERC Special Report Flexibility Report Requirements and metrics for Variable Generation: Implications for System Planning Studies, August 2010. <u>http://www.nerc.com/files/IVGTF_Task_1_4_Final.pdf</u>



The monthly 3-hour upward ramping need is calculated using the largest ramp in each 180 minute period

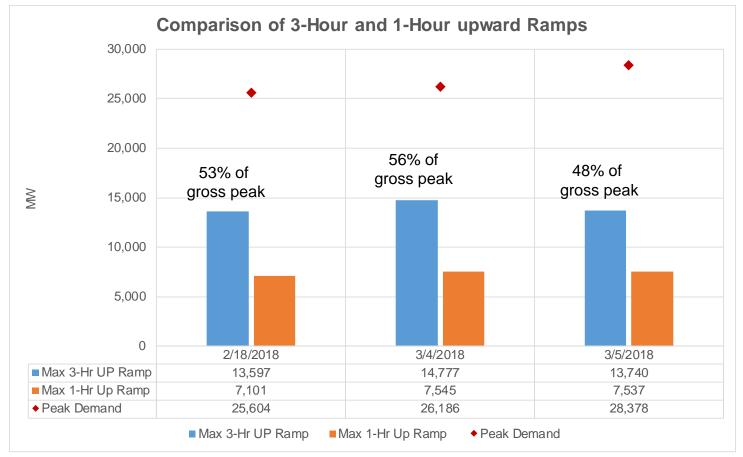
- The maximum monthly three-hour net load ramp within a three-hour period is the highest MW value reached within any three-hour moving window
- The maximum net-load change in three-hours can occur in less than three hours
- The maximum 3-hour upward ramp was calculated as: Net Load₁₈₁-Net Load₁, Net Load₁₈₂-Net Load₂, Net Load_{n+180}-Net Load_n



Maximum monthly three-hour upward net-load ramps for 2017 through 2021

🍣 California ISO

Expected contribution of behind-the-meter solar PV on the 3-hour upward ramps through 2021



Actual net-load and 3-hour ramps are about four years ahead of the CAISO's original estimate primarily due to under forecasting roof-top solar PV installation

Typical Spring Day

Steeper 28,000 **Ramps** 26,000 24,000 22,000 2012 20,000 Megawatts (actua 2013 (actual) 18,000 2014 mp need 16,000 201 -13,000 MW 2016 in three hours 14,000 2017 2018-2019-12,000 Actual 3-hour ramp 2020 over generation of 14,777 MW on Deeper risk 10,000 March 4, 2018 Belly 0 12am 3am 6am 9am 12pm 3pm 6pm 9pm Net Load of 7,149 MW on Hour February 18, 2018 California ISO 2018 CAISO - Public Page 20

The 3-Hour upward ramps are more than 50% of the daily peak demand, which indicates the need for faster ramping resources

Contingency reserves is a NERC/WECC requirement BAs must have available in real-time

- Each Balancing Authority and each Reserve Sharing Group shall maintain a minimum amount of Contingency Reserve, except within the first sixty minutes following an event requiring the activation of Contingency Reserve
- To meet WECC and NERC reliability criteria, the ISO must have contingency reserves equal to the greater of:
 - 1) the most severe single contingency ("MSSC")
 - 2) the sum of 3% of hourly integrated load plus 3% percent of hourly integrated generation
- 50% of the contingency reserve must be spinning reserve
- Contingencies can occur during ramps and the ISO must be prepared to dispatch contingency reserve to recover its Area Control Error (ACE) within 15-minutes following a disturbance
- Contingency reserves are held for contingency events and cannot be dispatched to meet day-to-day net-load ramps

For more information please refer to: WECC Standard BAL-002-WECC-2---Contingency Reserve

California ISO

2018 CAISO - Public

Page 22

Preliminary Results

Hong Zhou Market Development Analyst, Lead

Amber Motley Manager, Short Term Forecasting The proposed interim flexible capacity methodology designed to provide the ISO with sufficient flexible capacity

Current Methodology

 $\label{eq:stability} Flexibility Requirement_{\text{MTHy}} = Max[(3\text{RR}_{\text{HRx}})_{\text{MTHy}}] + Max(\text{MSSC}, 3.5\%*\text{E}(\text{PL}_{\text{MTHy}})) + \epsilon$

Where:

 $Max[(3RR_{HRx})_{MTHy}] = Largest three hour contiguous ramp starting in hour x for month y$

E(PL) = Expected peak load

MTHy = Month y

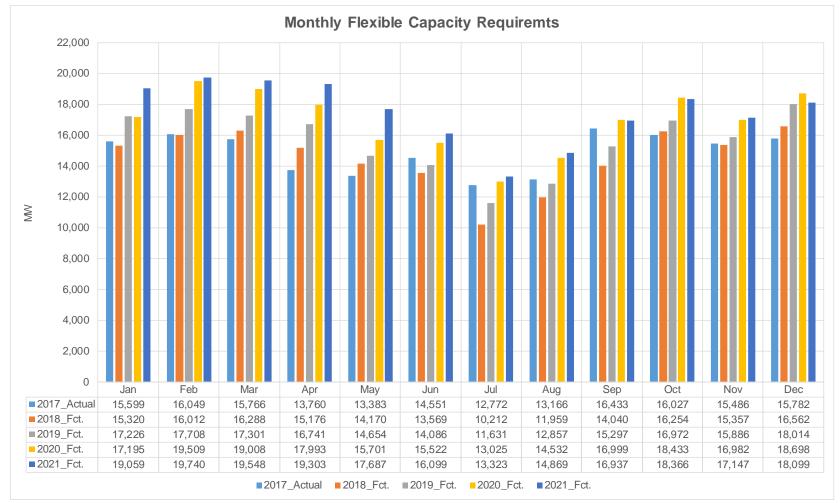
MSSC = Most Severe Single Contingency

 ϵ = Annually adjustable error term to account for load forecast errors and variability

Flexible capacity requirement is split into its two component parts to determine the allocation

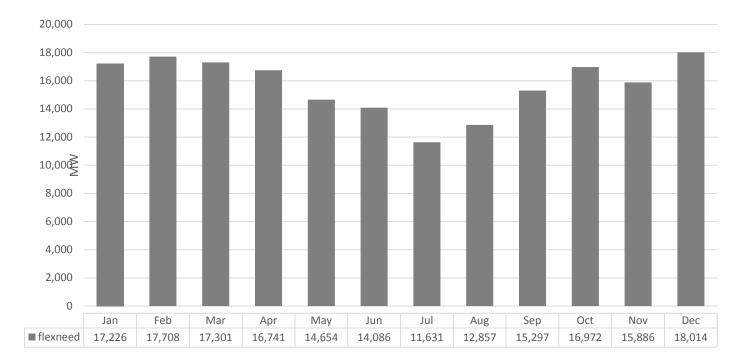
• The largest 3-hour net-load ramp is decomposed into four components to determine the LRA's allocation

Three hour net load ramp =


 Δ Load – Δ Wind – Δ Solar – Δ BTM

Maximum of the Most Severe Single Contingency or 3.5 percent of forecasted coincident peak

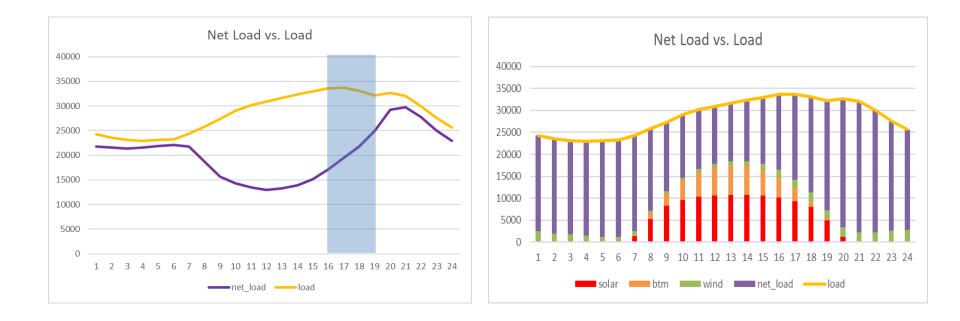
Allocated to LRA based on peak-load ratio share


Maximum monthly three-hour upward flexible capacity needs for 2017 through 2021

Forecasted monthly 2019 ISO system-wide flexible capacity needs*

Forecasted monthly 2019 ISO system-wide flexible capacity needs*

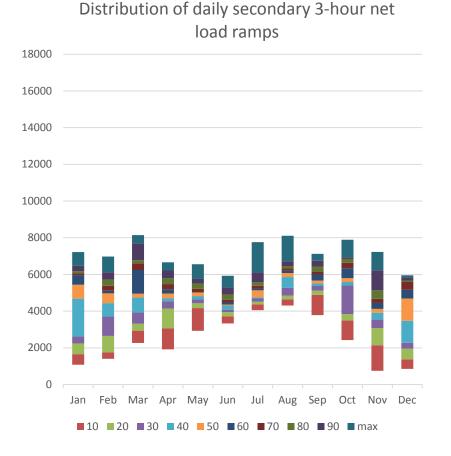
*Flexibility Requirement_{MTHy}= Max[(3RR_{HRx})_{MTHy}] + Max(MSSC, 3.5%*E(PL_{MTHy})) + ϵ

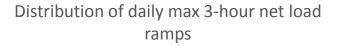

California ISO

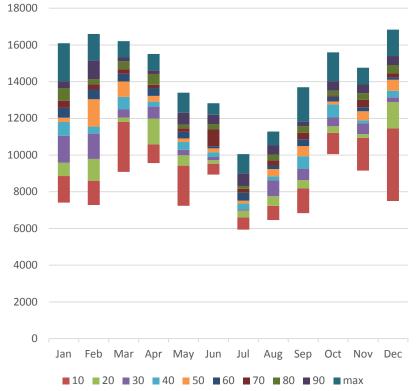
Components of the flexible capacity needs based on the 3 hour change in load, wind, solar, and BTM

Month	Average of Load contribution 2019	Average of solar contribution 2019	Average of BTM contribution 2019	Average of Wind contribution 2019	Total percent 2019
January	29.13%	-52.69%	-18.94%	0.76%	100%
February	26.97%	-50.90%	-21.08%	-1.05%	100%
March	25.33%	-61.51%	-19.91%	6.75%	100%
April	21.91%	-56.04%	-23.99%	1.94%	100%
Мау	17.35%	-66.41%	-19.67%	3.44%	100%
June	13.45%	-68.53%	-21.25%	3.22%	100%
July	-7.31%	-80.63%	-30.30%	3.61%	100%
August	-2.49%	-79.51%	-25.90%	2.91%	100%
September	0.05%	-71.23%	-25.72%	-2.99%	100%
October	15.72%	-59.80%	-18.84%	-5.64%	100%
November	14.63%	-55.13%	-24.43%	-5.80%	100%
December	31.48%	-48.17%	-14.67%	-5.68%	100%

Understanding Negative Contributions of Load to the three hour net load ramp




Flexible capacity categories allow a wide variety of resources to provide flexible capacity

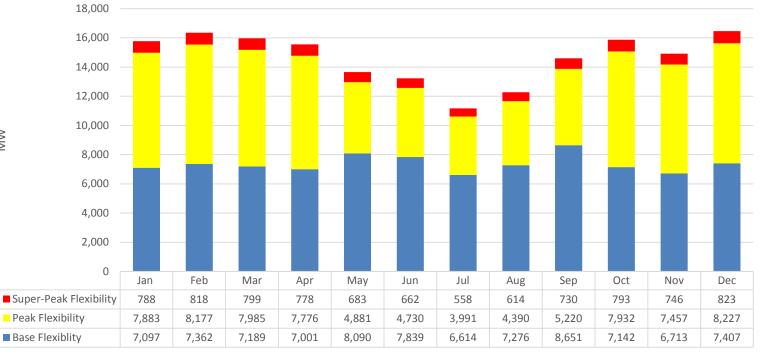

- <u>Category 1 (Base Flexibility</u>): Operational needs determined by the magnitude of the largest 3-hour secondary net-load ramp
- <u>Category 2 (Peak Flexibility)</u>: Operational need determined by the difference between 95 percent of the maximum 3-hour net-load ramp and the largest 3-hour secondary net-load ramp
- <u>Category 3 (Super-Peak Flexibility</u>): Operational need determined by five percent of the maximum 3-hour net-load ramp of the month

The 2019 forecasted distribution range of daily maximum and secondary 3-hour net load ramps


California ISO

Seasonal breakout of flexible capacity needs

	Act	ual Contributi	ons	Seasonal Contribution			
Month	Base Flexibility	Peak Flexibility			Peak Flexibility	Super-Peak Flexibility	
January	45%	50%	5%	45%	50%	5%	
February	42%	53%	5%	45%	50%	5%	
March	50%	45%	5%	45%	50%	5%	
April	43%	52%	5%	45%	50%	5%	
Мау	49%	46%	5%	59%	36%	5%	
June	46%	49%	5%	59%	36%	5%	
July	77%	18%	5%	59%	36%	5%	
August	72%	23%	5%	59%	36%	5%	
September	52%	43%	5%	59%	36%	5%	
October	51%	44%	5%	45%	50%	5%	
November	49%	46%	5%	45%	50%	5%	
December	35%	60%	5%	45%	50%	5%	



Total flexible capacity needed in each category – seasonally adjusted

CPUC Jurisdictional Flexible Capacity Allocation - By Flexible Capacity Category

ММ

Seasonal must offer obligations for peak and super-peak flexible capacity

	Freque	ency of All	Three Ho	ur Net Loa	d Ramp S	tart Hour ((In HE)
Month	11:00	12:00	13:00	14:00	15:00	16:00	17:00
January				28	3		
February				12	16		
March				2	28	1	
April					17	13	
Мау				1		30	
June						27	3
July		1				30	
August		1	2			28	
September	2	1	3	3	21		
October				13	18		
November		1	2	27			
December			1	29	1		

Seasonal must offer obligations for peak and super-peak flexible capacity

- Recommended must-offer obligation hours in Hour Ending.
 - HE 14 HE 19 (2:00 PM to 7:00 PM) January through April and October through December
 - HE 15 HE 20 (3:00 PM to 8:00 PM) May through September

Summary of preliminary assessment results

- Flexible Capacity need is largest in the off-peak months
 - Flexible capacity makes up a greater percentage of resource adequacy needs during the off-peak months
 - Increase almost exclusively caused by 3-hour ramp, not increase in peak load
- Growth of behind-the-meter solar PV and utility scale PV contributes to the larger flexible capacity requirements
- Compared to last year's forecast:
 - Flexible capacity needs and distribution of daily maximum three-hour net-load ramps are comparable
- Using the ISO flexible capacity contribution calculation majority of three-hour net-load ramps are attributable to CPUC jurisdictional LSEs
- The Peak and Super-Peak MOO hours have not changed from the 2018 study (information below is in Hour Ending)
 - January through April and October through December: HE 13 HE 18 (1:00 p.m. to 6:00 p.m.)
 - May through September: HE 14 HE 19 (2:00 p.m. to 7:00 p.m.)

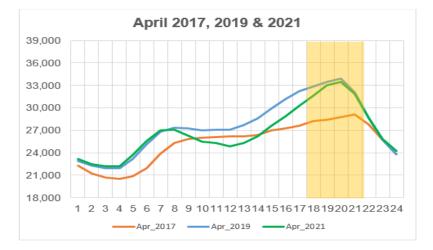
AVAILABILITY ASSESSMENT HOURS

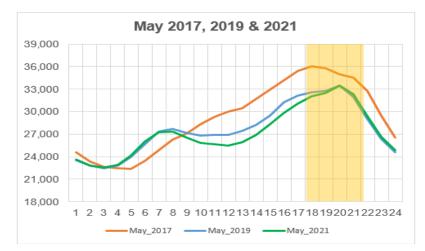
2018 CAISO - Public

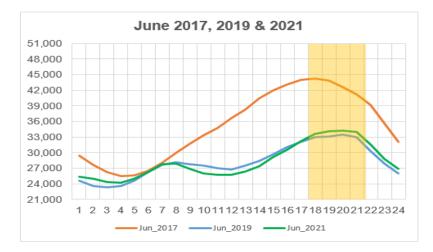
Page 38

Availability Assessment Hours- Background and Purpose

- Concept originally developed as part of the ISO standard capacity product (SCP)
 - Maintained as part of Reliability Service Initiative Phase
 1 (i.e. RA Availability Incentive Mechanism, or RAAIM)
- Determine the hours of greatest need to maximize the effectiveness of the availability incentive structure
 - Resources are rewarded for availability during hours of greatest need
 - Hours determined annually by ISO and published in the BPM
 - See section 40.9 of the ISO tariff

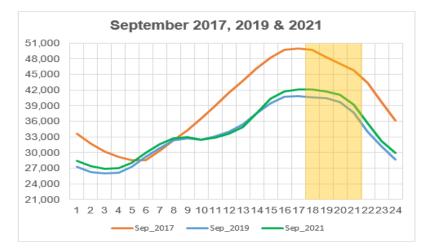


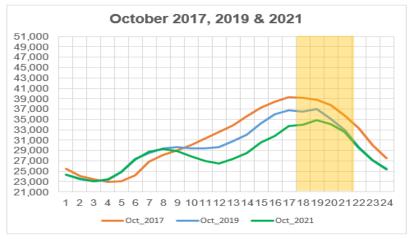

Methodology Overview of System/Local Availability Assessment Hours


- Used data described in previous slides to obtain:
 - Hourly Average Load
 - By Hour
 - By Month
 - Years 2017-2021
- Calculated:
 - Top 5% of Load Hours within each month using an hourly load distribution
 - Years 2017 through 2021

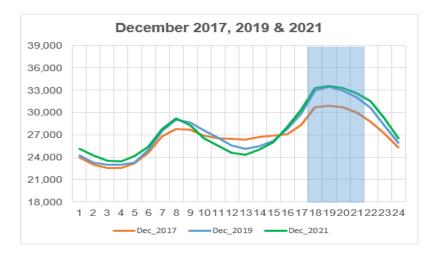


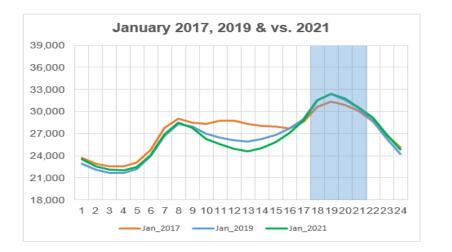
Expected Load Shape Evolution: Summer Season:

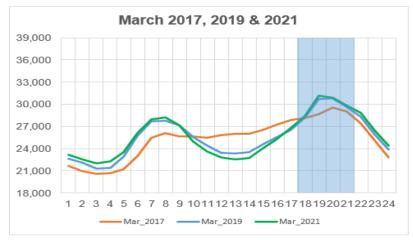




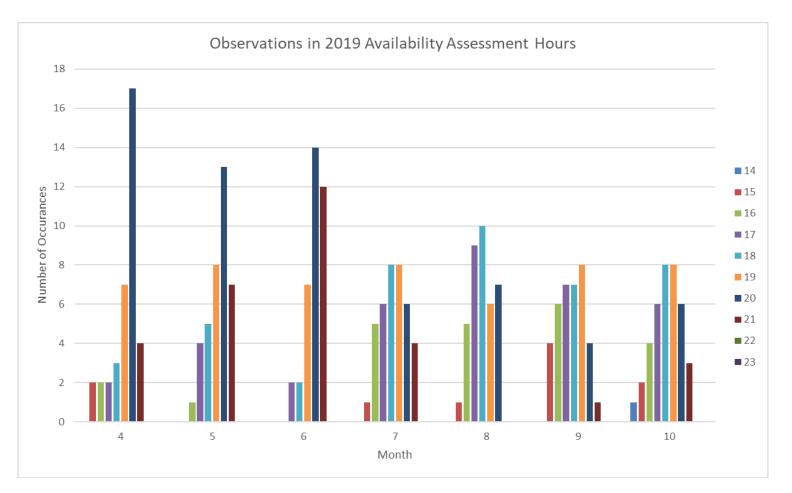
Expected Load Shape Evolution: Summer Season

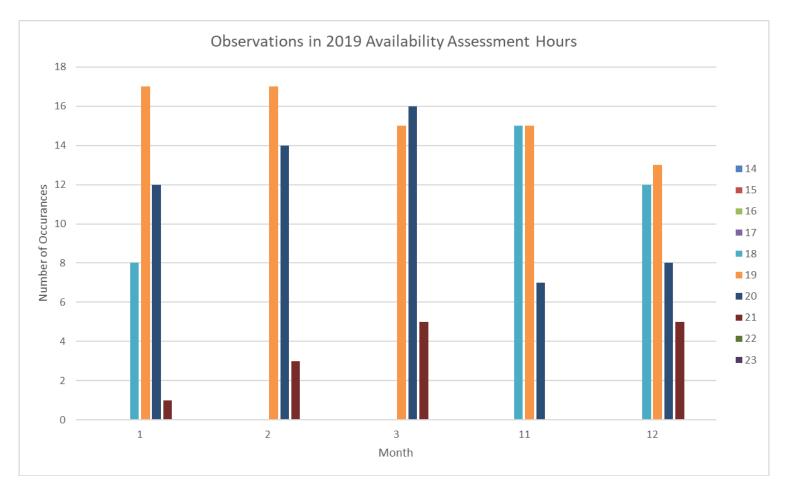



Expected Load Shape Evolution: Winter Season



Expected Load Shape Evolution: Winter Season





Summer Season

Winter Season

Availability Assessment Hours Draft Recommendation

Winter Season Draft Recommendation

Summer Season Draft Recommendation

Year	Start	End
2017 (Final)	HE 17	HE 21
2018 (Final)	HE 17	HE 21
2019 (Draft)	HE 17	HE 21
2020 (Estimate)	HE 17	HE 21
2021 (Estimate)	HE 17	HE 21

Year	Start	End
2017 (Final)	HE 14	HE 18
2018 (Final)	HE 17	HE 21
2019 (Draft)	HE 17	HE 21
2020 (Estimate)	HE 17	HE 21
2021 (Estimate)	HE 17	HE 21

Reliability Requirements; Section 7 – No BPM Updates Needed

2019 System and Local Resource Adequacy Availability Assessment Hours

Analysis employed: Top 5% of load hours using average hourly load

Summer – April 1 through October 31 Availability Assessment Hours: 4pm – 9pm (HE17 – HE21)

Winter – November 1 through March 31 Availability Assessment Hours: 4pm – 9pm (HE17 – HE21)

Flexible RA Capacity Type	Category Designation	Required Bidding Hours (All Hour Ending Times)	Required Bidding Days
January – April			
October – December			
Base Ramping	Category 1	05:00am to 10:00pm (HE6-HE22)	All days
Peak Ramping	Category 2	2:00pm to 7:00pm (HE14-HE19)	All days
Super-Peak Ramping	Category 3	2:00pm to 7:00pm (HE14-HE19)	Non-Holiday Weekdays*
Mary Constantion			
May – September			
Base Ramping	Category 1	05:00am to 10:00pm (HE6-HE22)	All days
Peak Ramping	Category 2	3:00pm to 8:00pm (HE15-HE20)	All days
Super-Peak Ramping	Category 3	3:00pm to 8:00pm (HE15-HE20)	Non-Holiday Weekdays*

2019 Flexible Resource Adequacy Availability Assessment Hours and must offer obligation hours

Next steps

- Published Draft Flexible Capacity Needs Assessment for 2019 April 13, 2018
 - Stakeholder call April 16, 2018
 - Comments due April 23, 2018
 - Please submit comments on the assumptions to

initiativecomments@caiso.com

 Publish Final Flexible Capacity Needs Assessment for 2019 – May 15th, 2018

Questions

Stay connected

@California_ISO

Download ISO Today mobile app

Sign up for the Daily Briefing at www.caiso.com

2018 CAISO - Public

Page 50