14-11-016
Robert Sparks

Application of Southern California Edison Company (U338E) for Approval of the Results of Its 2013 Local Capacity Requirements Request for Offers for the Moorpark Sub-Area.

Application 14-11-016

TESTIMONY OF ROBERT SPARKS ON BEHALF OF THE CALIFORNIA INDEPENDENT SYSTEM OPERATOR CORPORATION

	BEFORE THE PUBLIC UTILITIES C STATE OF CALIFOR				
(U33 Loca	lication of Southern California Edison Company 38E) for Approval of the Results of Its 2013 al Capacity Requirements Request for Offers for Moorpark Sub-Area.	Application 14-11-016			
	TESTIMONY OF ROBER' ON BEHALF OF T CALIFORNIA INDEPENDENT SYSTEM OF	THE			
Q.	What is your name and by whom are you en	ployed?			
A.	My name is Robert Sparks. I am employed by	the California Independent System			
	Operator Corporation (CAISO), 250 Outcroppi	ng Way, Folsom, California as			
	Manager, Regional Transmission.				
Q.	Please describe your educational and profess	sional background.			
A.	I am a licensed Professional Electrical Enginee	r in the State of California. I hold a			
	Master of Science degree in Electrical Engineer	ring from Purdue University, and a			
	Bachelor of Science degree in Electrical Engine	eering from California State			
	University, Sacramento. I have over 25 years of	of Transmission Planning and			
	Operations Engineering experience in California	a.			
Q.	What are your job responsibilities?				
Α.	I manage a group of engineers responsible for p	planning the CAISO controlled			
	transmission system in southern California to e	nsure compliance with NERC,			
	WECC, and CAISO Transmission Planning Sta	andards in the most cost effective			
	manner.				
Q.	What is the purpose of your testimony?				
Α.	The purpose of my testimony is to provide an o	verview of how Southern California			
Edison Company's (SCE) 2013 request for offers (RFO) meets the local capacity					

TESTIMONY OF ROBERT SPARKS ON BEHALF OF THE CALIFORNIA INDEPENDENT SYSTEM OPERATOR CORPORATION A.14-11-016

Page 2 of 4

requirement needs for the Moorpark sub-area as identified in Commission Decision (D.) 13-02-015 (Track 1 Decision). Specifically, my testimony details the results of the CAISO's 2014-2015 transmission plan and the effect of the RFO-selected resources on local capacity requirements for the Moorpark sub-area.

An overview of SCE's RFO-selected resources for the Moorpark sub-area are provided in Table 1, below.

Table 1 – Summary of SCE's Submitted RFO Selection

Product Category	Counterparty	Total Number of Contracts	Max Quantity (LCR MW)
Gas Fired Generation (GFG)	 NRG Energy Center Oxnard, LLC NRG California South, LP 	2	262.00
Energy Efficiency (EE)	Onsite Energy Corporation	6	6.00
Renewable Distributed Generation (DG)	 Solar Star California XXXIV, LLC Solar Star California XXXIX, LLC 	2	5.66
Energy Storage (ES) In Front of Meter (IFOM)	NRG California South, LP	1	0.50
Total		11	274.16

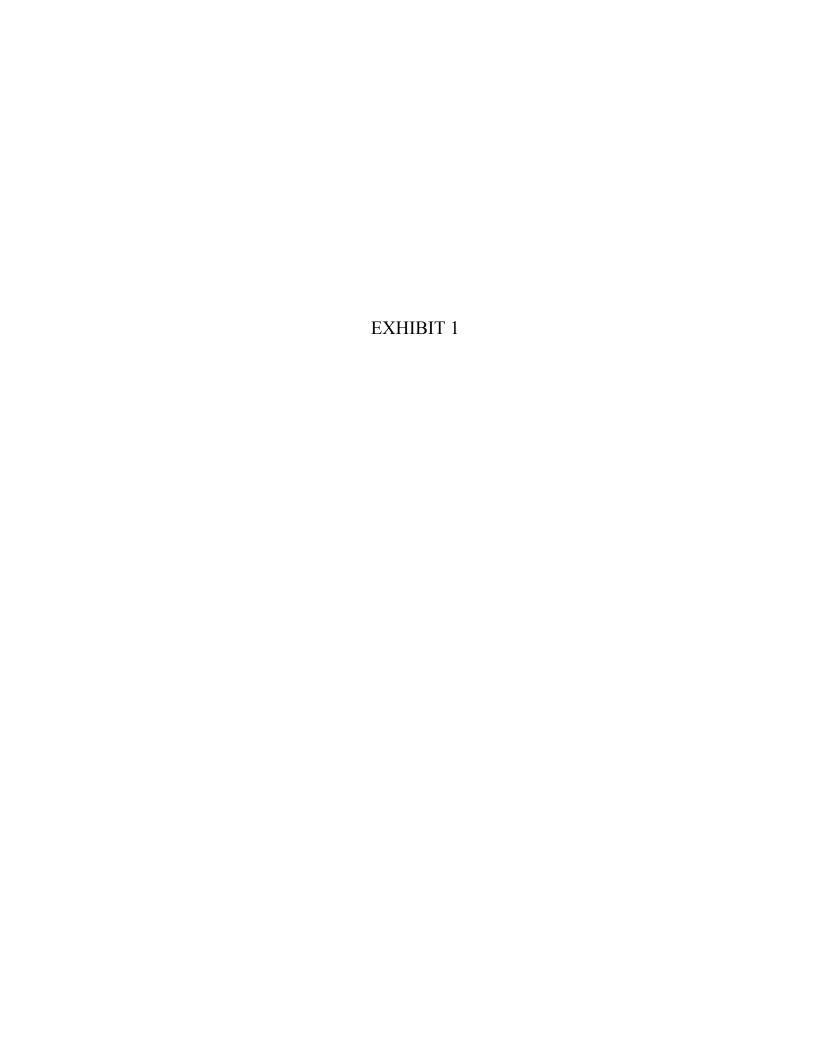
Q. How did the CAISO study the impact of SCE's RFO-selected resources on system reliability?

A. The CAISO used the SCE RFO results in its local capacity requirement analysis conducted as a part of the 2014-2015 transmission planning process. The results of

TESTIMONY OF ROBERT SPARKS ON BEHALF OF THE CALIFORNIA INDEPENDENT SYSTEM OPERATOR CORPORATION A.14-11-016

Page 3 of 4

1		the Moorpark sub-area analysis can be found in the CAISO's 2014-2015
2		transmission plan, Appendix E.1 The relevant portions of Appendix E are included
3		as Exhibit 1 to my testimony.
4		
5	Q.	Please explain the results of the CAISO's 2014-2015 transmission plan local
6		capacity requirement analysis for the Moorpark sub-area.
7	A.	The CAISO identified the most critical contingency in the Moorpark sub-area as the
8		loss of the Moorpark-Pardee 230 kV #3 line followed by the loss of the Moorpark-
9		Pardee 230 kV #1 and #2 lines, which would cause voltage collapse. The local
10		capacity requirement analysis conducted in the 2014-2015 transmission plan
11		indicates that the selected RFO resources meet this identified reliability constraint
12		and are sufficient to meet the local reliability needs in the Moorpark sub-area
13		through 2024, based on the assumptions in the transmission plan. ²
14		
15		Most notably, the 2014-2015 transmission plan assumes that 87 MW of additional
16		achievable energy efficiency will materialize in the Moorpark sub-area by 2024, in
17		addition to the 6 MW of energy efficiency included in the present Application
18		
19	Q.	Based on the results of the CAISO's analysis, will the resources selected in
20		SCE's 2013 RFO enhance the reliability of SCE's electrical service?
21	A.	Yes, the resources selected in SCE's 2013 RFO will enhance the reliability of SCE's
22		electrical service starting in 2021 time frame. However, as discussed above, the
23		resources for which SCE requests approval in this proceeding are only a portion of


¹ http://www.caiso.com/Documents/AppendixEBoardApproved2014-2015TransmissionPlan.pdf.

² In Track 1 of the 2012 long-term procurement plan the CAISO identified a total need in the Moorpark subarea of 430 MW. In the most recent CAISO analysis, the new resources in SCE's application combined with an assumed incremental additional achievable energy efficiency total 361 MW, but are sufficient to meet long-term reliability needs in the Moorpark sub-area. The reduction in identified long-term need is primarily due to updates in the SCE system modeling that result in better representation of switching and utilization of existing static reactive support in the Moorpark sub-area and the surrounding area between the transient and post-transient time frame.

TESTIMONY OF ROBERT SPARKS ON BEHALF OF THE CALIFORNIA INDEPENDENT SYSTEM OPERATOR CORPORATION A.14-11-016

Page 4 of 4

1		those necessary to meet reliability needs in the Moorpark sub-area. To ensure
2		reliability, the Commission must continue to monitor the development and
3		implementation of other local resources including additional achievable energy
4		efficiency.
5		
6	Q.	Please summarize your testimony.
7	A.	The results of SCE's 2013 Moorpark RFO are consistent with the CAISO's
8		planning assumptions in the 2014-2015 transmission plan. The resources selected in
9		the RFO meet the minimum procurement requirements set forth in the
10		Commission's Track 1 long-term procurement plan decisions, and they are effective
11		and necessary to meet long-term reliability needs as demonstrated by the CAISO's
12		analyses. Overall, if approved by the Commission and implemented in a timely
13		manner, the RFO resources will enhance the reliability of SCE's electrical service.
14		
15	Q.	Does this conclude your testimony?
16	A.	Yes, it does.

APPENDIX E: 2024 Local Capacity Technical Analysis

24309	B CRK2-2	4	24
24310	B CRK2-3	5	24
24310	B CRK2-3	6	24
24315	B CRK 8	81	24
24315	B CRK 8	82	24
24323	PORTAL	1	24
24311	B CRK3-1	1	23
24311	B CRK3-1	2	23
24312	B CRK3-2	3	23
24312	B CRK3-2	4	23
24313	B CRK3-3	5	23
24317	MAMOTH1G	1	23
24318	MAMOTH2G	2	23
24314	B CRK 4	41	22
24314	B CRK 4	42	22

Santa Clara Sub-area:

The most critical contingency is the loss of the Pardee - Santa Clara 230 kV line followed by the loss of Moorpark - Santa Clara 230 kV #1 and #2 lines, which would cause voltage collapse. This limiting contingency establishes a local capacity need of 277 MW (includes 68 MW QF generation as well as 30 MW of deficiency) as the minimum capacity necessary for reliable load serving capability within this sub-area.

Due to upcoming OTC compliance dates the use of 29 MW of AAEE and LTPP EE assumed in this study is critical, without it the LCR need will be higher by about the same amount.

Effectiveness factors:

All units within this area have the same effectiveness factor.

Moorpark Sub-area:

The most critical contingency is the loss of the Moorpark - Pardee 230 kV #3 line followed by the loss of the Moorpark - Pardee 230 kV #1 and #2 lines, which will cause voltage collapse. This limiting contingency establishes a local capacity need of 512 MW (includes 97 MW QF generation as well as 230 MW of deficiency) as the minimum capacity necessary for reliable load serving capability within this sub-area.

Due to upcoming OTC compliance dates the use of 93 MW of AAEE and LTPP EE assumed in this study is critical, without it the LCR need will be higher by about the same amount.

Effectiveness factors:

All units within this area have the same effectiveness factor.

Big Creek/Ventura overall:

The most critical contingency is the loss of the Lugo - Victorville 500 kV line followed by loss of one of the Sylmar - Pardee 230 kV line, which would thermally overload the remaining Sylmar - Pardee 230 kV line. This limiting contingency establishes a local capacity need of 2,783 MW (includes 769 MW of QF and 392 MW of MUNI generation) as the minimum capacity necessary for reliable load serving capability within this area.

The single most critical contingency is the loss of Sylmar - Pardee #1 (or # 2) line with Pastoria power plant (CCGT) out of service, which could thermally overload the remaining Sylmar - Pardee #1 or #2 230 kV line. This limiting contingency establishes a Local Capacity Need of 2,603 MW (includes 769 MW of QF and 392 MW of MUNI generation).

Due to upcoming OTC compliance dates the use of 317 MW of AAEE and LTPP EE assumed in this study is critical, without it the LCR need will be higher by about the same amount.

Effectiveness factors:

The following table has effectiveness factors to the most critical contingency.

Gen Bus	Gen Name	Ck	Eff Factor (%)
24108	ORMOND2G	1	40
24010	APPGEN2G	1	39
24148	TENNGEN1	1	39

24149	TENNGEN2	1	39
24009	APPGEN1G	1	38
24107	ORMOND1G	1	38
24118	PITCHGEN	1	38
24361	APPGEN3G	1	38
25651	WARNE1	1	37
25652	WARNE2	1	37
24089	MANDLY1G	1	36
24090	MANDLY2G	1	36
24127	S.CLARA	1	36
29004	ELLWOOD	1	36
24110	OXGEN	1	36
24119	PROCGEN	1	36
24159	WILLAMET	1	36
24340	CHARMIN	1	36
29952	CAMGEN	1	36
24362	EXGEN2	1	36
24326	EXGEN1	1	36
24362	EXGEN2	1	36
24222	MANDLY3G	1	35
25614	OSO A P	1	35
25614	OSO A P	1	35
25615	OSO B P	1	35
25615	OSO B P	1	35
29306	MCGPKGEN	1	35
29055	PSTRIAS2	1	34
29054	PSTRIAG3	1	34
29053	PSTRIAS1	1	34
29052	PSTRIAG2	1	34
29051	PSTRIAG1	1	34
25605	EDMON1AP	1	34
25606	EDMON2AP	1	34
25607	EDMON3AP	1	34
25607	EDMON3AP	1	34
25608	EDMON4AP	1	34
25608	EDMON4AP	1	34
25609	EDMON5AP	1	34
25609	EDMON5AP	1	34
25610	EDMON6AP	1	34
25610	EDMON6AP	1	34
25611	EDMON7AP	1	34
25611	EDMON7AP	1	34
25612	EDMON8AP	1	34

25612	EDMON8AP	1	34
25653	ALAMO SC	1	34
24370	KAWGEN	1	32
24113	PANDOL	1	31
24113	PANDOL	1	31
29008	LAKEGEN	1	31
24150	ULTRAGEN	1	31
24152	VESTAL	1	31
24307	B CRK1-2	1	31
24307	B CRK1-2	1	31
24308	B CRK2-1	1	31
24308	B CRK2-1	1	31
24309	B CRK2-2	1	31
24309	B CRK2-2	1	31
24310	B CRK2-3	1	31
24310	B CRK2-3	1	31
24311	B CRK3-1	1	31
24311	B CRK3-1	1	31
24312	B CRK3-2	1	31
24312	B CRK3-2	1	31
24313	B CRK3-3	1	31
24314	B CRK 4	1	31
24314	B CRK 4	1	31
24315	B CRK 8	1	31
24315	B CRK 8	1	31
24317	MAMOTH1G	1	31
24318	MAMOTH2G	1	31
24372	KR 3-1	1	31
24373	KR 3-2	1	31
24102	OMAR 1G	1	30
24103	OMAR 2G	1	30
24104	OMAR 3G	1	30
24105	OMAR 4G	1	30
24143	SYCCYN1G	1	30
24144	SYCCYN2G	1	30
24145	SYCCYN3G	1	30
24146	SYCCYN4G	1	30
24319	EASTWOOD	1	30
24306	B CRK1-1	1	30
24306	B CRK1-1	1	30
24136	SEAWEST	. 1	9
24437	KERNRVR	1	8

Changes compared to the 2019 results:

The load forecast went up by 108 MW and the LCR need has increased by 164 MW. The AAEE and LTPP EE remain critical for the Santa Clara and Moorpark sub-areas.

Big Creek/Ventura Overall Requirements:

2024 LTPP	LTPP EE	Solar PV	Storage 4h	Conventional resources (MW)	LTPP Total
Assumptions	(MW)	(MW)	(MW)		Capacity (MW)
SCE-submitted procurement selection	6	6	1	262	275

2024	QF (MW)	Muni (MW)	Market (MW)	New DG (MW)	Max. Qualifying Capacity (MW)
Available generation	769	392	2258	248	3667

2024	Total MW Requirement	Existing Resource Need (MW)	Deficiency without LTPP T1 & T4 (MW)	Total SCE Selected Procurement for LTPP Tracks 1 & 4 (MW)
Category B (Single) ³³	2,603	2,603	0	275
Category C (Multiple) 34	2,783	2,553	230	275

10. San Diego-Imperial Valley Area

Area Definition

The transmission tie lines forming a boundary around the San Diego-Imperial Valley area include:

- 1) Imperial Valley North Gila 500 kV Line
- 2) Otay Mesa Tijuana 230 kV Line
- 3) San Onofre San Luis Rey #1 230 kV Line
- 4) San Onofre San Luis Rey #2 230 kV Line

³³ A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

operations standards.

34 Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.