

2016 LOCAL CAPACITY TECHNICAL ANALYSIS

DRAFT REPORT AND STUDY RESULTS

April 7, 2015

Local Capacity Technical Study Overview and Results

I. Executive Summary

This Report documents the results and recommendations of the 2016 Local Capacity Technical (LCT) Study. The LCT Study assumptions, processes, and criteria were discussed and recommended through the 2016 Local Capacity Technical Study Criteria, Methodology and Assumptions Stakeholder Meeting held on October 30, 2014. On balance, the assumptions, processes, and criteria used for the 2016 LCT Study mirror those used in the 2007-2015 LCT Studies, which were previously discussed and recommended through the LCT Study Advisory Group ("LSAG")¹, an advisory group formed by the CAISO to assist the CAISO in its preparation for performing prior LCT Studies.

The 2016 LCT study results are provided to the CPUC for consideration in its 2016 resource adequacy requirements program. These results will also be used by the CAISO as "Local Capacity Requirements" or "LCR" (minimum quantity of local capacity necessary to meet the LCR criteria) and for assisting in the allocation of costs of any CAISO procurement of capacity needed to achieve the Reliability Standards notwithstanding the resource adequacy procurement of Load Serving Entities (LSEs).²

The load forecast used in this study is based on the final adopted California Energy Demand Updated Forecast, 2015-2025 developed by the CEC; namely the middemand baseline with low-mid additional achievable energy efficiency (AAEE), posted: <u>http://www.energy.ca.gov/2014_energypolicy/documents/index.html#adoptedforecast</u>.

¹ The LSAG consists of a representative cross-section of stakeholders, technically qualified to assess the issues related to the study assumptions, process and criteria of the existing LCT Study methodology and to recommend changes, where needed.

² For information regarding the conditions under which the CAISO may engage in procurement of local capacity and the allocation of the costs of such procurement, please see Sections 41 and 43 of the current CAISO Tariff, at: <u>http://www.caiso.com/238a/238acd24167f0.html</u>.

Below is a comparison of the 2016 vs. 2015 total LCR:

	Qualifying Capacity		2016 LCR Need Based on Category B			2016 LCR Need Based on Category C with operating procedure			
Local Area Name	QF/ Muni (MW)	Market (MW)	Total (MW)	Existing Capacity Needed	Deficien cy	Total (MW)	Existing Capacity Needed**	Deficien cy	Total (MW)
Humboldt	21	208	229	118	0	118	167	0	167
North Coast / North Bay	132	750	882	611	0	611	611	0	611
Sierra	1195	831	2026	1139	16*	1155	1765	253*	2018
Stockton	160	434	594	357	0	357	422	386*	808
Greater Bay	1122	6435	7557	3790	0	3790	4218	131*	4349
Greater Fresno	282	2647	2929	2445	0	2445	2445	74*	2519
Kern	99	430	529	214	0	214	400	0	400
LA Basin	1710	9259	10969	7576	0	7576	8887	0	8887
Big Creek/ Ventura	584	4951	5535	2141	0	2141	2398	0	2398
San Diego/ Imperial Valley	228	4687	4915	2850	0	2850	3112	72*	3184
Total	5533	30632	36165	21241	16	21257	24425	916	25341

2016 Local Capacity Requirements

2015 Local Capacity Requirements

	Qualifying Capacity			2015 LCR Need Based on Category B			2015 LCR Need Based on Category C with operating procedure		
Local Area Name	QF/ Muni (MW)	Market (MW)	Total (MW)	Existing Capacity Needed	Deficien cy	Total (MW)	Existing Capacity Needed**	Deficien cy	Total (MW)
Humboldt	36	171	207	116	0	116	166	0	166
North Coast / North Bay	130	771	901	550	0	550	550	0	550
Sierra	1299	771	2070	1392	29*	1421	1803	397*	2200
Stockton	197	392	589	357	0	357	396	311*	707
Greater Bay	1262	6243	7505	3492	0	3492	4231	136*	4367
Greater Fresno	316	2532	2848	2393	0	2393	2393	46*	2439
Kern	408	87	495	108	26*	134	411	26*	437
LA Basin	2208	8985	11193	8620	0	8620	9097	0	9097
Big Creek/ Ventura	1160	4203	5363	2095	0	2095	2270	0	2270
San Diego/ Imperial Valley	219	4328	4547	3910	0	3910	3910	202*	4112
Total	7235	28483	35718	23033	55	23088	25227	1118	26345

* No local area is "overall deficient". Resource deficiency values result from a few deficient sub-areas; and since there are no resources that can mitigate this deficiency the numbers are carried forward into the total area needs. Resource deficient sub-area implies that in order to comply with the criteria, at summer peak, load may be shed immediately after the first contingency.

** Since "deficiency" cannot be mitigated by any available resource, the "Existing Capacity Needed" will be split among LSEs on a load share ratio during the assignment of local area resource responsibility.

Overall, the LCR needs have decreased by about 1,000 MW or about 3.9% from 2015 to 2016. The LCR needs have decreased in the following areas: Sierra and Bay Area due to downward trend for load; Kern and LA Basin due to new transmission projects and San Diego/Imperial Valley due to downward trend for load and new transmission projects. The LCR needs have increased in Humboldt, Stockton and Fresno due to load growth; Big Creek/Ventura due to decrease in needs in the LA Basin and San Diego/Imperial Valley and North Coast/North Bay due to lower requirement in the Pittsburg/Oakland sub-area of the Bay Area.

The write-up for each Local Capacity Area lists important new projects included in the base cases as well as a description of reason for changes between 2016 and 2015 LCRs.

Table of Contents

I.	Executive Summary	. 1
II.	Study Overview: Inputs, Outputs and Options	5
A	. Objectives	5
E	·	
	1. Inputs and Methodology	
C		
L	D. Application of N-1, N-1-1, and N-2 Criteria	. 8
E	E. Performance Criteria	. 8
F	The Two Options Presented In This LCT Report	14
	1. Option 1- Meet LCR Performance Criteria Category B	15
	2. Option 2- Meet LCR Performance Criteria Category C and Incorporate Suital	ble
	Operational Solutions	15
III.	Assumption Details: How the Study was Conducted	16
A	System Planning Criteria	16
	1. Power Flow Assessment:	
	2. Post Transient Load Flow Assessment:	18
	3. Stability Assessment:	18
E	8. Load Forecast	18
	1. System Forecast	18
	2. Base Case Load Development Method	19
C	C. Power Flow Program Used in the LCT analysis	20
IV.	Local Capacity Requirement Study Results	21
A	Summary of Study Results	21
E		
0	C. Summary of Results by Local Area	25
	1. Humboldt Area	25
	2. North Coast / North Bay Area	28
	3. Sierra Area	33
	4. Stockton Area	
	5. Greater Bay Area	
	6. Greater Fresno Area	
	7. Kern Area	
	8. LA Basin Area	
	9. Big Creek/Ventura Area	
	10. San Diego-Imperial Valley Area	
	11. Valley Electric Area	01

II. Study Overview: Inputs, Outputs and Options

A. Objectives

As was the objective of the previous annual LCT Studies, the intent of the 2016 LCT Study is to identify specific areas within the CAISO Balancing Authority Area that have limited import capability and determine the minimum generation capacity (MW) necessary to mitigate the local reliability problems in those areas.

B. Key Study Assumptions

1. Inputs and Methodology

The CAISO incorporated into its 2016 LCT study the same criteria, input assumptions and methodology that were incorporated into its previous years LCR studies. These inputs, assumptions and methodology were discussed and agreed to by stakeholders at the 2016 LCT Study Criteria, Methodology and Assumptions Stakeholder Meeting held on October 30, 2014.

The following table sets forth a summary of the approved inputs and methodology that have been used in the previous LCT studies as well as this 2016 LCT Study:

Issue:	How are they incorporated into this LCT study:
Input Assumptions:	
Transmission System Configuration	The existing transmission system has been modeled, including all projects operational on or before June 1, of the study year and all other feasible operational solutions brought forth by the PTOs and as agreed to by the CAISO.
Generation Modeled	The existing generation resources has been modeled and also includes all projects that will be on-line and commercial on or before June 1, of the study year
Load Forecast	Uses a 1-in-10 year summer peak load forecast
Methodology:	
Maximize Import Capability	Import capability into the load pocket has been maximized, thus minimizing the generation required in the load pocket to meet applicable reliability requirements.
QF/Nuclear/State/Federal Units	Regulatory Must-take and similarly situated units like QF/Nuclear/State/Federal resources have been modeled on-line at qualifying capacity output values for purposes of this LCT Study.
Maintaining Path Flows	Path flows have been maintained below all established path ratings into the load pockets, including the 500 kV. For clarification, given the existing transmission system configuration, the only 500 kV path that flows directly into a load pocket and will, therefore, be considered in this LCR Study is the South of Lugo transfer path flowing into the LA Basin.
Performance Criteria:	
Performance Level B & C, including incorporation of PTO operational solutions	This LCT Study is being published based on Performance Level B and Performance Level C criterion, yielding the low and high range LCR scenarios. In addition, the CAISO will incorporate all new projects and other feasible and CAISO-approved operational solutions brought forth by the PTOs that can be operational on or before June 1, of the study year. Any such solutions that can reduce the need for procurement to meet the Performance Level C criteria will be incorporated into the LCT Study.
Load Pocket:	
Fixed Boundary, including limited reference to published effectiveness factors	This LCT Study has been produced based on load pockets defined by a fixed boundary. The CAISO only publishes effectiveness factors where they are useful in facilitating procurement where excess capacity exists within a load pocket.

Summary Table of Inputs and Methodology Used in this LCT Study:

Further details regarding the 2016 LCT Study methodology and assumptions are

provided in Section III, below.

C. Grid Reliability

Service reliability builds from grid reliability because grid reliability is reflected in the Reliability Standards of the North American Electric Reliability Council (NERC) and the Western Electricity Coordinating Council ("WECC") Regional Criteria (collectively "Reliability Standards"). The Reliability Standards apply to the interconnected electric system in the United States and are intended to address the reality that within an integrated network, whatever one Balancing Authority Area does can affect the reliability of other Balancing Authority Areas. Consistent with the mandatory nature of the Reliability Standards, the CAISO is under a statutory obligation to ensure efficient use and reliable operation of the transmission grid consistent with achievement of the Reliability Standards.³ The CAISO is further under an obligation, pursuant to its FERCapproved Transmission Control Agreement, to secure compliance with all "Applicable Reliability Criteria." Applicable Reliability Criteria consists of the Reliability Standards as well as reliability criteria adopted by the CAISO (Grid Planning Standards).

The Reliability Standards define reliability on interconnected electric systems using the terms "adequacy" and "security." "Adequacy" is the ability of the electric systems to supply the aggregate electrical demand and energy requirements of their customers at all times, taking into account physical characteristics of the transmission system such as transmission ratings and scheduled and reasonably expected unscheduled outages of system elements. "Security" is the ability of the electric systems to withstand sudden disturbances such as electric short circuits or unanticipated loss of system elements. The Reliability Standards are organized by Performance Categories. Certain categories require that the grid operator not only ensure that grid integrity is maintained under certain adverse system conditions (e.g., security), but also that all customers continue to receive electric supply to meet demand (e.g., adequacy). In that case, grid reliability and service reliability would overlap. But

³ Pub. Utilities Code § 345

there are other levels of performance where security can be maintained without ensuring adequacy.

D. Application of N-1, N-1-1, and N-2 Criteria

The CAISO will maintain the system in a safe operating mode at all times. This obligation translates into respecting the Reliability Criteria at all times, for example during normal operating conditions Category A (N-0) the CAISO must protect for all single contingencies Category B (N-1) and common mode Category C5 (N-2) double line outages. Also, after a single contingency, the CAISO must re-adjust the system to support the loss of the next most stringent contingency. This is referred to as the N-1-1 condition.

The N-1-1 vs N-2 terminology was introduced only as a mere temporal differentiation between two existing NERC Category C events. N-1-1 represents NERC Category C3 ("category B contingency, manual system adjustment, followed by another category B contingency"). The N-2 represents NERC Category C5 ("any two circuits of a multiple circuit tower line") as well as requirement R1.1 of the WECC Regional Criteria³ ("two adjacent circuits") with no manual system adjustment between the two contingencies.

E. Performance Criteria

As set forth on the Summary Table of Inputs and Methodology, this LCT Report is based on NERC performance level B and performance level C standard. The NERC Standards refer mainly to system being stable and both thermal and voltage limits be within applicable ratings. However, the CAISO also tests the electric system in regards to the dynamic and reactive margin compliance with the existing WECC regional criteria that further specifies the dynamic and reactive margin requirements for the same NERC performance levels. These performance levels can be described as follows:

8

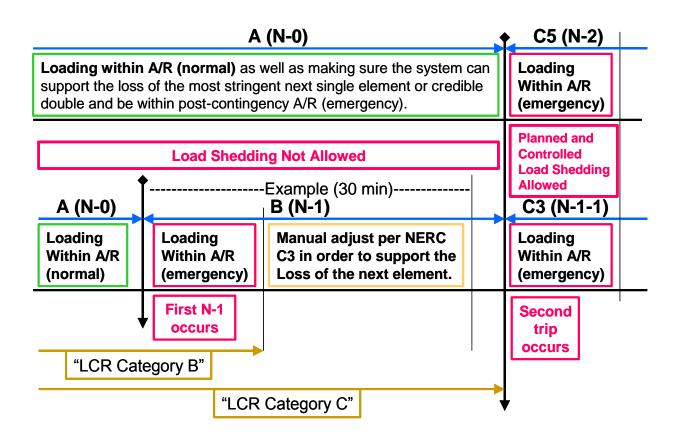
a. <u>LCR Performance Criteria- Category B</u>

Category B describes the system performance that is expected immediately following the loss of a single transmission element, such as a transmission circuit, a generator, or a transformer.

Category B system performance requires that system is stable and all thermal and voltage limits must be within their "Applicable Rating," which, in this case, are the emergency ratings as generally determined by the PTO or facility owner. Applicable Rating includes a temporal element such that emergency ratings can only be maintained for certain duration. Under this category, load cannot be shed in order to assure the Applicable Ratings are met; however there is no guarantee that facilities are returned to within normal ratings or to a state where it is safe to continue to operate the system in a reliable manner such that the next element out will not cause a violation of the Applicable Ratings.

b. <u>LCR Performance Criteria- Category C</u>

The Reliability Standards require system operators to "look forward" to make sure they safely prepare for the "next" N-1 following the loss of the "first" N-1 (stay within Applicable Ratings after the "next" N-1). This is commonly referred to as N-1-1. Because it is assumed that some time exists between the "first" and "next" element losses, operating personnel may make any reasonable and feasible adjustments to the system to prepare for the loss of the second element, including, operating procedures, dispatching generation, moving load from one substation to another to reduce equipment loading, dispatching operating personnel to specific station locations to manually adjust load from the substation site, or installing a "Special Protection Scheme" that would remove pre-identified load from service upon the loss of the "next" element.⁴ All Category C requirements in this report refer to situations when in real time (N-0) or after the first contingency (N-1) the system requires additional readjustment in order to prepare for the next worst contingency. In this time frame, load drop is not allowed per existing Reliability Standards.


Generally, Category C describes system performance that is expected following the loss of two or more system elements. This loss of two elements is generally expected to happen simultaneously, referred to as N-2. It should be noted that once the "next" element is lost after the first contingency, as discussed above under the Performance Criteria B, N-1-1 scenario, the event is effectively a Category C. As noted above, depending on system design and expected system impacts, the **planned and controlled** interruption of supply to customers (load shedding), the removal from service of certain generators and curtailment of exports may be utilized to maintain grid "security."

c. <u>CAISO Statutory Obligation Regarding Safe Operation</u>

The CAISO will maintain the system in a safe operating mode at all times. This obligation translates into respecting the Reliability Standards at all times, for example during normal operating conditions Category **A** (**N-0**) the CAISO must protect for all single contingencies Category **B** (**N-1**) and common mode Category **C5** (**N-2**) double line outages. As a further example, after a single contingency the CAISO must readjust the system in order to be able to support the loss of the next most stringent contingency

⁴ A Special Protection Scheme is typically proposed as an operational solution that does not require additional generation and permits operators to effectively prepare for the next event as well as ensure security should the next event occur. However, these systems have their own risks, which limit the extent to which they could be deployed as a solution for grid reliability augmentation. While they provide the value of protecting against the next event without the need for pre-contingency load shedding, they add points of potential failure to the transmission network. This increases the potential for load interruptions because sometimes these systems will operate when not required and other times they will not operate when needed.

Figure 1: Temporal graph of LCR Category B vs. LCR Category C:

The following definitions guide the CAISO's interpretation of the Reliability Standards governing safe mode operation and are used in this LCT Study:

Applicable Rating:

This represents the equipment rating that will be used under certain contingency conditions.

<u>Normal rating</u> is to be used under normal conditions.

<u>Long-term emergency ratings</u>, if available, will be used in all emergency conditions as long as "system readjustment" is provided in the amount of time given (specific to each element) to reduce the flow to within the normal ratings. If not available normal rating is

to be used.

<u>Short-term emergency ratings</u>, if available, can be used as long as "system readjustment" is provided in the "short-time" available in order to reduce the flow to within the long-term emergency ratings where the element can be kept for another length of time (specific to each element) before the flow needs to be reduced the below the normal ratings. If not available long-term emergency rating should be used.

<u>Temperature-adjusted ratings</u> shall not be used because this is a year-ahead study not a real-time tool, as such the worst-case scenario must be covered. In case temperatureadjusted ratings are the only ratings available then the minimum rating (highest temperature) given the study conditions shall be used.

<u>CAISO Transmission Register</u> is the only official keeper of all existing ratings mentioned above.

<u>Ratings for future projects</u> provided by PTO and agree upon by the CAISO shall be used.

<u>Other short-term ratings</u> not included in the CAISO Transmission Register may be used as long as they are engineered, studied and enforced through clear operating procedures that can be followed by real-time operators.

<u>Path Ratings</u> need to be maintained within their limits in order to assure that proper capacity is available in order to operate the system in real-time in a safe operating zone.

Controlled load drop:

This is achieved with the use of a Special Protection Scheme.

Planned load drop:

This is achieved when the most limiting equipment has short-term emergency ratings AND the operators have an operating procedure that clearly describes the actions that need to be taken in order to shed load.

Special Protection Scheme:

All known SPS shall be assumed. New SPS must be verified and approved by the CAISO and must comply with the new SPS guideline described in the CAISO Planning Standards.

12

System Readjustment:

This represents the actions taken by operators in order to bring the system within a safe operating zone after any given contingency in the system.

Actions that can be taken as system readjustment after a single contingency (Category <u>B):</u>

- 1. System configuration change based on validated and approved operating procedures
- 2. Generation re-dispatch
 - a. Decrease generation (up to 1150 MW) limit given by single contingency SPS as part of the CAISO Grid Planning standards (ISO G4)
 - b. Increase generation this generation will become part of the LCR need

<u>Actions, which shall not be taken as system readjustment after a single contingency</u> (Category B):

 Load drop – based on the intent of the CAISO/WECC and NERC standards for category B contingencies.

This is one of the most controversial aspects of the interpretation of NERC Transmission Planning Standards since footnote b) mentions that load shedding can be done after a category B event in certain local areas in order to maintain compliance with performance criteria. However, the main body of the criteria spells out that no dropping of load should be done following a single contingency. All stakeholders and the CAISO agree that no involuntary interruption of load should be done immediately after a single contingency. Further, the CAISO and stakeholders now agree on the viability of dropping load as part of the system readjustment period – in order to protect for the next most limiting contingency. After a single contingency, it is understood that the system is in a Category B condition and the system should be planned based on the body of the criteria with no shedding of load regardless of whether it is done immediately or in 15-30 minute after the original contingency. Category C conditions only arrive after the

second contingency has happened; at that point in time, shedding load is allowed in a planned and controlled manner.

A robust California transmission system should be, and under the LCT Study is being, planned based on the main body of the TPL Standards, and should not be planned based on footnote b) regarding Category B contingencies. Therefore, if there are available resources in the area, they are looked to meet reliability needs (and included in the LCR requirement) before resorting to involuntary load curtailment. The footnote may be applied for criteria compliance issues only where there are no resources available in the area.

Time allowed for manual readjustment:

This is the amount of time required for the operator to take all actions necessary to prepare the system for the next contingency. This time should be less than 30 minutes, based on existing CAISO Planning Standards.

This is a somewhat controversial aspect of the interpretation of existing criteria. This item is very specific in the CAISO Planning Standards. However, some will argue that 30 minutes only allows generation re-dispatch and automated switching where remote control is possible. If remote capability does not exist, a person must be dispatched in the field to do switching and 30 minutes may not allow sufficient time. If approved, an exemption from the existing time requirements may be given for small local areas with very limited exposure and impact, clearly described in operating procedures, and only until remote controlled switching equipment can be installed.

F. The Two Options Presented In This LCT Report

This LCT Study sets forth different solution "options" with varying ranges of potential service reliability consistent with CAISO's Planning Standard. The CAISO applies Option 2 for its purposes of identifying necessary local capacity needs and the corresponding potential scope of its backstop authority. Nevertheless, the CAISO

14

continues to provide Option 1 as a point of reference for the CPUC and Local Regulatory Authorities in considering procurement targets for their jurisdictional LSEs.

1. Option 1- Meet LCR Performance Criteria Category B

Option 1 is a service reliability level that reflects generation capacity that must be available to comply with reliability standards immediately after a NERC Category B given that load cannot be removed to meet this performance standard under Reliability Criteria. However, this capacity amount implicitly relies on load interruption as the **only means** of meeting any Reliability Standard that is beyond the loss of a single transmission element (N-1). These situations will likely require substantial load interruptions in order to maintain system continuity and alleviate equipment overloads prior to the actual occurrence of the second contingency.⁵

2. Option 2- Meet LCR Performance Criteria Category C and Incorporate Suitable Operational Solutions

Option 2 is a service reliability level that reflects generation capacity that is needed to readjust the system to prepare for the loss of a second transmission element (N-1-1) using generation capacity *after* considering all reasonable and feasible operating solutions (including those involving customer load interruption) developed and approved by the CAISO, in consultation with the PTOs. Under this option, there is no expected load interruption to end-use customers under normal or single contingency conditions as the CAISO operators prepare for the second contingency. However, the customer load may be interrupted in the event the second contingency occurs.

As noted, Option 2 is the local capacity level that the CAISO requires to reliably operate the grid per NERC, WECC and CAISO standards. As such, the CAISO recommends adoption of this Option to guide resource adequacy procurement.

⁵ This potential for pre-contingency load shedding also occurs because real time operators must prepare for the loss of a common mode N-2 at all times.

III. Assumption Details: How the Study was Conducted

A. System Planning Criteria

The following table provides a comparison of system planning criteria, based on the performance requirements of the NERC Reliability Standard, used in the study:

Contingency Component(s)	ISO Grid Planning Standard	Old RMR Criteria	Local Capacity Criteria
<u>A – No Contingencies</u>	x	x	Х
B - Loss of a single element1. Generator (G-1)2. Transmission Circuit (L-1)3. Transformer (T-1)4. Single Pole (dc) Line5. G-1 system readjusted L-1	X X X X X	X X X ² X X	X1 X1 X1,2 X1 X
 <u>C - Loss of two or more elements</u> 1. Bus Section 2. Breaker (failure or internal fault) 3. L-1 system readjusted G-1 3. G-1 system readjusted T-1 or T-1 system readjusted G-1 3. L-1 system readjusted L-1 3. T-1 system readjusted T-1 4. Bipolar (dc) Line 5. Two circuits (Common Mode or Adjacent Circuit) L-2 6. SLG fault (stuck breaker or protection failure) for G-1 7. SLG fault (stuck breaker or protection failure) for T-1 9. SLG fault (stuck breaker or protection failure) for Bus section WECC-R1.2. Two generators (Common Mode) G-2 	X X X X X X X X X X X X X X X X X X X		X X X X X X X
D – Extreme event – loss of two or more elements Any B1-4 system readjusted (Common Mode or Adjacent Circuit) L-2 All other extreme combinations D1-14.	X4 X4		χ3

Table 4: Criteria Comparison

1 System must be able to readjust to a safe operating zone in order to be able to support the loss of the next contingency.

2 A thermal or voltage criterion violation resulting from a transformer outage may not be cause for a local area reliability requirement if the violation is considered marginal (e.g. acceptable loss of facility life or low voltage), otherwise, such a violation will necessitate creation of a requirement.

³ Evaluate for risks and consequence, per NERC standards. No voltage collapse or dynamic instability allowed.

⁴ Evaluate for risks and consequence, per NERC standards.

A significant number of simulations were run to determine the most critical contingencies within each Local Capacity Area. Using power flow, post-transient load flow, and stability assessment tools, the system performance results of all the contingencies that were studied were measured against the system performance requirements defined by the criteria shown in Table 4. Where the specific system performance requirements were not met, generation was adjusted such that the minimum amount of generation required to meet the criteria was determined in the Local Capacity Area. The following describes how the criteria were tested for the specific type of analysis performed.

1. Power Flow Assessment:

Contingencies	<u>Thermal Criteria³</u>	Voltage Criteria4
Generating unit ^{1, 6}	Applicable Rating	Applicable Rating
Transmission line ^{1, 6}	Applicable Rating	Applicable Rating
Transformer ^{1, 6}	Applicable Rating ⁵	Applicable Rating ⁵
(G-1)(L-1) ^{2, 6}	Applicable Rating	Applicable Rating
Overlapping 6, 7	Applicable Rating	Applicable Rating

- ¹ All single contingency outages (i.e. generating unit, transmission line or transformer) will be simulated on Participating Transmission Owners' local area systems.
- Key generating unit out, system readjusted, followed by a line outage. This overlapping outage is considered a single contingency within the ISO Grid Planning Criteria. Therefore, load dropping for an overlapping G-1, L-1 scenario is not permitted.
- ³ Applicable Rating Based on ISO Transmission Register or facility upgrade plans including established Path ratings.
- ⁴ Applicable Rating ISO Grid Planning Criteria or facility owner criteria as appropriate including established Path ratings.
- ⁵ A thermal or voltage criterion violation resulting from a transformer outage may not be cause for a local area reliability requirement if the violation is considered marginal (e.g. acceptable loss of facility life or low voltage), otherwise, such a violation will necessitate creation of a requirement.
- ⁶ Following the first contingency (N-1), the generation must be sufficient to allow the operators to bring the system back to within acceptable (normal) operating range (voltage and loading) and/or appropriate OTC following the studied outage conditions.
- ⁷ During normal operation or following the first contingency (N-1), the generation

must be sufficient to allow the operators to prepare for the next worst N-1 or common mode N-2 without pre-contingency interruptible or firm load shedding. SPS/RAS/Safety Nets may be utilized to satisfy the criteria after the second N-1 or common mode N-2 except if the problem is of a thermal nature such that short-term ratings could be utilized to provide the operators time to shed either interruptible or firm load. T-2s (two transformer bank outages) would be excluded from the criteria.

2. Post Transient Load Flow Assessment:

<u>Contingencies</u>	Reactive Margin Criteria ²
Selected ¹	Applicable Rating

- ¹ If power flow results indicate significant low voltages for a given power flow contingency, simulate that outage using the post transient load flow program. The post-transient assessment will develop appropriate Q/V and/or P/V curves.
- ² Applicable Rating positive margin based on the higher of imports or load increase by 5% for N-1 contingencies, and 2.5% for N-2 contingencies.

3. Stability Assessment:

Contingencies	Stability Criteria ²
Selected ¹	Applicable Rating

- ¹ Base on historical information, engineering judgment and/or if power flow or post transient study results indicate significant low voltages or marginal reactive margin for a given contingency.
- ² Applicable Rating ISO Grid Planning Criteria or facility owner criteria as appropriate.

B. Load Forecast

1. System Forecast

The California Energy Commission (CEC) derives the load forecast at the system and Participating Transmission Owner (PTO) levels. This relevant CEC forecast is then distributed across the entire system, down to the local area, division and substation level. The PTOs use an econometric equation to forecast the system load. The predominant parameters affecting the system load are (1) number of households, (2) economic activity (gross metropolitan products, GMP), (3) temperature and (4) increased energy efficiency and distributed generation programs.

2. Base Case Load Development Method

The method used to develop the loads in the base case is a melding process that extracts, adjusts and modifies the information from the system, distribution and municipal utility forecasts. The melding process consists of two parts: Part 1 deals with the PTO load and Part 2 deals with the municipal utility load. There may be small differences between the methodologies used by each PTO to disaggregate the CEC load forecast to their level of local area as well as bar-bus model.

a. PTO Loads in Base Case

The methods used to determine the PTO loads are, for the most part, similar. One part of the method deals with the determination of the division⁶ loads that would meet the requirements of 1-in-5 or 1-in-10 system or area base cases and the other part deals with the allocation of the division load to the transmission buses.

i. Determination of division loads

The annual division load is determined by summing the previous year division load and the current division load growth. Thus, the key steps are the determination of the initial year division load and the annual load growth. The initial year for the base case development method is based heavily on recorded data. The division load growth in the system base case is determined in two steps. First, the total PTO load growth for the year is determined, as the product of the PTO load and the load growth rate from the system load forecast. Then this total PTO load growth is allocated to the division, based on the relative magnitude of the load growth projected for the divisions by the distribution planners. For example, for the 1-in-10 area base case, the division load growth determined for the system base case is adjusted to the 1-in-10 temperature

⁶ Each PTO divides its territory in a number of smaller area named divisions. These are usually smaller and compact areas that have the same temperature profile.

using the load temperature relation determined from the latest peak load and temperature data of the division.

ii. Allocation of division load to transmission bus level

Since the base case loads are modeled at the various transmission buses, the division loads developed must be allocated to those buses. The allocation process is different depending on the load types. For the most part, each PTO classifies its loads into four types: conforming, non-conforming, self-generation and generation-plant loads. Since the non-conforming and self-generation loads are assumed to not vary with temperature, their magnitude would be the same in the system or area base cases of the same year. The remaining load (the total division load developed above, less the quantity of non-conforming and self-generation load) is the conforming load. The remaining load is allocated to the transmission buses based on the relative magnitude of the distribution forecast. The summation of all loads in the base case is generally higher than the load forecast because some load, i.e., self-generation and generation-plant, are behind the meter and must be modeled in the base cases. However, for the most part, metered or aggregated data with telemetry is used to come up with the load forecast.

b. Municipal Loads in Base Case

The municipal utility forecasts that have been provided to the CEC and PTOs for the purposes of their base cases were also used for this study.

C. Power Flow Program Used in the LCT analysis

The technical studies were conducted using General Electric's Power System Load Flow (GE PSLF) program version 18.1. This GE PSLF program is available directly from GE or through the Western System Electricity Council (WECC) to any member.

To evaluate Local Capacity Areas, the starting base case was adjusted to reflect the latest generation and transmission projects as well as the one-in-ten-year peak load forecast for each Local Capacity Area as provided to the CAISO by the PTOs. Electronic contingency files provided by the PTOs were utilized to perform the numerous contingencies required to identify the LCR. These contingency files include remedial action and special protection schemes that are expected to be in operation during the year of study. An CAISO created EPCL (a GE programming language contained within the GE PSLF package) routine was used to run the combination of contingencies; however, other routines are available from WECC with the GE PSFL package or can be developed by third parties to identify the most limiting combination of contingencies requiring the highest amount of generation within the local area to maintain power flows within applicable ratings.

IV. Local Capacity Requirement Study Results

A. Summary of Study Results

LCR is defined as the amount of resource capacity that is needed within a Local Capacity Area to reliably serve the load located within this area. The results of the CAISO's analysis are summarized in the Executive Summary Tables.

	2016Total LCR (MW)	Peak Load (1 in10) (MW)	2016 LCR as % of Peak Load	Total Dependable Local Area Resources (MW)	2016 LCR as % of Total Area Resources
Humboldt	167	196	85%	229	73%
North Coast/North Bay	611	1433	43%	882	69%
Sierra	2018	1906	106%	2026	100%**
Stockton	808	1186	68%	594	136%**
Greater Bay	4349	10083	43%	7557	58%**
Greater Fresno	2519	3331	76%	2929	86%**
Kern	400	851	47%	529	76%
LA Basin	8887	20168	44%	10969	81%
Big Creek/Ventura	2398	4806	50%	5535	43%
San Diego/Imperial Valley	3184	5283	60%	4915	65%**
Total	25341	49243*	51%*	36165	70%

	2015 Total LCR (MW)	Peak Load (1 in10) (MW)	2015 LCR as % of Peak Load	Total Dependable Local Area Resources (MW)	2015 LCR as % of Total Area Resources
Humboldt	166	195	85%	207	80%
North Coast/North Bay	550	1458	38%	901	61%
Sierra	2200	1961	112%	2070	106%**
Stockton	707	1105	64%	589	120%**
Greater Bay	4367	10229	43%	7505	58%**
Greater Fresno	2439	3217	76%	2848	86%**
Kern	437	731	60%	495	88%**
LA Basin	9097	19970	46%	11193	81%
Big Creek/Ventura	2270	4807	47%	5363	42%
San Diego/Imperial Valley	4112	5407	76%	4547	90%**
Total	26345	49080*	54%*	35718	74%

Table 6: 2015 Local Capacity Needs vs. Peak Load and Local Area Resources

* Value shown only illustrative, since each local area peaks at a time different from the system coincident peak load.

** Resource deficient LCA (or with sub-area that is deficient) – deficiency included in LCR. Resource deficient area implies that in order to comply with the criteria, at summer peak, load may be shed immediately after the first contingency.

Tables 5 and 6 shows how much of the Local Capacity Area load is dependent on local resources and how many local resources must be available in order to serve the load in those Local Capacity Areas in a manner consistent with the Reliability Criteria. These tables also indicate where new transmission projects, new resource additions or demand side management programs would be most useful in order to reduce the dependency on existing, generally older and less efficient local area resources.

The term "Qualifying Capacity" used in this report is the latest "Net Qualifying ("NQC") CAISO Capacity" posted the web site on at: http://www.caiso.com/planning/Pages/ReliabilityRequirements/Default.aspx The NQC list includes the area (if applicable) where each resource is located for units already Neither the NQC list nor this report incorporates Demand Side operational. Management programs and their related NQC. Resources scheduled to become operational before 6/1/2016 have been included in this 2016 LCR Report and added to

the total NQC values for those respective areas (see detail write-up for each area).

The first column, "Qualifying Capacity," reflects two sets of resources. The first set is comprised of resources that would normally be expected to be on-line such as Municipal and Regulatory Must-take resources (state, federal, QFs, wind and nuclear units). The second set is "market" resources. The second column, "2016 LCR Requirement Based on Category B" identifies the local capacity requirements, and deficiencies that must be addressed, in order to achieve a service reliability level based on Category C with Operating Procedure", sets forth the local capacity requirements, and deficiencies that must be addressed, necessary to attain a service reliability level based on Performance Criteria-Category C with operating Procedure".

B. Summary of Zonal Needs

Based on the existing import allocation methodology, the only major 500 kV constraint not accounted for is path 26 (Midway-Vincent). *The current method allocates capacity on path 26 similar to the way imports are allocated to LSEs.* The total resources needed (based on the latest CEC load forecast) in each the two relevant zones, SP26 and NP26 is:

Zone	Load Forecast (MW)	15% reserves (MW)	(-) Allocated imports (MW)	(-) Allocated Path 26 Flow (MW)	Total Zonal Resource Need (MW)
SP26	28401	4260	-7792	-3750	21119
NP26=NP15+ZP26	22199	3330	-4346	-2902	18281

Where:

Load Forecast is the most recent 1 in 2 CEC forecast for year 2016 - California Energy Demand Updated Forecast, 2015 - 2025, Mid Demand Baseline, Mid AAEE Savings dated January 20, 2015.

<u>Reserve Margin</u> is 15% the minimum CPUC approved planning reserve margin.

<u>Allocated Imports</u> are the actual 2015 Available Import Capability for loads in the CAISO control area numbers that are not expected to change much by 2016 because there are no additional import transmission additions to the grid.

<u>Allocated Path 26 flow</u> The CAISO determines the amount of Path 26 transfer capacity available for RA counting purposes after accounting for (1) Existing Transmission Contracts (ETCs) that serve load outside the CAISO Balancing Area⁷ and (2) loop flow⁸ from the maximum path 26 rating of 4000 MW (North-to-South) and 3000 MW (South-to-North).

Both NP 26 and SP 26 load forecast, import allocation and zonal results refer to the CAISO Balancing Area only. This is done in order to be consistent with the import allocation methodology.

All resources that are counted as part of the Local Area Capacity Requirements fully count toward the Zonal Need. The local areas of San Diego, LA Basin and Big Creek/Ventura are all situated in SP26 and the remaining local areas are in NP26.

Changes compared to last year's results:

- The load forecast went down in Southern California by about 270 MW and down in Northern California by about 200 MW.
- The Import Allocations went down in Southern California by about 900 MW and down in Northern California by about 360 MW.
- The Path 26 transfer capability has not changed and is not envisioned to change in the near future. As such, the LSEs should assume that their load/share ratio allocation for path 26 will stay at the same levels as 2015. If there are any changes, they will be heavily influenced by the pre-existing "grandfathered contracts" and when they expire most of the LSEs will likely see their load share ratio going up, while the owners of these grandfathered contracts may see their share decreased to the load-share ratio.

⁷ The transfer capability on Path 26 must be de-rated to accommodate ETCs on Path 26 that are used to serve load outside of the CAISO Balancing Area. These particular ETCs represent physical transmission capacity that cannot be allocated to LSEs within the CAISO Balancing Area.

⁸ "Loop flow" is a phenomenon common to large electric power systems like the Western Electricity Coordinating Council. Power is scheduled to flow point-to-point on a Day-ahead and Hour-ahead basis through the CAISO. However, electric grid physics prevails and the actual power flow in real-time will differ from the pre-arranged scheduled flows. Loop flow is real, physical energy and it uses part of the available transfer capability on a path. If not accommodated, loop flow will cause overloading of lines, which can jeopardize the security and reliability of the grid.

C. Summary of Results by Local Area

Each Local Capacity Area's overall requirement is determined by also achieving each sub-area requirement. Because these areas are a part of the interconnected electric system, the total for each Local Capacity Area is not simply a summation of the sub-area needs. For example, some sub-areas may overlap and therefore the same units may count for meeting the needs in both sub-areas.

1. Humboldt Area

Area Definition

The transmission tie lines into the area include:

- 1) Bridgeville-Cottonwood 115 kV line #1
- 2) Humboldt-Trinity 115 kV line #1
- 3) Willits-Garberville 60 kV line #1
- 4) Trinity-Maple Creek 60 kV line #1

The substations that delineate the Humboldt Area are:

- 1) Bridgeville and Low Gap are in, Cottonwood and First Glen are out
- 2) Humboldt is in, Trinity is out
- 3) Willits and Lytonville are out, Kekawaka and Garberville are in
- 4) Trinity is out, Ridge Cabin and Maple Creek are in

Total 2016 busload within the defined area: 190 MW with -4 MW of AAEE and 10 MW of losses resulting in total load + losses of 196 MW.

MKT/SCHED RESOURCE ID	BUS #	BUS NAME	kV	NQC	-	LCR SUB- AREA NAME	NQC Comments	CAISO Tag
BLULKE_6_BLUELK	31156	BLUELKPP	12.5	9.04	1	None		Market
FAIRHV_6_UNIT	31150	FAIRHAVN	13.8	16.57	1	None	Aug NQC	Net Seller
FTSWRD_6_TRFORK				0.00		None	Energy Only	Market
FTSWRD_7_QFUNTS				0.26		None	Not modeled Aug NQC	QF/Selfgen
GRSCRK_6_BGCKWW				0.00		None	Energy Only	QF/Selfgen
HUMBPP_1_UNITS3	31180	HUMB_G1	13.8	16.25	1	None		Market
HUMBPP_1_UNITS3	31180	HUMB_G1	13.8	16.25	2	None		Market
HUMBPP_1_UNITS3	31180	HUMB_G1	13.8	16.25	3	None		Market

Total units and qualifying capacity available in this area:

HUMBPP_1_UNITS3	31180	HUMB_G1	13.8	16.25	4	None		Market
HUMBPP_6_UNITS1	31181	HUMB_G2	13.8	16.27	5	None		Market
HUMBPP_6_UNITS1	31181	HUMB_G2	13.8	16.27	6	None		Market
HUMBPP_6_UNITS1	31181	HUMB_G2	13.8	16.27	7	None		Market
HUMBPP_6_UNITS2	31182	HUMB_G2	13.8	16.27	8	None		Market
HUMBPP_6_UNITS2	31182	HUMB_G2	13.8	16.27	9	None		Market
HUMBPP_6_UNITS2	31182	HUMB_G2	13.8	16.27	10	None		Market
HUMBSB_1_QF				0.00		None	Not modeled Aug NQC	QF/Selfgen
KEKAWK_6_UNIT	31166	KEKAWAK	9.1	0.00	1	None	Aug NQC	Net Seller
LAPAC_6_UNIT	31158	LP SAMOA	12.5	20.00	1	None		Market
PACLUM_6_UNIT	31152	PAC.LUMB	13.8	7.88	1	None	Aug NQC	QF/Selfgen
PACLUM_6_UNIT	31152	PAC.LUMB	13.8	7.88	2	None	Aug NQC	QF/Selfgen
PACLUM_6_UNIT	31153	PAC.LUMB	2.4	4.75	3	None	Aug NQC	QF/Selfgen
WLLWCR_6_CEDRFL				0.01		None	Not modeled Aug NQC	QF/Selfgen

Major new projects modeled:

- 1. Humboldt 115/60 kV #1 and #2 transformer replacement
- 2. Bridgeville 115/60 kV #1 transformer replacement
- 3. Garberville Reactive Support

Critical Contingency Analysis Summary

Humboldt Overall:

The most critical contingency for the Humboldt area is the outage of the Bridgeville-Cottonwood 115 kV Line overlapping with an outage of one of the tie-line connecting the new Humboldt Bay units on the 115 kV side. The area limitation is the overload on the Humboldt – Trinity 115 kV Line. This contingency establishes a LCR of 167 MW in 2016 (includes 21 MW of QF/Selfgen) as the minimum capacity necessary for reliable load serving capability within this area.

For the single contingency, the most critical one is an outage of the Bridgeville-Cottonwood 115 kV Line when one of the Humboldt Bay Power Plant units connected to the 115 kV bus is out of service. The limitation is the overload on the Humboldt – Trinity 115 kV Line. This limiting contingency establishes a LCR of 118 MW in 2016 (includes 21 MW of QF/Selfgen).

Effectiveness factors:

The following units have at least 5% effective to the above-mentioned constraint:

26

Gen Bus	Gen Name	Gen ID	Eff Fctr (%)
31156	BLUELKPP	1	65
31180	HUMB_G1	4	64
31180	HUMB_G1	3	64
31180	HUMB_G1	2	64
31180	HUMB_G1	1	64
31150	FAIRHAVN	1	61
31158	LP SAMOA	1	61
31182	HUMB_G3	10	61
31182	HUMB_G3	9	61
31182	HUMB_G3	8	61
31181	HUMB_G2	7	61
31181	HUMB_G2	6	61
31181	HUMB_G2	5	61
31152	PAC.LUMB	1	57
31152	PAC.LUMB	2	57
31153	PAC.LUMB	3	57

Changes compared to last year's results:

Compared to 2015 the total load forecast has increased by 1 MW and the LCR needs have increased by the same amount.

Humboldt Overall Requirements:

2016	QF/Selfgen	Market	Max. Qualifying
	(MW)	(MW)	Capacity (MW)
Available generation	21	208	229

2016	Existing Generation Capacity Needed (MW)	Deficiency (MW)	Total MW LCR Need
Category B (Single) ⁹	118	0	118
Category C (Multiple) ¹⁰	167	0	167

⁹ A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

¹⁰ Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

2. North Coast / North Bay Area

Area Definition

The transmission tie facilities coming into the North Coast/North Bay area are:

- 1) Cortina-Mendocino 115 kV Line
- 2) Cortina-Eagle Rock 115 kV Line
- 3) Willits-Garberville 60 kV line #1
- 4) Vaca Dixon-Lakeville 230 kV line #1
- 5) Tulucay-Vaca Dixon 230 kV line #1
- 6) Lakeville-Sobrante 230 kV line #1
- 7) Ignacio-Sobrante 230 kV line #1

The substations that delineate the North Coast/North Bay area are:

- 1) Cortina is out, Mendocino and Indian Valley are in
- 2) Cortina is out, Eagle Rock, Highlands and Homestake are in
- 3) Willits and Lytonville are in, Garberville and Kekawaka are out
- 4) Vaca Dixon is out Lakeville is in
- 5) Tulucay is in Vaca Dixon is out
- 6) Lakeville is in, Sobrante is out
- 7) Ignacio is in, Sobrante and Crocket are out

Total 2016 busload within the defined area: 1425 MW with -28 MW of AAEE and 36 MW of losses resulting in total load + losses of 1433 MW.

MKT/SCHED RESOURCE ID	BUS #	BUS NAME	kV	NQC		LCR SUB-AREA NAME	NQC Comments	CAISO Tag
ADLIN_1_UNITS	31435	GEO.ENGY	9.1	8.00	1	Eagle Rock, Fulton, Lakeville		Market
ADLIN_1_UNITS	31435	GEO.ENGY	9.1	8.00		Eagle Rock, Fulton, Lakeville		Market
BEARCN_2_UNITS	31402	BEAR CAN	13.8	6.50	1	Fulton, Lakeville		Market
BEARCN_2_UNITS	31402	BEAR CAN	13.8	6.50	2	Fulton, Lakeville		Market
FULTON_1_QF				0.07		Fulton, Lakeville	Not modeled Aug NQC	QF/Selfgen
GEYS11_7_UNIT11	31412	GEYSER11	13.8	65.00	1	Eagle Rock, Fulton, Lakeville		Market
GEYS12_7_UNIT12	31414	GEYSER12	13.8	50.00	1	Fulton, Lakeville		Market
GEYS13_7_UNIT13	31416	GEYSER13	13.8	56.00	1	Lakeville		Market
GEYS14_7_UNIT14	31418	GEYSER14	13.8	50.00	1	Fulton, Lakeville		Market
GEYS16_7_UNIT16	31420	GEYSER16	13.8	49.00	1	Fulton, Lakeville		Market
GEYS17_2_BOTRCK	31421	BOTTLERK	13.8	14.70	1	Fulton, Lakeville		Market
GEYS17_7_UNIT17	31422	GEYSER17	13.8	53.00	1	Fulton, Lakeville		Market
GEYS18_7_UNIT18	31424	GEYSER18	13.8	45.00	1	Lakeville		Market

Total units and qualifying capacity available in this area are shown in the following table:

GEYS20_7_UNIT20	31426	GEYSER20	13.8	40.00	1	Lakeville		Market
GYS5X6_7_UNITS	31406	GEYSR5-6	13.8	40.00	1	Eagle Rock, Fulton, Lakeville		Market
GYS5X6_7_UNITS	31406	GEYSR5-6	13.8	40.00	2	Eagle Rock, Fulton, Lakeville		Market
GYS7X8_7_UNITS	31408	GEYSER78	13.8	38.00	1	Eagle Rock, Fulton, Lakeville		Market
GYS7X8_7_UNITS	31408	GEYSER78	13.8	38.00	2	Eagle Rock, Fulton, Lakeville		Market
GYSRVL_7_WSPRNG				1.68		Fulton, Lakeville	Not modeled Aug NQC	QF/Selfgen
HILAND_7_YOLOWD				0.00		Eagle Rock, Fulton, Lakeville	Energy Only	Market
HIWAY_7_ACANYN				0.33		Lakeville	Not modeled Aug NQC	QF/Selfgen
IGNACO_1_QF				0.00		Lakeville	Not modeled Aug NQC	QF/Selfgen
MONTPH_7_UNITS	32700	MONTICLO	9.1	3.96	1	Fulton, Lakeville	Aug NQC	QF/Selfgen
MONTPH_7_UNITS	32700	MONTICLO	9.1	3.95	2	Fulton, Lakeville	Aug NQC	QF/Selfgen
MONTPH_7_UNITS	32700	MONTICLO	9.1	0.94	3	Fulton, Lakeville	Aug NQC	QF/Selfgen
NCPA_7_GP1UN1	38106	NCPA1GY1	13.8	31.00	1	Lakeville	Aug NQC	MUNI
NCPA_7_GP1UN2	38108	NCPA1GY2	13.8	31.14	1	Lakeville	Aug NQC	MUNI
NCPA_7_GP2UN3	38110	NCPA2GY1	13.8	0.01	1	Fulton, Lakeville	Aug NQC	MUNI
NCPA_7_GP2UN4	38112	NCPA2GY2	13.8	52.73	1	Fulton, Lakeville	Aug NQC	MUNI
POTTER_6_UNITS	31433	POTTRVLY	2.4	4.70	1	Eagle Rock, Fulton, Lakeville	Aug NQC	Market
POTTER_6_UNITS	31433	POTTRVLY	2.4	2.25	3	Eagle Rock, Fulton, Lakeville	Aug NQC	Market
POTTER_6_UNITS	31433	POTTRVLY	2.4	2.25	4	Eagle Rock, Fulton, Lakeville	Aug NQC	Market
POTTER_7_VECINO				0.02		Eagle Rock, Fulton, Lakeville	Not modeled Aug NQC	QF/Selfgen
SANTFG_7_UNITS	31400	SANTA FE	13.8	30.00	1	Lakeville		Market
SANTFG_7_UNITS	31400	SANTA FE	13.8	30.00	2	Lakeville		Market
SMUDGO_7_UNIT 1	31430	SMUDGEO1	13.8	37.00	1	Lakeville		Market
SNMALF_6_UNITS	31446	SONMA LF	9.1	3.99	1	Fulton, Lakeville	Aug NQC	QF/Selfgen
UKIAH_7_LAKEMN				1.70		Eagle Rock, Fulton, Lakeville	Not modeled	MUNI
WDFRDF_2_UNITS	31404	WEST FOR	13.8	12.51	1	Fulton, Lakeville		Market
WDFRDF_2_UNITS	31404	WEST FOR	13.8	12.49	2	Fulton, Lakeville		Market
INDVLY_1_UNITS	31436	INDIAN V	9.1	1.28	1	Eagle Rock, Fulton, Lakeville	Aug NQC	Net Seller
New Unit	31447	RpsCA_13	13.8	10.4	1	Lakeville	No NQC - Pmax	Market

Major new projects modeled: None.

Critical Contingency Analysis Summary

Eagle Rock Sub-area

The most critical contingency is the outage of Cortina-Mendocino 115 kV line and Geysers #5-Geysers #3 115 kV line. The sub-area area limitation is thermal

overloading of the Eagle Rock-Cortina 115 kV line. This limiting contingency establishes a LCR of 192 MW in 2016 (includes 2 MW of QF/MUNI generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

The most critical single contingency is the outage of the Cortina-Mendocino 115 kV line with Geysers 11 generation unit out of service. The sub-area area limitation is thermal overloading of Eagle Rock-Cortina 115 kV line. This limiting contingency establishes a LCR of 176 MW in 2016 (includes 2 MW of QF/MUNI generation).

Effectiveness factors:

The following units have at least 5% effectiveness to the above-mentioned constraint:

Gen Bus	Gen Name	Gen ID	Eff Fctr (%)
31406	GEYSR5-6	1	38
31406	GEYSR5-6	2	38
31405	RPSP1014	1	38
31408	GEYSER78	1	38
31408	GEYSER78	2	38
31412	GEYSER11	1	38
31435	GEO.ENGY	1	38
31435	GEO.ENGY	2	38
31433	POTTRVLY	1	36
31433	POTTRVLY	3	36
31433	POTTRVLY	4	36

Fulton Sub-area

The most critical contingency is the outage of Lakeville-Fulton 230 kV line #1 and Fulton-Ignacio 230 kV line #1. The sub-area limitation is thermal overloading of Santa Rosa-Corona 115 kV line #1. This limiting contingency establishes a LCR of 282 MW in 2016 (includes 15 MW of QF and 54 MW of Muni generation). All of the resources needed to meet the Eagle Rock sub-area count towards the Fulton sub-area LCR need.

Effectiveness factors:

The following units have at least 5% effectiveness to the above-mentioned constraint:

Gen Bus	Gen Name	Gen ID	Eff Fctr (%)
31404	WEST FOR	2	57
31402	BEAR CAN	1	57
31402	BEAR CAN	2	57

31404	WEST FOR	1	57
31414	GEYSER12	1	57
31418	GEYSER14	1	57
31420	GEYSER16	1	57
31422	GEYSER17	1	57
38110	NCPA2GY1	1	57
38112	NCPA2GY2	1	57
31421	BOTTLERK	1	57
31406	GEYSR5-6	1	31
31406	GEYSR5-6	2	31
31405	RPSP1014	1	31
31408	GEYSER78	1	31
31408	GEYSER78	2	31
31412	GEYSER11	1	31
31435	GEO.ENGY	1	31
31435	GEO.ENGY	2	31
31433	POTTRVLY	1	29
31433	POTTRVLY	3	29
31433	POTTRVLY	4	29

Lakeville Sub-area

The most limiting contingency is the outage of Vaca Dixon-Tulucay 230 kV line with DEC power plant out of service. The area limitation is thermal overloading of Vaca Dixon-Lakeville 230 kV. This limiting contingency establishes a LCR of 611 MW in 2016 (includes 15 MW of QF and 117 MW of MUNI generation). The LCR resources needed for Eagle Rock and Fulton sub-areas can be counted toward fulfilling the requirement of Lakeville sub-area.

Effectiveness factors:

The following units have at least 5% effectiveness to the above-mentioned constraint:

Gen Bus	Gen Name	Gen ID	Eff Fctr (%)
31400	SANTA FE	2	38
31430	SMUDGEO1	1	38
31400	SANTA FE	1	38
31416	GEYSER13	1	38
31424	GEYSER18	1	38
31426	GEYSER20	1	38
38106	NCPA1GY1	1	38
38108	NCPA1GY2	1	38
31421	BOTTLERK	1	36
31404	WEST FOR	2	36
31402	BEAR CAN	1	36

31402	BEAR CAN	2	36
31404	WEST FOR	1	36
31414	GEYSER12	1	36
31418	GEYSER14	1	36
31420	GEYSER16	1	36
31422	GEYSER17	1	36
38110	NCPA2GY1	1	36
38112	NCPA2GY2	1	36
31446	SONMA LF	1	36
32700	MONTICLO	1	31
32700	MONTICLO	2	31
32700	MONTICLO	3	31
31406	GEYSR5-6	1	18
31406	GEYSR5-6	2	18
31405	RPSP1014	1	18
31408	GEYSER78	1	18
31408	GEYSER78	2	18
31412	GEYSER11	1	18
31435	GEO.ENGY	1	18
31435	GEO.ENGY	2	18
31433	POTTRVLY	1	15
31433	POTTRVLY	2	15
31433	POTTRVLY	3	15

Changes compared to last year's results:

The 2016 load forecast went down by 25 MW compared to the 2015 and total LCR need went up by 61 MW. The increase in the LCR need is due to the lower requirements for the Pittsburg/Oakland sub-area of the Bay Area.

2016	QF/Selfgen (MW)	Muni (MW)		larket MW)		ax. Qualifying apacity (MW)			
Available generation	15	117		750		882			
2016	Existing Generation			Deficiency		Total MW			
	Capacity Needed (MW)			(MV	V)	LCR Need			
Category B (Single) ¹¹	611			0		611			
Category C (Multiple) ¹²	61	1		0		611			

North Coast/North Bay Overall Requirements:

¹¹ A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

3. Sierra Area

Area Definition

The transmission tie lines into the Sierra Area are:

- 1) Table Mountain-Rio Oso 230 kV line
- 2) Table Mountain-Palermo 230 kV line
- 3) Table Mt-Pease 60 kV line
- 4) Caribou-Palermo 115 kV line
- 5) Drum-Summit 115 kV line #1
- 6) Drum-Summit 115 kV line #2
- 7) Spaulding-Summit 60 kV line
- 8) Brighton-Bellota 230 kV line
- 9) Rio Oso-Lockeford 230 kV line
- 10) Gold Hill-Eight Mile Road 230 kV line
- 11) Lodi STIG-Eight Mile Road 230 kV line
- 12) Gold Hill-Lake 230 kV line

The substations that delineate the Sierra Area are:

- 1) Table Mountain is out Rio Oso is in
- 2) Table Mountain is out Palermo is in
- 3) Table Mt is out Pease is in
- 4) Caribou is out Palermo is in
- 5) Drum is in Summit is out
- 6) Drum is in Summit is out
- 7) Spaulding is in Summit is out
- 8) Brighton is in Bellota is out
- 9) Rio Oso is in Lockeford is out
- 10) Gold Hill is in Eight Mile is out
- 11) Lodi STIG is in Eight Mile Road is out
- 12) Gold Hill is in Lake is out

Total 2016 busload within the defined area: 1837 MW with -27 MW of AAEE and 96 MW

of losses resulting in total load + losses of 1906 MW.

Total units and qualifying capacity available in this area:

¹² Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

MKT/SCHED RESOURCE ID	BUS #	BUS NAME	kV	NQC	UNIT ID	LCR SUB-AREA NAME	NQC Comments	CAISO Tag
APLHIL_1_SLABCK				0.00	1	Placerville, South of Rio Oso, South of Palermo, South of Table Mountain	Not modeled Energy Only	Market
BANGOR_6_HYDRO				0.00		South of Table Mountain	Energy Only	Market
BELDEN_7_UNIT 1	31784	BELDEN	13.8	115.00	1	South of Palermo, South of Table Mountain	Aug NQC	Market
BIOMAS_1_UNIT 1	32156	WOODLAND	9.1	24.90	1	Drum-Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	Net Seller
BNNIEN_7_ALTAPH	32376	BONNIE N	60	0.72		Weimer, Placer, Drum-Rio Oso, South of Rio Oso, South of Palermo, South of Table Mountain	Not modeled Aug NQC	Market
BOGUE_1_UNITA1	32451	FREC	13.8	45.00	1	Bogue, Drum-Rio Oso, South of Table Mountain	Aug NQC	Market
BOWMN_6_UNIT	32480	BOWMAN	9.1	2.85	1	Drum-Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	MUNI
BUCKCK_7_OAKFLT				0.84		South of Palermo, South of Table Mountain	Not modeled Aug NQC	Market
BUCKCK_7_PL1X2	31820	BCKS CRK	11	29.00	1	South of Palermo, South of Table Mountain	Aug NQC	Market
BUCKCK_7_PL1X2		BCKS CRK	11	29.00	2	South of Palermo, South of Table Mountain	Aug NQC	Market
CAMPFW_7_FARWST	32470	CMP.FARW	9.1	2.90	1	South of Table Mountain	Aug NQC	MUNI
CHICPK_7_UNIT 1	32462	CHI.PARK	11.5	38.00	1	Placer, Drum-Rio Oso, South of Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	MUNI
COLGAT_7_UNIT 1	32450	COLGATE1	13.8	161.65	1	South of Table Mountain	Aug NQC	MUNI
COLGAT_7_UNIT 2	32452	COLGATE2	13.8	161.68	1	South of Table Mountain	Aug NQC	MUNI
CRESTA_7_PL1X2	31812	CRESTA	11.5	35.00	1	South of Palermo, South of Table Mountain	Aug NQC	Market
CRESTA_7_PL1X2	31812	CRESTA	11.5	35.00	2	South of Palermo, South of Table Mountain	Aug NQC	Market
DAVIS_1_SOLAR1				0.00		Drum-Rio Oso, South of Palermo, South of Table Mountain	Not modeled Energy Only	Market
DAVIS_1_SOLAR2				0.00		Drum-Rio Oso, South of Palermo, South of Table Mountain	Not modeled Energy Only	Market
DAVIS_7_MNMETH				2.18		Drum-Rio Oso, South of Palermo, South of Table Mountain	Not modeled Aug NQC	Market
DEADCK_1_UNIT	31862	DEADWOOD	9.1	0.00	1	Drum-Rio Oso, South of Table Mountain	Aug NQC	MUNI
DEERCR_6_UNIT 1	32474	DEER CRK	9.1	3.74	1	Drum-Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	Market
DRUM_7_PL1X2	32504	DRUM 1-2	6.6	13.00	1	Drum-Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	Market
DRUM_7_PL1X2	32504	DRUM 1-2	6.6	13.00	2	Drum-Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	Market
DRUM_7_PL3X4	32506	DRUM 3-4	6.6	13.70	1	Drum-Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	Market

DRUM_7_PL3X4	32506	DRUM 3-4	6.6	13.70	2	Drum-Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	Market
DRUM_7_UNIT 5	32454	DRUM 5	13.8	49.50	1	Drum-Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	Market
DUTCH1_7_UNIT 1	32464	DTCHFLT1	11	22.00	1	Placer, Drum-Rio Oso, South of Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	Market
DUTCH2_7_UNIT 1	32502	DTCHFLT2	6.9	26.00	1	Drum-Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	MUNI
ELDORO_7_UNIT 1	32513	ELDRADO1	21.6	11.00	1	Placerville, South of Rio Oso, South of Palermo, South of Table Mountain		Market
ELDORO_7_UNIT 2	32514	ELDRADO2	21.6	11.00	1	Placerville, South of Rio Oso, South of Palermo, South of Table Mountain		Market
FMEADO_6_HELLHL	32486	HELLHOLE	9.1	0.33	1	South of Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	MUNI
FMEADO_7_UNIT	32508	FRNCH MD	4.2	16.01	1	South of Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	MUNI
FORBST_7_UNIT 1	31814	FORBSTWN	11.5	37.50	1	Drum-Rio Oso, South of Table Mountain	Aug NQC	MUNI
GOLDHL_1_QF				0.00		Placerville, South of Rio Oso, South of Palermo, South of Table Mountain	Not modeled	QF/Selfgen
GRIDLY_6_SOLAR				0.00		South of Table Mountain	Not modeled Energy Only	Market
GRNLF1_1_UNITS	32490	GRNLEAF1	13.8	7.69	1	Bogue, Drum-Rio Oso, South of Table Mountain	Aug NQC	Market
GRNLF1_1_UNITS	32490	GRNLEAF1	13.8	39.27	2	Bogue, Drum-Rio Oso, South of Table Mountain	Aug NQC	Market
GRNLF2_1_UNIT	32492	GRNLEAF2	13.8	42.47	1	Pease, Drum-Rio Oso, South of Table Mountain	Aug NQC	QF/Selfgen
HALSEY_6_UNIT	32478	HALSEY F	9.1	6.44	1	Placer, Drum-Rio Oso, South of Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	Market
HAYPRS_6_QFUNTS	32488	HAYPRES+	9.1	0.15	1	Drum-Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	QF/Selfgen
HAYPRS_6_QFUNTS	32488	HAYPRES+	9.1	0.15	2	Drum-Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	QF/Selfgen
HIGGNS_1_COMBIE				0.00		Drum-Rio Oso, South of Rio Oso, South of Palermo, South of Table Mountain	Energy Only	Market
HIGGNS_7_QFUNTS				0.25		Drum-Rio Oso, South of Rio Oso, South of Palermo, South of Table Mountain	Not modeled Aug NQC	QF/Selfgen
KANAKA_1_UNIT				0.00		Drum-Rio Oso, South of Table Mountain	Not modeled Aug NQC	MUNI
KELYRG_6_UNIT	31834	KELLYRDG	9.1	10.00	1	Drum-Rio Oso, South of Table Mountain	Aug NQC	MUNI
LODIEC_2_PL1X2	38123	LODI CT1	18	166.00	1	South of Rio Oso, South of Palermo, South of Table Mountain		MUNI

LODIEC_2_PL1X2	38124	LODI ST1	18	114.00	1	South of Rio Oso, South of Palermo, South of Table Mountain		MUNI
MDFKRL_2_PROJCT	32456	MIDLFORK	13.8	62.18	1	South of Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	MUNI
MDFKRL_2_PROJCT	32456	MIDLFORK	13.8	62.18	2	South of Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	MUNI
MDFKRL_2_PROJCT	32458	RALSTON	13.8	84.32	1	South of Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	MUNI
NAROW1_2_UNIT		NARROWS1	9.1	9.59	1	South of Table Mountain	Aug NQC	Market
NAROW2_2_UNIT	32468	NARROWS2	9.1	28.51	1	South of Table Mountain	Aug NQC	MUNI
NWCSTL_7_UNIT 1	32460	NEWCSTLE	13.2	0.00	1	Placer, Drum-Rio Oso, South of Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	Market
OROVIL_6_UNIT	31888	OROVLLE	9.1	7.50	1	Drum-Rio Oso, South of Table Mountain	Aug NQC	Market
OXBOW_6_DRUM	32484	OXBOW F	9.1	6.00	1	Weimer, Drum-Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	MUNI
PACORO_6_UNIT	31890	PO POWER	9.1	5.00	1	Drum-Rio Oso, South of Table Mountain	Aug NQC	QF/Selfgen
PACORO_6_UNIT	31890	PO POWER	9.1	4.99	2	Drum-Rio Oso, South of Table Mountain	Aug NQC	QF/Selfgen
PLACVL_1_CHILIB	32510	CHILIBAR	4.2	3.88	1	Placerville, South of Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	Market
PLACVL_1_RCKCRE				0.00		Placerville, South of Rio Oso, South of Palermo, South of Table Mountain	Not modeled Aug NQC	Market
PLSNTG_7_LNCLND	32408	PLSNT GR	60	2.40		Drum-Rio Oso, South of Rio Oso, South of Palermo, South of Table Mountain	Not modeled Aug NQC	Market
POEPH_7_UNIT 1	31790	POE 1	13.8	60.00	1	South of Palermo, South of Table Mountain	Aug NQC	Market
POEPH_7_UNIT 2	31792	POE 2	13.8	60.00	1	South of Palermo, South of Table Mountain	Aug NQC	Market
RCKCRK_7_UNIT 1	31786	ROCK CK1	13.8	34.90	1	South of Palermo, South of Table Mountain	Aug NQC	Market
RCKCRK_7_UNIT 2	31788	ROCK CK2	13.8	32.81	1	South of Palermo, South of Table Mountain	Aug NQC	Market
RIOOSO_1_QF				1.30		Drum-Rio Oso, South of Palermo, South of Table Mountain	Not modeled Aug NQC	QF/Selfgen
ROLLIN_6_UNIT	32476	ROLLINSF	9.1	11.09	1	Weimer, Drum-Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	MUNI
SLYCRK_1_UNIT 1	31832	SLY.CR.	9.1	10.36	1	Drum-Rio Oso, South of Table Mountain	Aug NQC	MUNI
SPAULD_6_UNIT 3	32472	SPAULDG	9.1	5.74	3	Drum-Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	Market
SPAULD_6_UNIT12	32472	SPAULDG	9.1	4.96	1	Drum-Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	Market
SPAULD_6_UNIT12	32472	SPAULDG	9.1	4.96	2	Drum-Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	Market

SPI LI_2_UNIT 1	32498	SPILINCF	12.5	9.68	1	Drum-Rio Oso, South of Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	QF/Selfgen
STIGCT_2_LODI	38114	Stig CC	13.8	49.50	1	South of Rio Oso, South of Palermo, South of Table Mountain		MUNI
ULTRCK_2_UNIT	32500	ULTR RCK	9.1	21.29	1	Drum-Rio Oso, South of Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	QF/Selfgen
WDLEAF_7_UNIT 1	31794	WOODLEAF	13.8	55.00	1	Drum-Rio Oso, South of Table Mountain	Aug NQC	MUNI
WHEATL_6_LNDFIL	32350	WHEATLND	60	3.00		South of Table Mountain	Not modeled Aug NQC	Market
WISE_1_UNIT 1	32512	WISE	12	10.68	1	Placer, Drum-Rio Oso, South of Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	Market
WISE_1_UNIT 2	32512	WISE	12	0.00	1	Placer, Drum-Rio Oso, South of Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	Market
YUBACT_1_SUNSWT	32494	ҮИВА СТҮ	9.1	23.98	1	Pease, Drum-Rio Oso, South of Table Mountain	Aug NQC	Net Seller
YUBACT_6_UNITA1	32496	YCEC	13.8	46.00	1	Pease, Drum-Rio Oso, South of Table Mountain		Market
NA	32162	RIV.DLTA	9.11	0.00	1	Drum-Rio Oso, South of Palermo, South of Table Mountain	No NQC - hist. data	QF/Selfgen
UCDAVS_1_UNIT	32166	UC DAVIS	9.1	3.50	1	Drum-Rio Oso, South of Palermo, South of Table Mountain	No NQC - hist. data	QF/Selfgen

Major new projects modeled:

1. Palermo-Rio Oso 115 kV Reconductoring

Critical Contingency Analysis Summary

Placerville Sub-area

The most critical contingency is the loss of the Gold Hill-Clarksville 115 kV line followed by loss of the Gold Hill-Missouri Flat #2 115 kV line. The area limitation is thermal overloading of the Gold Hill-Missouri Flat #1 115 kV line. This limiting contingency establishes a LCR of 106 MW (includes 0 MW of QF and MUNI generation as well as 80 MW of deficiency) in 2016 as the minimum capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

All units within this area are needed therefore no effectiveness factor is required.

Placer Sub-area

The most critical contingency is the loss of the Gold Hill-Placer #1 115 kV line followed by loss of the Gold Hill-Placer #2 115 kV line. The area limitation is thermal overloading of the Drum-Higgins 115 kV line. This limiting contingency establishes a LCR of 94 MW (includes 38 MW of QF/MUNI generation as well as 17 MW of deficiency) in 2016 as the minimum capacity necessary for reliable load serving capability within this sub-area.

The single most critical contingency is the loss of the Gold Hill-Placer #1 115 kV line with Chicago Park unit out of service. The area limitation is thermal overloading of the Drum-Higgins 115 kV line. This limiting contingency establishes a local capacity need of 54 MW (includes 38 MW of QF/MUNI) in 2016.

Effectiveness factors:

All units within this area (Chicago Park, Dutch Flat#1, Wise units 1&2, Newcastle and Halsey) have the same effectiveness factor.

Pease Sub-area

The most critical contingency is the loss of the Palermo-East Nicolaus 115 kV line with Yuba City Energy Center unit out of service. The area limitation is thermal overloading of the Palermo-Pease 115 kV line. This limiting contingency establishes a LCR of 105 MW (includes 42 MW of QF generation) in 2016 as the minimum capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

All units within this area have the same effectiveness factor.

Bogue Sub-area

No requirement due to the Palermo-Rio Oso reconductoring project. If this project is delayed all units within this area (Greenleaf #1 units 1&2 and Feather River EC) are needed.

South of Rio Oso Sub-area

The most critical contingency is the loss of the Rio Oso-Gold Hill 230 line followed by loss of the Rio Oso-Lincoln 115 kV line or vice versa. The area limitation is thermal overloading of the Rio Oso-Atlantic 230 kV line. This limiting contingency establishes a LCR of 750 MW (includes 31 MW of QF and 593 MW of MUNI generation as well as 58 MW of deficiency) in 2016 as the minimum capacity necessary for reliable load serving capability within this sub-area.

The single most critical contingency is the loss of the Rio Oso-Gold Hill 230 line with the Ralston unit out of service. The area limitation is thermal overloading of the Rio Oso-Atlantic 230 kV line. This limiting contingency establishes a LCR of 508 MW (includes 31 MW of QF and 593 MW of MUNI generation as well as 16 MW of deficiency) in 2016.

Effectiveness factors:

The following table has all units in South of Rio Oso sub-area and their effectiveness factor to the above-mentioned constraint.

Gen Bus	Gen Name	Gen ID	Eff Fctr. (%)
32498	SPILINCF	1	49
32500	ULTR RCK	1	49
32456	MIDLFORK	1	33
32456	MIDLFORK	2	33
32458	RALSTON	1	33
32513	ELDRADO1	1	32
32514	ELDRADO2	1	32
32510	CHILIBAR	1	32
32486	HELLHOLE	1	31
32508	FRNCH MD	1	30
32460	NEWCSTLE	1	26
32478	HALSEY F	1	24
32512	WISE	1	24
38114	Stig CC	1	14
38123	Q267CT	1	14
38124	Q267ST	1	14
32462	CHI.PARK	1	8
32464	DTCHFLT1	1	4

Drum-Rio Oso Sub-area

The most critical contingency is the loss of the Rio Oso #2 230/115 transformer followed

by loss of the Rio Oso-Brighton 230 kV line. The area limitation is thermal overloading of the Rio Oso #1 230/115 kV transformer. This limiting contingency establishes in 2016 a LCR of 677 MW (includes 89 MW of QF and 197 MW of MUNI generation as well as 30 MW of deficiency) as the minimum capacity necessary for reliable load serving capability within this sub-area.

The single most critical contingency is the loss of the Rio Oso #2 230/115 transformer. The area limitation is thermal overloading of the Rio Oso #1 230/115 kV transformer. This limiting contingency establishes in 2016 a LCR of 259 MW (includes 89 MW of QF and 197 MW of MUNI generation).

Effectiveness factors:

The following table has units in Drum-Rio Oso sub-area and their effectiveness factor:

Gen Bus	Gen Name	Gen ID	Eff Fctr. (%)
32156	WOODLAND	1	22
32490	GRNLEAF1	1	22
32490	GRNLEAF1	2	22
32451	FREC	1	21
32166	UC DAVIS	1	18
32498	SPILINCF	1	15
32502	DTCHFLT2	1	15
32494	YUBA CTY	1	14
32496	YCEC	1	14
32492	GRNLEAF2	1	13
32454	DRUM 5	1	13
32476	ROLLINSF	1	13
32474	DEER CRK	1	13
32504	DRUM 1-2	1	13
32504	DRUM 1-2	2	13
32506	DRUM 3-4	1	13
32506	DRUM 3-4	2	13
32484	OXBOW F	1	13
32472	SPAULDG	3	12
32472	SPAULDG	1	12
32472	SPAULDG	2	12
32488	HAYPRES+	1	12
32480	BOWMAN	1	12
32488	HAYPRES+	2	12
32464	DTCHFLT1	1	11
32162	RIV.DLTA	1	11
32462	CHI.PARK	1	9
32500	ULTR RCK	1	6

31862	DEADWOOD	1	5
31814	FORBSTWN	1	5
31832	SLY.CR.	1	5
31794	WOODLEAF	1	5
32478	HALSEY F	1	2
31888	OROVLLE	1	2
32512	WISE	1	2
31834	KELLYRDG	1	2
31890	PO POWER	1	2
31890	PO POWER	2	2
32460	NEWCSTLE	1	1

South of Palermo Sub-area

The most critical contingency is the loss of the Double Circuit Tower Line Table Mountain-Rio Oso and Colgate-Rio Oso 230 kV lines. The area limitation is thermal overloading of the Pease-Rio Oso 115 kV line. This limiting contingency establishes a LCR of 1571 MW (includes 36 MW of QF and 638 MW of MUNI generation as well as 247 MW of deficiency) in 2016 as the minimum capacity necessary for reliable load serving capability within this sub-area.

The most critical single contingency is the loss of the Palermo- East Nicolaus 115 kV line with Belden unit out of service. The area limitation is thermal overloading of the Pease-Rio Oso 115 kV line. This contingency establishes in 2016 a LCR of 1139 MW (includes 36 MW of QF and 638 MW of MUNI generation).

Effectiveness factors:

All units within the South of Palermo are needed therefore no effectiveness factor is required.

South of Table Mountain Sub-area

The most critical contingency is the loss of the Table Mountain-Rio Oso 230 kV and Table Mountain-Palermo double circuit tower line outage. The area limitation is thermal overloading of the Caribou-Palermo 115 kV line. This limiting contingency establishes in 2016 a LCR of 1765 MW (includes 89 MW of QF and 1106 MW of MUNI generation) as the minimum capacity necessary for reliable load serving capability within this area.

The units required for the South of Palermo sub-area satisfy the single contingency requirement for this sub-area.

Effectiveness factors:

The following table has all units in Sierra area and their effectiveness factor:

Gen Bus	Gen Name	Gen ID	Eff Fctr.
31814	FORBSTWN	1	8
31794	WOODLEAF	1	8
31832	SLY.CR.	1	7
31862	DEADWOOD	1	7
31888	OROVLLE	1	6
31890	PO POWER	2	6
31890	PO POWER	1	6
31834	KELLYRDG	1	6
32452	COLGATE2	1	5
32450	COLGATE1	1	5
32466	NARROWS1	1	5
32468	NARROWS2	1	5
32470	CMP.FARW	1	5
32451	FREC	1	5
32490	GRNLEAF1	2	4
32490	GRNLEAF1	1	4
32496	YCEC	1	3
32494	YUBA CTY	1	3
32492	GRNLEAF2	1	3
32156	WOODLAND	1	3
31820	BCKS CRK	1	2
31820	BCKS CRK	2	2
31788	ROCK CK2	1	2
31812	CRESTA	1	2
31812	CRESTA	2	2
31792	POE 2	1	2
31790	POE 1	1	2
31786	ROCK CK1	1	2
31784	BELDEN	1	2
32166	UC DAVIS	1	2
32500	ULTR RCK	1	2
32498	SPILINCF	1	2
32162	RIV.DLTA	1	2
32510	CHILIBAR	1	2
32514	ELDRADO2	1	2
32513	ELDRADO1	1	2
32478	HALSEY F	1	2
32458	RALSTON	1	2
32456	MIDLFORK	1	2

Gen Bus Gen Name Gen ID Eff Fctr. (%)

32456	MIDLFORK	2	2
38114	Stig CC	1	2
32460	NEWCSTLE	1	2
32512	WISE	1	2
32486	HELLHOLE	1	2
32508	FRNCH MD	1	2
32502	DTCHFLT2	1	2
32462	CHI.PARK	1	2
32464	DTCHFLT1	1	1
32454	DRUM 5	1	1
32476	ROLLINSF	1	1
32484	OXBOW F	1	1
32474	DEER CRK	1	1
32506	DRUM 3-4	1	1
32506	DRUM 3-4	2	1
32504	DRUM 1-2	1	1
32504	DRUM 1-2	2	1
32488	HAYPRES+	1	1
32488	HAYPRES+	2	1
32480	BOWMAN	1	1
32472	SPAULDG	1	1
32472	SPAULDG	2	1
32472	SPAULDG	3	1
38123	Q267CT1	1	1
38124	Q267ST1	1	1

Changes compared to last year's results:

The Sierra area load forecast went down by 55 MW and the LCR need has decreased by 182 MW. The decrease in LCR is due to decrease in load forecast.

Sierra Overall Requirements:

2016	QF	Muni	Market	Max. Qualifying
	(MW)	(MW)	(MW)	Capacity (MW)
Available generation	89	1106	831	2026

2016	Existing Generation Capacity Needed (MW)	Deficiency (MW)	Total MW LCR Need
Category B (Single) ¹³	1139	16	1155
Category C (Multiple) ¹⁴	1765	253	2018

¹³ A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

4. Stockton Area

Area Definition

The transmission facilities that establish the boundary of the Tesla-Bellota Sub-area

are:

- 1) Bellota 230/115 kV Transformer #1
- 2) Bellota 230/115 kV Transformer #2
- 3) Tesla-Tracy 115 kV Line
- 4) Tesla-Salado 115 kV Line
- 5) Tesla-Salado-Manteca 115 kV line
- 6) Tesla-Schulte #1 115 kV Line
- 7) Tesla-Schulte #2 115 kV Line

The substations that delineate the Tesla-Bellota Sub-area are:

- 1) Bellota 230 kV is out Bellota 115 kV is in
- 2) Bellota 230 kV is out Bellota 115 kV is in
- 3) Tesla is out Tracy is in
- 4) Tesla is out Salado is in
- 5) Tesla is out Salado and Manteca are in
- 6) Tesla is out Schulte is in
- 7) Tesla is out Schulte is in

The transmission facilities that establish the boundary of the Lockeford Sub-area are:

- 1) Lockeford-Industrial 60 kV line
- 2) Lockeford-Lodi #1 60 kV line
- 3) Lockeford-Lodi #2 60 kV line
- 4) Lockeford-Lodi #3 60 kV line

The substations that delineate the Lockeford Sub-area are:

- 1) Lockeford is out Industrial is in
- 2) Lockeford is out Lodi is in
- 3) Lockeford is out Lodi is in
- 4) Lockeford is out Lodi is in

The transmission facilities that establish the boundary of the Weber Sub-area are:

1) Weber 230/60 kV Transformer #1

¹⁴ Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

- 2) Weber 230/60 kV Transformer #2
- 3) Weber 230/60 kV Transformer #2a

The substations that delineate the Weber Sub-area are:

- 1) Weber 230 kV is out Weber 60 kV is in
- 2) Weber 230 kV is out Weber 60 kV is in
- 3) Weber 230 kV is out Weber 60 kV is in

Total 2016 busload within the defined area: 1181 MW with -16 MW of AAEE and 21 MW of losses resulting in total load + losses of 1186 MW.

MKT/SCHED RESOURCE ID	BUS #	BUS NAME	kV	NQC	-	LCR SUB-AREA NAME	NQC Comments	CAISO Tag
BEARDS_7_UNIT 1	34074	BEARDSLY	6.9	8.36	1	Tesla-Bellota, Stanislaus	Aug NQC	MUNI
CAMCHE_1_PL1X3	33850	CAMANCHE	4.2	1.40	1	Tesla-Bellota	Aug NQC	MUNI
CAMCHE_1_PL1X3	33850	CAMANCHE	4.2	1.40	2	Tesla-Bellota	Aug NQC	MUNI
CAMCHE_1_PL1X3	33850	CAMANCHE	4.2	1.41	3	Tesla-Bellota	Aug NQC	MUNI
COGNAT_1_UNIT	33818	COG.NTNL	12	25.46	1	Weber	Aug NQC	Net Seller
CURIS_1_QF				0.54		Tesla-Bellota	Not modeled Aug NQC	QF/Selfgen
DONNLS_7_UNIT	34058	DONNELLS	13.8	72.00	1	Tesla-Bellota, Stanislaus	Aug NQC	MUNI
FROGTN_7_UTICA				0.00		Tesla-Bellota, Stanislaus	Energy Only	Market
LODI25_2_UNIT 1	38120	LODI25CT	9.11	22.70	1	Lockeford		MUNI
PEORIA_1_SOLAR				1.12		Tesla-Bellota, Stanislaus	Not modeled Aug NQC	Market
PHOENX_1_UNIT				1.35		Tesla-Bellota, Stanislaus	Not modeled Aug NQC	Market
SCHLTE_1_PL1X3	33805	GWFTRCY1	13.8	83.56	1	Tesla-Bellota		Market
SCHLTE_1_PL1X3	33807	GWFTRCY2	13.8	82.88	1	Tesla-Bellota		Market
SCHLTE_1_PL1X3	33811	GWFTRCY3	13.8	132.96	1	Tesla-Bellota		Market
SNDBAR_7_UNIT 1	34060	SANDBAR	13.8	11.10	1	Tesla-Bellota, Stanislaus	Aug NQC	MUNI
SPIFBD_1_PL1X2	33917	FBERBORD	115	0.88	1	Tesla-Bellota, Stanislaus	Aug NQC	Market
SPRGAP_1_UNIT 1	34078	SPRNG GP	6	0.00	1	Tesla-Bellota, Stanislaus	Aug NQC	Market
STANIS_7_UNIT 1	34062	STANISLS	13.8	91.00	1	Tesla-Bellota, Stanislaus	Aug NQC	Market
STNRES_1_UNIT	34056	STNSLSRP	13.8	10.57	1	Tesla-Bellota	Aug NQC	Net Seller
TULLCK_7_UNITS	34076	TULLOCH	6.9	9.35	1	Tesla-Bellota	Aug NQC	MUNI
TULLCK_7_UNITS	34076	TULLOCH	6.9	9.35	2	Tesla-Bellota	Aug NQC	MUNI
ULTPCH_1_UNIT 1	34050	CH.STN.	13.8	16.57	1	Tesla-Bellota, Stanislaus	Aug NQC	QF/Selfgen
VLYHOM_7_SSJID				1.40		Tesla-Bellota, Stanislaus	Not modeled Aug NQC	MUNI
WEBER_6_FORWRD				4.20		Weber	Not modeled Aug NQC	Market

Total units and qualifying capacity available in this area:

NA	33687	STKTN WW	60	1.50	1	Weber	No NQC - hist. data	QF/Selfgen
NA	33830	GEN.MILL	9.11	2.50	1	Lockeford	No NQC - hist. data	QF/Selfgen
STOKCG_1_UNIT 1	33814	CPC STCN	12.5	0.00	1	Tesla-Bellota		QF/Selfgen

Major new projects modeled:

- 1. Weber-Stockton "A" #1 & #2 60 kV Reconductoring
- 2. Weber 230/60 kV Transformer Replacement

Critical Contingency Analysis Summary

Stockton overall

The requirement for this area is driven by the sum of requirements for the Tesla-Bellota, Lockeford and Weber Sub-areas.

Stanislaus Sub-area

The critical contingency for the Stanislaus area is the loss of Bellota-Riverbank-Melones 115 kV circuit with Stanislaus PH out of service. The area limitation is thermal overloading of the River Bank Jct.-Manteca 115 kV line. This limiting contingency establishes a local capacity need of 151 MW (including 17 MW of QF and 93 MW of MUNI generation) in 2016 as the minimum capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

All units within this sub-area have the same effectiveness factor.

Tesla-Bellota Sub-area

The two most critical contingencies listed below together establish a local capacity need of 693 MW (includes 17 MW of QF and 116 MW of MUNI generation as well as 323 MW of deficiency) in 2016 as the minimum capacity necessary for reliable load serving capability within this sub-area.

The most critical contingency for the Tesla-Bellota pocket is the loss of Schulte-Kasson-Manteca 115 kV and Schulte-Lammers 115 kV. The area limitation is thermal overload of the Tesla-Tracy 115 kV line above its emergency rating. This limiting contingency establishes a local capacity need of 561 MW (includes 17 MW of QF and 116 MW of MUNI generation as well as 323 MW of deficiency) in 2016.

The second most critical contingency for the Tesla-Bellota pocket is the loss of Tesla-Tracy 115 kV and Tesla-Schulte #2 115 kV lines. The area limitation is thermal overload of the Tesla-Schulte #1 115 kV line. This limiting contingency establishes a 2016 local capacity need of 370 MW (includes 17 MW of QF and 116 MW of MUNI generation).

The single most critical contingency for the Tesla-Bellota pocket is the loss of Tesla-Schulte #2 115 kV line and the loss of the GWF Tracy unit #3. The area limitation is thermal overload of the Tesla-Schulte #1 115 kV line. This single contingency establishes a local capacity need of 357 MW (includes 17 MW of QF and 116 MW of MUNI generation) in 2016.

All of the resources needed to meet the Stanislaus sub-area count towards the Tesla-Bellota sub-area LCR need.

Effectiveness factors:

All units within this sub-area are needed for the most limiting contingencies therefore no effectiveness factor is required.

Lockeford Sub-area

The critical contingency for the Lockeford area is the loss of Lockeford-Industrial 60 kV circuit and Lockeford-Lodi #2 60 kV circuit. The area limitation is thermal overloading of the Lockeford-Lodi Jct. section of the Lockeford-Lodi #3 60 kV circuit. This limiting contingency establishes a 2016 local capacity need of 86 MW (including 2 MW of QF and 23 MW of MUNI generation as well as 61 MW of deficiency) as the minimum capacity necessary for reliable load serving capability within this area.

Effectiveness factors:

All units within this sub-area are needed therefore no effectiveness factor is required.

Weber Sub-area

The critical contingency for the Weber area is the loss of Stockton A-Weber #1 & #2 60 kV lines. The area limitation is thermal overloading of the Stockton A-Weber #3 60 kV line. This limiting contingency establishes a local capacity need of 29 MW (including 2 MW of QF generation as well as 2 MW of deficiency) in 2016 as the minimum capacity necessary for reliable load serving capability within this sub-area.

If Weber 230/60 kV transformer # 2 and 2A replacement project is delayed all units within this area (Cogeneration National, Stockton Waste Water and Weber Forward) are needed.

Effectiveness factors:

All units within this sub-area have the same effectiveness factor.

Changes compared to last year's results:

Overall the Stockton area load forecast went up by 81 MW. The overall requirement for the Stockton area increased by 101 MW mainly due to increase in load forecast.

Stockton Overall Requirements:

2016	QF	MUNI	Market	Max. Qualifying
	(MW)	(MW)	(MW)	Capacity (MW)
Available generation	21	139	434	594

2016	Existing Generation Capacity Needed (MW)	Deficiency (MW)	Total MW LCR Need
Category B (Single) ¹⁵	357	0	357
Category C (Multiple) ¹⁶	422	386	808

¹⁵ A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

¹⁶ Multiple contingencies means that the system will be able the survive the loss of a single element, and

5. Greater Bay Area

Area Definition

The transmission tie lines into the Greater Bay Area are:

- 1) Lakeville-Sobrante 230 kV
- 2) Ignacio-Sobrante 230 kV
- 3) Parkway-Moraga 230 kV
- 4) Bahia-Moraga 230 kV
- 5) Lambie SW Sta-Vaca Dixon 230 kV
- 6) Peabody-Birds Landing SW Sta 230 kV
- 7) Tesla-Kelso 230 kV
- 8) Tesla-Delta Switching Yard 230 kV
- 9) Tesla-Pittsburg #1 230 kV
- 10) Tesla-Pittsburg #2 230 kV
- 11) Tesla-Newark #1 230 kV
- 12) Tesla-Newark #2 230 kV
- 13) Tesla-Ravenswood 230 kV
- 14) Tesla-Metcalf 500 kV
- 15) Moss Landing-Metcalf 500 kV
- 16) Moss Landing-Metcalf #1 230 kV
- 17) Moss Landing-Metcalf #2 230 kV
- 18) Oakdale TID-Newark #1 115 kV
- 19) Oakdale TID-Newark #2 115 kV

The substations that delineate the Greater Bay Area are:

- 1) Lakeville is out Sobrante is in
- 2) Ignacio is out Crocket and Sobrante are in
- 3) Parkway is out Moraga is in
- 4) Bahia is out Moraga is in
- 5) Lambie SW Sta is in Vaca Dixon is out
- 6) Peabody is out Birds Landing SW Sta is in
- 7) Tesla and USWP Ralph are out Kelso is in
- 8) Tesla and Altmont Midway are out Delta Switching Yard is in
- 9) Tesla and Tres Vaqueros are out Pittsburg is in
- 10) Tesla and Flowind are out Pittsburg is in
- 11) Tesla is out Newark is in
- 12) Tesla is out Newark and Patterson Pass are in
- 13) Tesla is out Ravenswood is in

the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

- 14) Tesla is out Metcalf is in
- 15) Moss Landing is out Metcalf is in
- 16) Moss Landing is out Metcalf is in
- 17) Moss Landing is out Metcalf is in
- 18) Oakdale TID is out Newark is in
- 19) Oakdale TID is out Newark is in

Total 2016 bus load within the defined area is 9,790 MW with -144 MW of AAEE, 173 MW of losses and 264 MW of pumps resulting in total load + losses + pumps of 10,083 MW.

MKT/SCHED RESOURCE ID	BUS #	BUS NAME	kV	NQC		LCR SUB-AREA NAME	NQC Comments	CAISO Tag
ALMEGT_1_UNIT 1	38118	ALMDACT1	13.8	23.80	1	Oakland		MUNI
ALMEGT_1_UNIT 2	38119	ALMDACT2	13.8	24.40	1	Oakland		MUNI
BANKPP_2_NSPIN	38760	DELTA E	13.2	28.00	10	Contra Costa	Pumps	MUNI
BANKPP_2_NSPIN	38760	DELTA E	13.2	28.00	11	Contra Costa	Pumps	MUNI
BANKPP_2_NSPIN	38765	DELTA D	13.2	28.00	8	Contra Costa	Pumps	MUNI
BANKPP_2_NSPIN	38765	DELTA D	13.2	28.00	9	Contra Costa	Pumps	MUNI
BANKPP_2_NSPIN	38770	DELTA C	13.2	28.00	6	Contra Costa	Pumps	MUNI
BANKPP_2_NSPIN	38770	DELTA C	13.2	28.00	7	Contra Costa	Pumps	MUNI
BANKPP_2_NSPIN	38815	DELTA B	13.2	28.00	4	Contra Costa	Pumps	MUNI
BANKPP_2_NSPIN	38815	DELTA B	13.2	28.00	5	Contra Costa	Pumps	MUNI
BANKPP_2_NSPIN	38820	DELTA A	13.2	7.00	1	Contra Costa	Pumps	MUNI
BANKPP_2_NSPIN	38820	DELTA A	13.2	7.00	2	Contra Costa	Pumps	MUNI
BANKPP_2_NSPIN	38820	DELTA A	13.2	26.00	3	Contra Costa	Pumps	MUNI
BRDSLD_2_HIWIND	32172	HIGHWINDS	34.5	39.51	1	Contra Costa	Aug NQC	Wind
BRDSLD_2_MTZUM2	32179	MNTZUMA2	0.69	15.84	1	Contra Costa	Aug NQC	Wind
BRDSLD_2_MTZUMA	32171	HIGHWND3	34.5	7.41	1	Contra Costa	Aug NQC	Wind
BRDSLD_2_SHILO1	32176	SHILOH	34.5	42.53	1	Contra Costa	Aug NQC	Wind
BRDSLD_2_SHILO2	32177	SHILOH 2	34.5	42.67	1	Contra Costa	Aug NQC	Wind
BRDSLD_2_SHLO3A	32191	SHILOH3	0.58	18.56	1	Contra Costa	Aug NQC	Wind
BRDSLD_2_SHLO3B	32194	SHILOH4	0.58	23.16	1	Contra Costa	Aug NQC	Wind
CALPIN_1_AGNEW	35860	OLS-AGNE	9.11	28.00	1	San Jose	Aug NQC	Market
CARDCG_1_UNITS	33463	CARDINAL	12.5	8.76	1	None	Aug NQC	QF/Selfgen
CARDCG_1_UNITS	33463	CARDINAL	12.5	8.76	2	None	Aug NQC	QF/Selfgen
CAYTNO_2_VASCO	30531	0162-WD	230	4.30	FW	Contra Costa	Aug NQC	Market
CLRMTK_1_QF				0.00		Oakland	Not modeled	QF/Selfgen
COCOPP_2_CTG1	33188	MARSHCT1	16.4	191.35	1	Contra Costa	Aug NQC	Market
COCOPP_2_CTG2	33188	MARSHCT2	16.4	189.30	2	Contra Costa	Aug NQC	Market
COCOPP_2_CTG3	33189	MARSHCT3	16.4	191.45	3	Contra Costa	Aug NQC	Market
COCOPP_2_CTG4	33189	MARSHCT4	16.4	191.44	4	Contra Costa	Aug NQC	Market
CONTAN_1_UNIT	36856	CCA100	13.8	27.70	1	San Jose	Aug NQC	MUNI
CROKET_7_UNIT	32900	CRCKTCOG	18	224.55	1	Pittsburg	Aug NQC	QF/Selfgen
CSCCOG_1_UNIT 1	36859	Laf300	12	3.00	1	San Jose		MUNI
CSCCOG_1_UNIT 1	36859	Laf300	12	3.00	2	San Jose		MUNI

Total units and qualifying capacity available in this area:

CSCGNR_1_UNIT 1	36858	Gia100	13.8	24.00	1	San Jose	1	MUNI
CSCGNR_1_UNIT 2		Gia200	13.8	24.00	2	San Jose		MUNI
DELTA_2_PL1X4		DEC STG1	24	269.61	1	Pittsburg	Aug NQC	Market
DELTA_2_PL1X4		DEC CTG1	18	181.13	1	Pittsburg	Aug NQC	Market
DELTA_2_PL1X4		DEC CTG2	18	181.13	1	Pittsburg	Aug NQC	Market
DELTA_2_PL1X4		DEC CTG3	18	181.13	1	Pittsburg	Aug NQC	Market
DUANE_1_PL1X3		DVRaGT1	13.8	49.27	1	San Jose	, ag rao	MUNI
DUANE_1_PL1X3		DVRbGT2	13.8	49.27	1	San Jose		MUNI
DUANE_1_PL1X3		DVRaST3	13.8	49.26	1	San Jose		MUNI
FLOWD1_6_ALTPP1		FLOWDPTR	9.11	0.00	1	Contra Costa	Aug NQC	Wind
GATWAY_2_PL1X3		GATEWAY1	18	190.12	1	Contra Costa	Aug NQC	Market
GATWAY_2_PL1X3		GATEWAY2	18	186.19	1	Contra Costa	Aug NQC	Market
GATWAY_2_PL1X3		GATEWAY3	18	186.19	1	Contra Costa	Aug NQC	Market
GILROY_1_UNIT		GLRY COG	13.8	69.30	1	Llagas	Aug NQC	Market
GILROY_1_UNIT		GLRY COG	13.8	35.70	2	Llagas	Aug NQC	Market
GILRPP_1_PL1X2		GROYPKR1	13.8	45.50	1	Llagas	Aug NQC	Market
GILRPP_1_PL1X2		GROYPKR2	13.8	45.50	1	Llagas	Aug NQC	Market
GILRPP_1_PL3X4		GROYPKR3	13.8	46.00	1	Llagas	Aug NQC	Market
GRZZLY_1_BERKLY		HILLSIDE	115	24.66	1	None	Aug NQC	QF/Selfgen
KELSO_2_UNITS		MARIPCT1	13.8	47.08	1	Contra Costa	Aug NQC	Market
KELSO_2_UNITS		MARIPCT1 MARIPCT2	13.8	47.00	2	Contra Costa	Aug NQC	Market
		MARIPCT2 MARIPCT3					-	
KELSO_2_UNITS		MARIPCT3	13.8	47.07	3 4	Contra Costa Contra Costa	Aug NQC	Market
KELSO_2_UNITS KIRKER_7_KELCYN	33019	MARIPU14	13.8	47.07	4		Aug NQC	Market Market
NIRNER_/_NELUTIN				3.54		Pittsburg	Not modeled	Market
LAWRNC_7_SUNYVL				0.09		None	Not modeled Aug NQC	Market
LECEF_1_UNITS		LECEFGT1	13.8	46.50	1	San Jose	Aug NQC	Market
LECEF_1_UNITS		LECEFGT2	13.8	46.50	1	San Jose	Aug NQC	Market
LECEF_1_UNITS		LECEFGT3	13.8	46.50	1	San Jose	Aug NQC	Market
LECEF_1_UNITS		LECEFGT4	13.8	46.50	1	San Jose	Aug NQC	Market
LECEF_1_UNITS		LECEFST1	13.8	107.88	1	San Jose		Market
LFC 51_2_UNIT 1	35310	LFC FIN+	9.11	2.56	1	None	Aug NQC	Wind
LMBEPK_2_UNITA1		LAMBGT1	13.8	47.00	1	Contra Costa	Aug NQC	Market
LMBEPK_2_UNITA2		GOOSEHGT	13.8	46.00	2	Contra Costa	Aug NQC	Market
LMBEPK_2_UNITA3		CREEDGT1	13.8	47.00	3	Contra Costa	Aug NQC	Market
LMEC_1_PL1X3	33111	LMECCT2	18	163.20	1	Pittsburg	Aug NQC	Market
LMEC_1_PL1X3	33112	LMECCT1	18	163.20	1	Pittsburg	Aug NQC	Market
LMEC_1_PL1X3	33113	LMECST1	18	229.60	1	Pittsburg	Aug NQC	Market
MARTIN_1_SUNSET				1.71		None	Not modeled Aug NQC	QF/Selfgen
METCLF_1_QF				0.13		None	Not modeled Aug NQC	QF/Selfgen
METEC_2_PL1X3	35881	MEC CTG1	18	178.43	1	None	Aug NQC	Market
METEC_2_PL1X3		MEC CTG2	18	178.43	1	None	Aug NQC	Market
METEC_2_PL1X3		MEC STG1	18	213.14	1	None	Aug NQC	Market
MILBRA_1_QF			-	0.00		None	Not modeled	QF/Selfgen
MISSIX_1_QF				0.16		None	Not modeled Aug NQC	QF/Selfgen
MLPTAS_7_QFUNTS				0.01	L	San Jose	Not modeled Aug NQC	QF/Selfgen
MNTAGU_7_NEWBYI				1.10		None	Not modeled Aug NQC	QF/Selfgen

NEWARK_1_QF				0.02		None	Not modeled Aug NQC	QF/Selfgen
OAK C_1_EBMUD				0.73		Oakland	Not modeled Aug NQC	MUNI
OAK C_7_UNIT 1	32901	OAKLND 1	13.8	55.00	1	Oakland		Market
OAK C_7_UNIT 2	32902	OAKLND 2	13.8	55.00	1	Oakland		Market
OAK C_7_UNIT 3	32903	OAKLND 3	13.8	55.00	1	Oakland		Market
OXMTN_6_LNDFIL	33469	OX_MTN	4.16	1.46	1	Ames		Market
OXMTN_6_LNDFIL	33469	OX_MTN	4.16	1.45	2	Ames		Market
OXMTN_6_LNDFIL		OX_MTN	4.16	1.45	3	Ames		Market
OXMTN_6_LNDFIL		OX_MTN	4.16	1.45	4	Ames		Market
OXMTN_6_LNDFIL	33469	OX_MTN	4.16	1.45	5	Ames		Market
OXMTN_6_LNDFIL	33469	OX_MTN	4.16	1.45	6	Ames		Market
OXMTN_6_LNDFIL	33469	OX_MTN	4.16	1.45	7	Ames		Market
PALALT_7_COBUG				4.50		None	Not modeled	MUNI
PITTSP_7_UNIT 5	33105	PTSB 5	18	312.00	1	Pittsburg	Retired by 2019	Market
PITTSP_7_UNIT 6	33106	PTSB 6	18	317.00	1	Pittsburg	Retired by 2019	Market
PITTSP_7_UNIT 7	30000	PTSB 7	20	682.00	1	Pittsburg	Retired by 2019	Market
RICHMN_7_BAYENV				2.00		None	Not modeled Aug NQC	Market
RUSCTY_2_UNITS	35304	RUSELCT1	15	172.35	1	Ames	No NQC - Pmax	Market
RUSCTY_2_UNITS	35305	RUSELCT2	15	172.35	1	Ames	No NQC - Pmax	Market
RUSCTY_2_UNITS	35306	RUSELST1	15	241.00	1	Ames	No NQC - Pmax	Market
RVRVEW_1_UNITA1	33178	RVEC_GEN	13.8	46.00	1	Contra Costa	Aug NQC	Market
SEAWST_6_LAPOS	35312	SEAWESTF	9.11	0.15	1	Contra Costa	Aug NQC	Wind
SRINTL_6_UNIT	33468	SRI INTL	9.11	1.10	1	None	Aug NQC	QF/Selfgen
STAUFF_1_UNIT	33139	STAUFER	9.11	0.08	1	None	Aug NQC	QF/Selfgen
STOILS_1_UNITS	32921	CHEVGEN1	13.8	0.86	1	Pittsburg	Aug NQC	Market
STOILS_1_UNITS	32922	CHEVGEN2	13.8	0.86	1	Pittsburg	Aug NQC	Market
TIDWTR_2_UNITS	33151	FOSTER W	12.5	7.59	1	Pittsburg	Aug NQC	Net Seller
TIDWTR_2_UNITS	33151	FOSTER W	12.5	7.58	2	Pittsburg	Aug NQC	Net Seller
TIDWTR_2_UNITS	33151	FOSTER W	12.5	7.58	3	Pittsburg	Aug NQC	Net Seller
UNCHEM_1_UNIT	32920	UNION CH	9.11	15.73	1	Pittsburg	Aug NQC	QF/Selfgen
UNOCAL_1_UNITS	32910	UNOCAL	12	0.15	1	Pittsburg	Aug NQC	QF/Selfgen
UNOCAL_1_UNITS	32910	UNOCAL	12	0.15	2	Pittsburg	Aug NQC	QF/Selfgen
UNOCAL_1_UNITS	32910	UNOCAL	12	0.14	3	Pittsburg	Aug NQC	QF/Selfgen
USWNDR_2_SMUD	32169	SOLANOWP	21	22.11	1	Contra Costa	Aug NQC	Wind
USWNDR_2_SMUD2	32186	SOLANO	34.5	37.86	1	Contra Costa	Aug NQC	Wind
USWNDR_2_UNITS	32168	EXNCO	9.11	4.84	1	Contra Costa	Aug NQC	Wind
USWPFK_6_FRICK	35320	USW FRIC	12	0.83	1	Contra Costa	Aug NQC	Wind
USWPFK_6_FRICK	35320	USW FRIC	12	0.83	2	Contra Costa	Aug NQC	Wind
USWPJR_2_UNITS	39233	GRNRDG	0.69	11.68	1	Contra Costa	Aug NQC	Wind
WNDMAS_2_UNIT 1	33170	WINDMSTR	9.11	3.76	1	Contra Costa	Aug NQC	Wind
ZOND_6_UNIT	35316	ZOND SYS	9.11	3.60	1	Contra Costa	Aug NQC	Wind
IBMCTL_1_UNIT 1	35637	IBM-CTLE	115	0.00	1	San Jose	No NQC - hist. data	Market
IMHOFF_1_UNIT 1	33136	CCCSD	12.5	4.40	1	Pittsburg	No NQC - hist. data	QF/Selfgen
MARKHM_1_CATLST	35863	CATALYST	9.11	0.00	1	San Jose		QF/Selfgen
SHELRF_1_UNITS	33141	SHELL 1	12.5	20.00	1	Pittsburg	No NQC - hist. data	Net Seller
SHELRF_1_UNITS	33142	SHELL 2	12.5	40.00		Pittsburg	No NQC - hist. data	Net Seller
SHELRF_1_UNITS	33143	SHELL 3	12.5	40.00	1	Pittsburg	No NQC - hist. data	Net Seller
ZANKER_1_UNIT 1	35861	SJ-SCL W	9.11	5.00	1	San Jose	No NQC - hist. data	QF/Selfgen

New Unit	30524	RpsCA_04	230	1.80	ΕW	Contra Costa	No NQC - Pmax	Market
New Unit	33102	RpsCA_86	0.32	20.00	1	Pittsburg	No NQC - Pmax	Market
New Unit	35622	SWIFT	115	4.00	BT	None	No NQC - Pmax	Market
COCOPP_7_UNIT 6	33116	C.COS 6	18	0.00	RT	Contra Costa	Retired	Market
COCOPP_7_UNIT 7	33117	C.COS 7	18	0.00	RT	Contra Costa	Retired	Market
GWFPW1_6_UNIT	33131	GWF #1	9.11	0.00	1	Pittsburg, Contra Costa	Retired	QF/Selfgen
GWFPW2_1_UNIT 1	33132	GWF #2	13.8	0.00	1	Pittsburg	Retired	QF/Selfgen
GWFPW3_1_UNIT 1	33133	GWF #3	13.8	0.00	1	Pittsburg, Contra Costa	Retired	QF/Selfgen
GWFPW4_6_UNIT 1	33134	GWF #4	13.8	0.00	1	Pittsburg, Contra Costa	Retired	QF/Selfgen
GWFPW5_6_UNIT 1	33135	GWF #5	13.8	0.00	1	Pittsburg	Retired	QF/Selfgen
UNTDQF_7_UNITS	33466	UNTED CO	9.11	0.00	1	None	Retired	QF/Selfgen

Major new projects modeled:

- 1. A few small renewable resources
- 2. Contra Costa Moraga 230 kV Line Reconductoring
- 3. Pittsburg-Tesla 230 kV Reconductoring

Critical Contingency Analysis Summary

Oakland Sub-area

The most critical contingency is an outage of the C-X #2 and #3 115 kV cables. The area limitation is thermal overloading of the Moraga – Claremont #1 or #2 115 kV line. This limiting contingency establishes a LCR of 92 MW in 2016 (includes 49 MW of MUNI generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

This Oakland requirement does not include the need for Pittsburg/Oakland sub-area.

Effectiveness factors:

All units within this area have the same effectiveness factor.

Llagas Sub-area

The most critical contingency is an outage Metcalf D-Morgan Hill 115 kV Line with one of the Gilroy Peaker off-line. The area limitation is thermal overloading of the Morgan Hill-Llagas 115 kV line as well as voltage drop (5%) at the Morgan Hill substation. As

documented within a CAISO Operating Procedure, this limitation is dependent on power flowing in the direction from Metcalf to Llagas/Morgan Hill. This limiting contingency establishes a LCR of 135 MW in 2016 (includes 0 MW of QF and MUNI generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

All units within this area have the same effectiveness factor.

San Jose Sub-area

The most critical contingency is an outage of Metcalf-El Patio #1 or #2 115 kV line followed by Metcalf-Evergreen #2 115 kV line. The area limitation is thermal overloading of the Metcalf-Piercy 115 kV Line. This limiting contingency establishes a LCR of 687 MW in 2016 (includes 5 MW of QF and 230 MW of MUNI generation as well as 131 MW of deficiency) as the minimum capacity necessary for reliable load serving capability within this sub-area.

The most critical single contingency is an outage of the Metcalf-Evergreen #2 115 kV line with Duane PP out of service. The sub-area area limitation is thermal overloading of the Metcalf-Evergreen #1 115 kV Line. This limiting contingency establishes a LCR of 265 MW in 2016 (including 5 MW of QF and 230 MW of Muni generation).

Effectiveness factors:

All units within this sub-area are needed for the most limiting contingencies therefore no effectiveness factor is required.

Pittsburg and Oakland Sub-area Combined

The most critical contingency is an outage of the Moraga #3 230/115 kV transformer combined with the loss of Delta Energy Center. The sub-area area limitation is thermal overloading of Moraga #1 230/115 kV transformer. This limiting contingency establishes a LCR of 2001 MW in 2016 (including 245 MW of QF and 49 MW of Muni generation) as the minimum capacity necessary for reliable load serving capability

within this sub-area.

The most critical single contingency is an outage of the Moraga #3 230/115 kV transformer. The sub-area area limitation is thermal overloading of the Moraga #1 230/115 kV transformer. This limiting contingency establishes a LCR of 1188 MW in 2016 (including 245 MW of QF and 49 MW of Muni generation).

Effectiveness factors:

Please see Bay Area overall.

Contra Costa Sub-area

The most critical contingency is an outage of Kelso-Tesla 230 kV with the Gateway off line. The area limitation is thermal overloading of the Delta Switching Yard-Tesla 230 kV line. This limiting contingency establishes a LCR of 930 MW in 2016 (includes 275 MW of Wind generation and 264 MW of MUNI pumps) as the minimum capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

The following table has units within the Bay Area that are at least 10% effective to the above-mentioned constraint.

	Gen Name	Gen ID	Eff Fctr (%)
33175	ALTAMONT	1	83
38760	DELTA E	10	71
38760	DELTA E	11	71
38765	DELTA D	8	71
38765	DELTA D	9	71
38770	DELTA C	6	71
38770	DELTA C	7	71
38815	DELTA B	4	71
38815	DELTA B	5	71
38820	DELTA A	3	71
33170	WINDMSTR	1	68
33118	GATEWAY1	1	23
33119	GATEWAY2	1	23
33120	GATEWAY3	1	23
33116	C.COS 6	1	23
33117	C.COS 7	1	23
33133	GWF #3	1	23

33134	GWF #4	1	23
33178	RVEC_GEN	1	23
33131	GWF #1	1	22
32179	T222	1	18
32188	P0611G	1	18
32190	Q039	1	18
32186	P0609	1	18
32171	HIGHWND3	1	18
32177	Q0024	1	18
32168	ENXCO	2	18
32169	SOLANOWP	1	18
32172	HIGHWNDS	1	18
32176	SHILOH	1	18
33838	USWP_#3	1	18
32173	LAMBGT1	1	14
32174	GOOSEHGT	2	14
32175	CREEDGT1	3	14
35312	SEAWESTF	1	11
35316	ZOND SYS	1	11
35320	USW FRIC	1	11

Ames Sub-area

The most critical contingency is an outage of Newark-Ravenswood & Tesla-Ravenswood 230 kV lines. The area limitation is thermal overloading of Newark-Ames #1, #2, #3 and Newark- Ames Distribution 115 kV lines. This limiting contingency establishes a LCR of 596 MW in 2016 (includes 0 MW of QF and MUNI generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

The following table has units within the Bay Area that are at least 4% effective to the above-mentioned constraint.

Gen Bus	Gen Name	Gen ID	Eff Fctr (%)
33469	OX_MTN	1	5
33469	OX_MTN	2	5
33469	OX_MTN	3	5
33469	OX_MTN	4	5
33469	OX_MTN	5	5
33469	OX_MTN	6	5
33469	OX_MTN	7	5
35304	RUSELCT1	1	4
35305	RUSELCT2	2	4
35306	RUSELST1	3	4

Bay Area overall

The most critical need is the aggregate of sub-area requirements. This establishes a LCR of 4349 MW in 2016 (including 297 MW of QF, 547 MW of MUNI and 278 MW of wind generation) as the minimum capacity necessary for reliable load serving capability within this area.

The most critical single contingency is an outage of the Tesla-Metcalf 500 kV line with Delta Energy Center out of service. The sub-area area limitation is reactive margin within the Bay Area. This limiting contingency establishes a LCR of 3790 MW in 2016 (including 297 MW of QF, 547 MW of MUNI and 278 MW of wind generation).

Effectiveness factors:

For most helpful procurement information please read procedure T-133Z effectiveness factors (posted under M-2210Z) at: <u>http://www.caiso.com/Documents/2210Z.pdf</u>

Changes compared to last year's results:

Overall the load forecast down by 146 MW and the LCR has decreased by 18 MW due to a combination of load forecast decrease and the new Ames sub-area requirements.

2016	Wind (MW)	QF/Selfgen (MW)	Muni (MW)	Market (MW)	Max. Qualifying Capacity (MW)	
Available generation	278	297	547	6435	7557	
2016	Ex	isting Generat	ion	Deficiency	Total MW	
	Capa	acity Needed (MW)	(MW)	LCR Need	
Category B (Single) ¹⁷		3790		0	3790	
Category C (Multiple) ¹⁸		4218		131	4349	

Bay Area Overall Requirements:

¹⁷ A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

¹⁸ Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC

6. Greater Fresno Area

Area Definition

The transmission facilities coming into the Greater Fresno area are:

- 1) Gates-Gregg 230 kV Line
- 2) Gates-McCall 230 kV Line
- 3) Gates #1 230/70 kV Transformer Bank
- 4) Los Banos #3 230/70 kV Transformer Bank
- 5) Los Banos #4 230/70 kV Transformer Bank
- 6) Panoche-Helm 230 kV Line
- 7) Panoche-Kearney 230 kV Line
- 8) Panoche #1 230/115 kV Transformer
- 9) Panoche #2 230/115 kV Transformer
- 10) Warnerville-Wilson 230 kV Line
- 11) Wilson-Melones 230 kV Line
- 12) Smyrna-Corcoran 115kV Line
- 13) Coalinga #1-San Miguel 70 kV Line

The substations that delineate the Greater Fresno area are:

- 1) Gates is out Henrietta is in
- 2) Gates is out Henrietta is in
- 3) Gates 230 kV is out Gates 70 kV is in
- 4) Los Banos 230 kV is out Los Banos 70 kV is in
- 5) Los Banos 230 kV is out Los Banos 70 kV is in
- 6) Panoche is out Helm is in
- 7) Panoche is out Mc Mullin is in
- 8) Panoche 115 kV is in Panoche 230 kV is out
- 9) Panoche 115 kV is in Panoche 230 kV is out
- 10) Warnerville is out Wilson is in
- 11) Wilson is in Melones is out
- 12) Quebec SP is out Corcoran is in
- 13) Coalinga is in San Miguel is out

2016 total busload within the defined area is 3275 MW with -35 MW of AAEE and 91

MW of losses resulting in a total (load plus losses) of 3331 MW.

Total units and qualifying capacity available in this area:

transmission operations standards.

MKT/SCHED RESOURCE ID	BUS #	BUS NAME	kV	NQC	-	LCR SUB-AREA NAME	NQC Comments	CAISO Tag
AGRICO_6_PL3N5	34608	AGRICO	13.8	20.00	3	Wilson, Herndon		Market
AGRICO_7_UNIT	34608	AGRICO	13.8	43.05	2	Wilson, Herndon		Market
AGRICO_7_UNIT	34608	AGRICO	13.8	7.45	4	Wilson, Herndon		Market
AVENAL_6_AVPARK	34265	AVENAL P	12	0.00	1	Wilson, Coalinga	Energy Only	Market
AVENAL_6_SANDDG	34263	SANDDRAG	12	0.00	1	Wilson, Coalinga	Energy Only	Market
AVENAL_6_SUNCTY	34257	SUNCTY D	12	0.00	1	Wilson, Coalinga	Energy Only	Market
BALCHS_7_UNIT 1	34624	BALCH	13.2	21.36	1	Wilson, Herndon	Aug NQC	Market
BALCHS_7_UNIT 2	34612	BLCH	13.8	52.50	1	Wilson, Herndon	Aug NQC	Market
BALCHS_7_UNIT 3	34614	BLCH	13.8	52.50	1	Wilson, Herndon	Aug NQC	Market
BORDEN_2_QF	34253	BORDEN D	12.5	0.78	QF	Wilson	Aug NQC	QF/Selfgen
CANTUA_1_SOLAR	34349	CANTUA_D	12.5	7.66	1	Wilson	Aug NQC	Market
CANTUA_1_SOLAR	34349	CANTUA_D	12.5	7.66	2	Wilson	Aug NQC	Market
CAPMAD_1_UNIT 1	34179	MADERA_G	13.8	4.29	1	Wilson		Market
CHEVCO_6_UNIT 1	34652	CHV.COAL	9.11	1.26	1	Wilson, Coalinga	Aug NQC	QF/Selfgen
CHEVCO_6_UNIT 2	34652	CHV.COAL	9.11	1.13	2	Wilson, Coalinga	Aug NQC	QF/Selfgen
CHWCHL_1_BIOMAS	34305	CHWCHLA2	13.8	7.25	1	Wilson, Herndon	Aug NQC	Market
CHWCHL_1_UNIT	34301	CHOWCOGN	13.8	48.00	1	Wilson, Herndon	-	Market
COLGA1_6_SHELLW	34654	COLNGAGN	9.11	35.02	1	Wilson, Coalinga	Aug NQC	Net Seller
CRESSY_1_PARKER	34140	CRESSEY	115	1.54		Wilson	Not modeled Aug NQC	MUNI
CRNEVL_6_CRNVA	34634	CRANEVLY	12	0.71	1	Wilson, Borden	Aug NQC	Market
CRNEVL_6_SJQN 2	34631	SJ2GEN	9.11	3.20	1	Wilson, Borden	Aug NQC	Market
CRNEVL_6_SJQN 3	34633	SJ3GEN	9.11	4.20	1	Wilson, Borden	Aug NQC	Market
DINUBA_6_UNIT	34648	DINUBA E	13.8	9.87	1	Wilson, Herndon, Reedley		Market
ELNIDP_6_BIOMAS	34330	ELNIDO	13.8	6.09	1	Wilson	Aug NQC	Market
EXCHEC_7_UNIT 1	34306	EXCHQUER	13.8	94.20	1	Wilson	Aug NQC	MUNI
FRIANT_6_UNITS	34636	FRIANTDM	6.6	9.76	2	Wilson, Borden	Aug NQC	QF/Selfgen
FRIANT_6_UNITS	34636	FRIANTDM	6.6	5.21	3	Wilson, Borden	Aug NQC	QF/Selfgen
FRIANT_6_UNITS	34636	FRIANTDM	6.6	1.38	4	Wilson, Borden	Aug NQC	QF/Selfgen
GATES_6_PL1X2	34553	WHD_GAT2	13.8	0.00	1	Wilson, Coalinga		Market
GUERNS_6_SOLAR	34461	GUERNSEY	12.5	7.49	1	Wilson	Aug NQC	Market
GUERNS_6_SOLAR	34461	GUERNSEY	12.5	7.48	2	Wilson	Aug NQC	Market
GWFPWR_1_UNITS	34431	GWF_HEP1	13.8	42.20	1	Wilson, Herndon, Hanford		Market
GWFPWR_1_UNITS	34433	GWF_HEP2	13.8	42.20	1	Wilson, Herndon, Hanford		Market
HAASPH_7_PL1X2	34610	HAAS	13.8	68.15	1	Wilson, Herndon	Aug NQC	Market
HAASPH_7_PL1X2	34610		13.8	68.15	2	Wilson, Herndon	Aug NQC	Market
HELMPG_7_UNIT 1		HELMS	18	404.00	1	Wilson	Aug NQC	Market
HELMPG_7_UNIT 2		HELMS	18	404.00	2	Wilson	Aug NQC	Market
HELMPG_7_UNIT 3		HELMS	18	404.00	3	Wilson	Aug NQC	Market
HENRTA_6_UNITA1		GWF_GT1	13.8	45.33	1	Wilson		Market
HENRTA_6_UNITA2		GWF_GT2	13.8	45.23	1	Wilson		Market
HURON_6_SOLAR		HURON_DI	12.5	7.75	1	Wilson, Coalinga	Aug NQC	Market
HURON_6_SOLAR		HURON_DI	12.5	7.74	2	Wilson, Coalinga	Aug NQC	Market
INTTRB_6_UNIT		INT.TURB	9.11	3.06	1	Wilson	Aug NQC	QF/Selfgen
KANSAS_6_SOLAR		KANSASS_S	12.5	0.00	F	Wilson	Energy Only	Market
			6.6	13.00	1	Wilson, Herndon	Aug NQC	Market
KERKH1_7_UNIT 1	34344	KERCK1-1	nn	1.3 UU		VVISOL LIELUUUU	AUGINUU	IVIAIKEI

KERKH2_7_UNIT 1	34308	KERCKHOF	13.8	153.90	1	Wilson, Herndon	Aug NQC	Market
KINGCO_1_KINGBR	34642	KINGSBUR	9.11	23.71	1	Wilson, Herndon, Hanford	Aug NQC	Net Seller
KINGRV_7_UNIT 1	34616	KINGSRIV	13.8	51.20	1	Wilson, Herndon	Aug NQC	Market
KNGBRG_1_KBSLR1				0.00			Energy Only	Market
KNGBRG_1_KBSLR2				0.00			Energy Only	Market
LEPRFD_1_KANSAS	34680	Q636	12.5	14.97	1	Wilson, Hanford	Aug NQC	Market
MALAGA_1_PL1X2	34671	KRCDPCT1	13.8	48.00	1	Wilson, Herndon		Market
MALAGA_1_PL1X2	34672	KRCDPCT2	13.8	48.00	1	Wilson, Herndon		Market
MCCALL_1_QF	34219	MCCALL 4	12.5	0.62	QF	Wilson, Herndon	Aug NQC	QF/Selfgen
MCSWAN_6_UNITS	34320	MCSWAIN	9.11	5.82	1	Wilson	Aug NQC	MUNI
MENBIO_6_RENEW1	34339	CALRENEW	12.5	4.02	1	Wilson, Herndon	Aug NQC	Net Seller
MENBIO_6_UNIT		BIO PWR	9.11	21.44	1	Wilson	Aug NQC	QF/Selfgen
MERCFL_6_UNIT		MERCEDFL	9.11	2.15	1	Wilson	Aug NQC	Market
PINFLT_7_UNITS		PINEFLAT	13.8	22.00	1	Wilson, Herndon	Aug NQC	MUNI
PINFLT_7_UNITS	38720	PINEFLAT	13.8	22.00	2	Wilson, Herndon	Aug NQC	MUNI
PINFLT_7_UNITS		PINEFLAT	13.8	22.00	3	Wilson, Herndon	Aug NQC	MUNI
PNCHPP_1_PL1X2		STARGT1	13.8	55.58	1	Wilson		Market
PNCHPP_1_PL1X2		STARGT2	13.8	55.58	1	Wilson		Market
PNOCHE_1_PL1X2		WHD_PAN2	13.8	49.97	1	Wilson, Herndon		Market
PNOCHE_1_UNITA1		DG_PAN1	13.8	48.00	1	Wilson		Market
REEDLY_6_SOLAR	01100	<u> </u>	10.0	0.00			Energy Only	Market
SCHNDR_1_FIVPTS	34353	SCHINDLER_	12.5	4.24	1	Wilson, Coalinga	Aug NQC	Market
SCHNDR_1_FIVPTS	34353	SCHINDLER_	12.5	2.13	2	Wilson, Coalinga	Aug NQC	Market
SCHNDR_1_WSTSDE	34353	SCHINDLER_	12.5	6.17	3	Wilson, Coalinga	Aug NQC	Market
SCHNDR_1_WSTSDE	34353	SCHINDLER_	12.5	3.09	4	Wilson, Coalinga	Aug NQC	Market
SGREGY_6_SANGER	34646	SANGERCO	13.8	25.02	1	Wilson	Aug NQC	QF/Selfgen
SGREGY_6_SANGER	34646	SANGERCO	13.8	5.64	2	Wilson	Aug NQC	QF/Selfgen
STOREY_7_MDRCH		STOREY D	12.5	0.40	1	Wilson	Aug NQC	QF/Selfgen
STROUD_6_SOLAR	34563	STROUD_D	12.5	6.57	1	Wilson, Herndon	Aug NQC	Market
STROUD_6_SOLAR		STROUD_D	12.5	6.57	2	Wilson, Herndon	Aug NQC	Market
ULTPFR_1_UNIT 1		ULTR.PWR	9.11	22.93	1	Wilson, Herndon	Aug NQC	QF/Selfgen
WAUKNA_1_SOLAR	34606	CORCORANP	21	16.80	1	Wilson, Herndon, Hanford	Aug NQC	Market
WFRESN_1_SOLAR		v_0		0.00		Wilson	Energy Only	Market
WISHON_6_UNITS	24659	WISHON	2.3	4.51	1	Wilson, Borden		
WISHON_6_UNITS		WISHON			2	Wilson, Borden	Aug NQC	Market
WISHON_6_UNITS		WISHON	2.3	4.51 4.51	2	Wilson, Borden	Aug NQC	Market Market
			2.3				Aug NQC	Market Market
WISHON_6_UNITS		WISHON	2.3	4.51	4	Wilson, Borden	Aug NQC	Market
WISHON_6_UNITS	34058	WISHON	2.3	0.36	5	Wilson, Borden	Aug NQC	Market
WRGHTP_7_AMENG Y	24207	WRIGHT D	12.5	0.46	QF	Wilson	Aug NQC	QF/Selfgen
BULLRD_7_SAGNES	34213	BULLD 12	12.5	0.06	1	Wilson	Aug NQC	QF/Selfgen
JRWOOD_1_UNIT 1	34332	JRWCOGEN	9.11	7.80	1	Wilson		QF/Selfgen
KERKH1_7_UNIT 2	34343	KERCK1-2	6.6	8.50	2	Wilson, Herndon	Aug NQC	Market
NA	34485	FRESNOWW	12.5	3.10	1	Wilson	No NQC - hist. data	QF/Selfgen
NA	34485	FRESNOWW	12.5	3.10	2	Wilson	No NQC - hist.	QF/Selfgen

							data	
NA	34485	FRESNOWW	12.5	1.10	3	Wilson	No NQC - hist. data	QF/Selfgen
ONLLPP_6_UNIT 1	34316	ONEILPMP	9.11	0.50	1	Wilson	No NQC - hist. data	MUNI
ADMEST_6_SOLAR	34315	Q632	12.5	0.00	1	Wilson, Herndon	Energy Only	Market
JAYNE_6_WLSLR	34639	Q633	0.48	0.00	1	Wilson, Coalinga	Energy Only	Market
KNTSTH_6_SOLAR	34694	Q650AB	0.8	0.00	1	Wilson	Energy Only	Market
New Unit	34311	Q607	0.2	60.00	1	Wilson	No NQC - Pmax	Market
New Unit	34420	CORCORAN	115	19.00	WD	Wilson, Herndon, Hanford	No NQC - Pmax	Market
New Unit	34467	GIFFEN_DIST	12.5	10.00	1	Wilson, Herndon	No NQC - Pmax	Market
New Unit	34603	JGBSWLT	12.5	0.00	ST	Wilson, Herndon	Energy Only	Market
New Unit	34669	Q529A	4.16	0.00	1	Wilson, Herndon	Energy Only	Market
New Unit	34669	Q529A	0.48	0.00	2	Wilson, Herndon	Energy Only	Market
New Unit	34677	C0558	21	19.75	1	Wilson, Herndon, Hanford	No NQC - Pmax	Market
VEGA_6_SOLAR1	34314	Q548	34.5	0.00	1	Wilson	Energy Only	Market

Major new projects modeled:

1. A few new small resources were added.

Critical Contingency Analysis Summary

Hanford Sub-area

The most critical contingency for the Hanford sub-area is the loss of the McCall-Kingsburg #2 115 kV line and the Henrietta #3 230/115 kV transformer, which would thermally overload the McCall-Kingsburg #1 115 kV line . This limiting contingency establishes a local capacity need of 91 MW (including 0 MW of QF generation) in 2016 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

All units within this sub-area have the same effectiveness factor.

Coalinga Sub-area

The most critical contingency for the Coalinga sub-area is the loss of the Gates #5 230/70 kV transformer followed by the Panoche-Schindler #1 and #2 double circuit tower line, which could cause voltage instability in the pocket. This limiting contingency

establishes a local capacity need of 93 MW (including 2 MW of QF generation as well as 24 MW of deficiency) in 2016 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

There is no single critical contingency in this sub-area.

Effectiveness factors:

All units within this sub-area are needed for the most limiting contingencies therefore no effectiveness factor is required.

Borden Sub-area

The most critical contingency for the Borden sub-area is the loss of the Borden #4 230/70 kV transformer followed by the Friant-Coppermine 70 kV line, which could cause overload on the Borden #1 230/70 kV transformer. This limiting contingency establishes a local capacity need of 23 MW (includes 16 MW of QF generation) in 2016 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

There is no single critical contingency in this sub-area.

Effectiveness factors:

All units within this sub-area have the same effectiveness factor.

Reedley Sub-area

The most critical contingency for the Reedley sub-area is the loss of the McCall-Reedley (McCall-Wahtoke) 115 kV line followed by the Sanger-Reedley 115 kV line, which could thermally overload the Kings River-Sanger-Reedley 115 kV line. This limiting contingency establishes a local capacity need of 60 MW (including 50 MW of deficiency) in 2016 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

There is no single critical contingency in this sub-area.

Effectiveness factors:

All units within this sub-area are needed for the most limiting contingencies therefore no effectiveness factor is required.

Herndon Sub-area

The most critical contingency is the loss of Herndon-Barton 115 kV line with Kerckhoff 2 PH unit out of service. This contingency could thermally overload the Herndon-Manchester 115 kV line. This limiting contingency established an LCR of 503 MW (includes 24 MW of QF and 66 MW of Muni generation) in 2016 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

The following table has units within Fresno area that are relatively effective to the above-mentioned constraint.

Gen Bus	Gen Name	Gen ID	Eff Factor %
34624	BALCH 1	1	20
34616	KINGSRIV	1	19
34648	DINUBA E	1	18
34671	KRCDPCT1	1	18
34672	KRCDPCT2	1	18
34420	CORCORAN	1	14
34603	JGBSWLT	1	14
34677	C0558	1	14
34696	CORCORANPV_S	1	14
34610	HAAS	1	14
34612	BLCH 2-2	1	14
34614	BLCH 2-3	1	14
34308	KERCKHOF	1	10
34343	KERCK1-2	1	10
34344	KERCK1-1	1	10
34345	KERCK1-3	1	10
34431	GWF_HEP1	1	7
34433	GWF_HEP2	1	7
34315	Q632	1	6
34339	CALRENEW	1	6

34467	GIFFEN_DIST	1	6
34563	STROUD_DIST	1	6
34608	AGRICO	2	6
34608	AGRICO	3	6
34608	AGRICO	4	6
34669	Q529A	1	6
34670	Q529A	1	6

Wilson Sub-area

The most critical contingency is the loss of the Melones - Wilson 230 kV line overlapped with one of the Helms units out of service. This contingency would thermally overload the Warnerville - Wilson 230 kV line (most stringent) . This limiting contingency establishes a LCR of 2445 MW in 2016 (includes 114 MW of QF and 168 MW of Muni generation) as the minimum generation capacity necessary for reliable load serving capability within this area.

The second most critical contingency is the common mode loss of Gregg-Helms #1 & #2 230 kV lines. This contingency would thermally overload the Warnerville – Wilson 230 kV line. This limiting contingency establishes an LCR of 1618 MW (not including the three dropped Helms units) in 2016 (includes 114 MW of QF and 168 MW of Muni generation).

Effectiveness factors:

The following table has units within Fresno that are at least 5% effective to the constraint on the Warnerville – Wilson 230 kV line.

Gen Bus	Gen Name	Gen ID	Eff Factor %
34332	JRWCOGEN	1	38
34330	ELNIDO	1	35
34320	MCSWAIN	1	32
34322	MERCEDFL	1	32
34209	STOREY D	1	32
34306	EXCHQUER	1	31
34301	CHOWCOGN	1	27
34305	CHWCHLA2	1	27
34253	BORDEN D	1	24

34631	SJ2GEN	1	24
34633	SJ3GEN	1	24
34634	CRANEVLY	1	24
34636	FRIANTDM	1	24
34636	FRIANTDM	2	24
34636	FRIANTDM	3	24
34658	WISHON	1	24
34658	WISHON	2	24
34658	WISHON	3	24
34658	WISHON	4	24
34658	WISHON	SJ	24
34600	HELMS 1	1	22
34600	HELMS 2	1	22
34604	HELMS 3	1	22
34213	BULLD 12	1	21
34632	HERNDN2T	1	21
34630	HERNDN1T	1	21
34485	FRESNOWW	1	18
34308	KERCKHOF	1	18
34343	KERCK1-2	1	18
34344	KERCK1-1	1	18
34345	KERCK1-3	1	18
34624	BALCH 1	1	14
34646	SANGERCO	1	13
34616	KINGSRIV	1	13
34648	DINUBA E	1	13
34671	KRCDPCT1	1	13
34672	KRCDPCT2	1	13
34640	ULTR.PWR	1	13
34219	MCCALL 4	1	12
34311	Q607	1	12
34642	KINGSBUR	1	12
34420	CORCORAN	1	12
34603	JGBSWLT	1	12
34677	C0558	1	12
34696	CORCORANPV_S	1	12
34610	HAAS	1	11
34610	HAAS	2	11
34612	BLCH 2-2	1	11
34614	BLCH 2-3	1	11
38720	PINE FLT	1	11
38720	PINE FLT	2	11
38720	PINE FLT	3	11

34431	GWF_HEP1	1	11
34433	GWF_HEP2	1	11
34461	GUERNSEY_DIS	1	11
34539	GWF_GT1	1	11
34541	GWF_GT2	1	11
34666	KANSASS_S	1	11
34694	Q650AB	1	11
34680	Q636	1	10
34315	Q632	1	8
34334	BIO PWR	1	8
34339	CALRENEW	1	8
34467	GIFFEN_DIST	1	8
34563	STROUD_DIST	1	8
34608	AGRICO	2	8
34608	AGRICO	3	8
34608	AGRICO	4	8
34669	Q529A	1	8
34670	Q529A	1	8
34186	DG_PAN1	1	8
34328	STAR_GT1	1	8
34329	STAR_GT2	1	8
34142	WHD_PAN2	1	8
34349	CANTUA_DIST	1	7
34314	Q548	1	7
34353	SCHINDLER D	1	7
34353	SCHINDLER D	2	7
34353	SCHINDLER D	3	7
34353	SCHINDLER D	4	7
34326	PANO_BS1	1	6
34327	PANO_BS2	1	6
34652	CHV.COAL	1	6
34654	COLNGAGN	1	5
34557	HURON_DIST	1	5
34553	WHD_GAT2	1	5
34257	SUNCTY D	1	5
34263	SANDDRAG	1	5
34265	AVENAL P	1	5
34639	Q633	1	5

Changes compared to last year's results:

From 2015 the load forecast has increased by 114 MW and the LCR by 80 MW.

Fresno Area Overall Requirements:

2016	QF/Selfgen	Muni	Market	Max. Qualifying
	(MW)	(MW)	(MW)	Capacity (MW)
Available generation	114	168	2647	2929

2016	Existing Generation Capacity Needed (MW)	Deficiency (MW)	Total MW LCR Need
Category B (Single) 19	2445	0	2445
Category C (Multiple) ²⁰	2445	74	2519

7. Kern Area

Area Definition

The transmission facilities coming into the Kern PP sub-area are:

- 1) Kern PP 230/115 kV Bank # 3
- 2) Kern PP 230/115 kV Bank # 4
- 3) Kern PP 230/115 kV Bank # 5
- 4) Famoso-Charca 115 kV Line (Normal Open)
- 5) Wasco-Famoso 70 kV Line (Normal Open)
- 6) Maricopa-Copus 70 kV Line (Normal Open)
- 7) Copus-Old River 70 kV Line (Normal Open)
- 8) Kern Canyo-Magunden-Weedpatch 70 kV Line (Normal Open)
- 9) Wheeler Ridge-Lamont 115 kV Line (Normal Open)

The substations that delineate the Kern-PP sub-area are:

- 1) Kern PP 230 kV is out Kern PP 115 kV is in
- 2) Kern PP 230 kV is out Kern PP 115 kV is in
- 3) Kern PP 230 kV is out Kern PP 115 kV is in
- 4) Charca 115kV is out Famoso 115 kV is in
- 5) Wasco 70 kV is out Mc Farland 70 kV is in
- 6) Basic School Junction 70 kV is out, Copus 70 kV is in
- 7) Lakeview 70 kV is out, San Emidio Junction 70 kV is in

¹⁹ A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

²⁰ Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

- 8) Magunden Junction 70 kV is out, Magunden 70 kV is in
- 9) Wheeler Ridge 115 kV is out, Adobe Solar 115 kV is in

2016 total busload within the defined area: 853 MW with -9 MW of AAEE and 7 MW of losses resulting in a total (load plus losses) of 851 MW.

MKT/SCHED RESOURCE ID	BUS #	BUS NAME	kV	NQC		LCR SUB-AREA NAME	NQC Comments	CAISO Tag
BDGRCK_1_UNITS	35029	BADGERCK	9.11	36.29	1	South Kern PP	Aug NQC	Net Seller
BEARMT_1_UNIT	35066	PSE-BEAR	9.11	44.58	1	South Kern PP, West Park	Aug NQC	QF/Selfgen
DEXZEL_1_UNIT	35024	DEXEL +	9.11	27.04	1	South Kern PP, Kern Oil	Aug NQC	Net Seller
DISCOV_1_CHEVRN	35062	DISCOVRY	9.11	2.91	1	South Kern PP, Kern Oil	Aug NQC	QF/Selfgen
DOUBLC_1_UNITS	35023	DOUBLE C	9.11	52.23	1	South Kern PP	Aug NQC	Net Seller
KERNFT_1_UNITS	35026	KERNFRNT	9.11	47.00	1	South Kern PP	Aug NQC	Net Seller
LIVOAK_1_UNIT 1	35058	PSE-LVOK	9.11	41.14	1	South Kern PP, Kern Oil	Aug NQC	Net Seller
MTNPOS_1_UNIT	35036	MT POSO	9.11	31.12	1	South Kern PP, Kern Oil	Aug NQC	Net Seller
OILDAL_1_UNIT 1	35028	OILDALE	9.11	38.67	1	South Kern PP, Kern Oil	Aug NQC	QF/Selfgen
OLDRV1_6_SOLAR	35091	Q517	12.5	14.97	1	South Kern PP	Aug NQC	Market
SIERRA_1_UNITS	35027	HISIERRA	9.11	52.43	1	South Kern PP	Aug NQC	Net Seller
VEDDER_1_SEKERN	35046	SEKR	9.11	13.18	1	South Kern PP, Kern Oil	Aug NQC	QF/Selfgen
New Unit	34709	7STNDRD	115	20.00	WD	South Kern PP, Kern Oil	No NQC - Pmax	Market
New Unit	35019	Q559	0.48	67.50	1	South Kern PP	No NQC - Pmax	Market
New Unit	35021	Q622B	34.5	20.00	1	South Kern PP	No NQC - Pmax	Market
New Unit	35089	Q653EA	0.48	20.00	1	South Kern PP	No NQC - Pmax	Market
ULTOGL_1_POSO	35035	ULTR PWR	9.11	0.00	1	South Kern PP, Kern Oil	Retired	QF/Selfgen

Total units and qualifying capacity available in this Kern area:

Major new projects modeled:

1. Upgrade terminal equipment on Kern PP #4 230/115kV transformer

Critical Contingency Analysis Summary

West Park Sub-area

The West Park Sub area has been eliminated due to the normally open CB122 at Magunden.

Kern Oil Sub-area

The most critical contingency is the Kern PP-Magunden-Witco 115 kV Line and Kern PP-7th Standard 115 kV Line resulting in the thermal overload of the Kern PP-Live Oak 115 kV Line. This limiting contingency establishes a LCR of 135 MW in 2016 (includes 55 MW of QF generation) as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

The most critical single contingency is the Kern PP-Magunden-Witco 115 kV Line with the PSE Live Oak generation out-of-service resulting in the thermal overload of the Kern PP-Live Oak 115 kV Line. This limiting contingency establishes a LCR of 133 MW in 2016 (includes 55 MW of QF generation).

Effectiveness factors:

All units within this sub-area have the same effectiveness factor.

South Kern PP Sub-area

The most critical contingency is the outage of Kern-Kern Front 115 kV line overlapping with Kern PP #5 230/115 kV transformer, which could thermally overload the Kern PP #3 230/115kV transformer. This limiting contingency establishes a LCR of 400 MW in 2016 (includes 99 MW of QF generation) as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

The single most critical contingency is the loss of Kern PP #5 230/115 kV transformer, which could thermally overload the Kern PP #3 230/115kV transformer. This limiting contingency establishes a local capacity requirement of 214 MW in 2016 (includes 99 MW of QF generation).

Effectiveness factors:

All units within this sub-area have the same effectiveness factor.

Changes compared to last year's results:

Overall the load forecast increased by 120 MW and the LCR has decreased by 37 MW mostly due to the upgrade of Kern PP #4 230/115 kV transformer.

Kern Area Overall Requirements:

2016	QF/Selfgen	Market	Max. Qualifying
	(MW)	(MW)	Capacity (MW)
Available generation	99	430	529

2016	Existing Generation Capacity Needed (MW)	Deficiency (MW)	Total MW LCR Need
Category B (Single) ²¹	214	0	214
Category C (Multiple) ²²	400	0	400

8. LA Basin Area

Area Definition

The transmission tie lines into the LA Basin Area are:

- 1) San Onofre San Luis Rey #1, #2, & #3 230 kV Lines
- 2) Songsmesa Talega #1 & #2 230 kV Lines
- 3) Lugo Mira Loma #2 & #3 500 kV Lines
- 4) Lugo Rancho Vista #1 500 kV line
- 5) Sylmar Eagle Rock 230 kV Line
- 6) Sylmar Gould 230 kV Line
- 7) Vincent Mesa Cal 230 kV Line
- 8) Vincent Rio Hondo #1 & #2 230 kV Lines
- 9) Eagle Rock Pardee 230 kV Line
- 10)Devers RedBluff #1 and #2 500 kV Lines
- 11)Mirage Coachelv 230 kV Line
- 12)Mirage Ramon 230 kV Line
- 13) Mirage Julian Hinds 230 kV Line

²¹ A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

²² Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

These sub-stations form the boundary surrounding the LA Basin area:

- 1) San Onofre is in San Luis Rey is out
- 2) Songsmesa is in TALEGA is out
- 3) Mira Loma is in Lugo is out
- 4) Rancho Vista is in Lugo is out
- 5) Eagle Rock is in Sylmar is out
- 6) Gould is in Sylmar is out
- 7) Mesa Cal is in Vincent is out
- 8) Rio Hondo is in Vincent is out
- 9) Eagle Rock is in Pardee is out
- 10) Devers is in RedBluff is out
- 11) Mirage is in Coachelv is out
- 12) Mirage is in Ramon is out
- 13) Mirage is in Julian Hinds is out

Total 2016 busload within the defined area is 20248 MW with -273 MW of AAEE, 117

MW of losses and 76 MW pumps resulting in total load + losses + pumps of 20168 MW.

MKT/SCHED RESOURCE ID	BUS #	BUS NAME	kV	NQC		LCR SUB-AREA NAME	NQC Comments	CAISO Tag
ALAMIT_7_UNIT 1	24001	ALAMT1 G	18	174.56	1	Western		Market
ALAMIT_7_UNIT 2	24002	ALAMT2 G	18	175.00	2	Western		Market
ALAMIT_7_UNIT 3	24003	ALAMT3 G	18	332.18	3	Western		Market
ALAMIT_7_UNIT 4	24004	ALAMT4 G	18	335.67	4	Western		Market
ALAMIT_7_UNIT 5	24005	ALAMT5 G	20	497.97	5	Western		Market
ALAMIT_7_UNIT 6	24161	ALAMT6 G	20	495.00	6	Western		Market
ANAHM_2_CANYN1	25211	CanyonGT 1	13.8	49.40	1	Western		MUNI
ANAHM_2_CANYN2	25212	CanyonGT 2	13.8	48.00	2	Western		MUNI
ANAHM_2_CANYN3	25213	CanyonGT 3	13.8	48.00	3	Western		MUNI
ANAHM_2_CANYN4	25214	CanyonGT 4	13.8	49.40	4	Western		MUNI
ANAHM_7_CT	25208	DowlingCTG	13.8	40.64	1	Western	Aug NQC	MUNI
ARCOGN_2_UNITS	24011	ARCO 1G	13.8	54.17	1	Western	Aug NQC	Net Seller
ARCOGN_2_UNITS	24012	ARCO 2G	13.8	54.17	2	Western	Aug NQC	Net Seller
ARCOGN_2_UNITS	24013	ARCO 3G	13.8	54.17	3	Western	Aug NQC	Net Seller
ARCOGN_2_UNITS	24014	ARCO 4G	13.8	54.17	4	Western	Aug NQC	Net Seller
ARCOGN_2_UNITS	24163	ARCO 5G	13.8	27.09	5	Western	Aug NQC	Net Seller
ARCOGN_2_UNITS	24164	ARCO 6G	13.8	27.10	6	Western	Aug NQC	Net Seller
BARRE_2_QF	24016	BARRE	230	0.00		Western	Not modeled	QF/Selfgen
BARRE_6_PEAKER	29309	BARPKGEN	13.8	47.00	1	Western		Market
BLAST_1_WIND		BLAST	115	4.63	1	Eastern, Valley-Devers	Aug NQC	Wind
BRDWAY_7_UNIT 3	29007	BRODWYSC	13.8	65.00	1	Western		MUNI
BUCKWD_1_NPALM1	25634	BUCKWIND	115	1.76		Eastern, Valley-Devers	Not modeled Aug NQC	Wind
BUCKWD_1_QF	25634	BUCKWIND	115	1.82	QF	Eastern, Valley-Devers	Aug NQC	QF/Selfgen
BUCKWD_7_WINTCV	25634	BUCKWIND	115	0.13	W5	Eastern, Valley-Devers	Aug NQC	Wind

Total units and qualifying capacity available in the LA Basin area:

CABZON_1_WINDA1	29290	CABAZON	33	7.96	1	Eastern, Valley-Devers	Aug NQC	Wind
CENTER_2_QF	24203	CENTER S	66	18.60		Western	Not modeled Aug NQC	QF/Selfgen
CENTER_2_RHONDO	24203	CENTER S	66	1.91		Western	Not modeled	QF/Selfgen
CENTER_6_PEAKER		CTRPKGEN	13.8	47.00	1	Western	Hormodolou	Market
CENTRY_6_PL1X4		CLTNCTRY	13.8	36.00	1	Eastern, Eastern Metro	Aug NQC	MUNI
CHEVMN_2_UNITS		CHEVGEN1	13.8	3.10	1	Western, El Nido	Aug NQC	Net Seller
CHEVMN_2_UNITS		CHEVGEN1 CHEVGEN2	13.8	3.10	2	Western, El Nido	Aug NQC	Net Seller
	24023	CHEVGENZ	13.0	3.10	2	Western, Er Nido	Ũ	Net Seller
CHINO_2_JURUPA				0.00		Eastern, Eastern Metro	Not modeled Energy Only	Market
CHINO_2_QF	24024	CHINO	66	5.77		Eastern, Eastern Metro	Not modeled Aug NQC	QF/Selfgen
CHINO_2_SASOLAR				0.00		Eastern, Eastern Metro	Not modeled Energy Only	Market
CHINO_2_SOLAR	24024	CHINO	66	0.00		Eastern, Eastern Metro	Not modeled Energy Only	Market
CHINO_6_CIMGEN		CIMGEN	13.8	26.10		Eastern, Eastern Metro	Aug NQC	QF/Selfgen
CHINO_6_SMPPAP	24140	SIMPSON	13.8	30.61	D1	Eastern, Eastern Metro	Aug NQC	QF/Selfgen
CHINO_7_MILIKN	24024	CHINO	66	1.19		Eastern, Eastern Metro	Not modeled Aug NQC	Market
COLTON_6_AGUAM1	25303	CLTNAGUA	13.8	43.00	1	Eastern, Eastern Metro	Aug NQC	MUNI
CORONS_2_SOLAR				0.00		Eastern, Eastern Metro	Not modeled Energy Only	Market
CORONS_6_CLRWTR	24210	MIRALOMA	66	14.00		Eastern, Eastern Metro	Not modeled	MUNI
CORONS_6_CLRWTR			66	14.00		Eastern, Eastern Metro	Not modeled	MUNI
DELAMO_2_SOLRC1				0.00		Western	Not modeled Energy Only	Market
DELAMO_2_SOLRD				0.00		Western	Not modeled Energy Only	Market
DEVERS_1_QF	24815	GARNET	115	1.52	QF	Eastern, Valley-Devers	Aug NQC	QF/Selfgen
DEVERS_1_QF	25632	TERAWND	115	2.96		Eastern, Valley-Devers	Aug NQC	QF/Selfgen
DEVERS_1_QF		CAPWIND	115	0.57	QF	Eastern, Valley-Devers	Aug NQC	QF/Selfgen
DEVERS_1_QF		ALTWIND	115	1.36	Q1	Eastern, Valley-Devers	Aug NQC	QF/Selfgen
DEVERS_1_QF		ALTWIND	115	2.52	Q2	Eastern, Valley-Devers	Aug NQC	QF/Selfgen
DEVERS_1_QF		RENWIND	115	0.59	Q1	Eastern, Valley-Devers	Aug NQC	QF/Selfgen
DEVERS_1_QF		RENWIND	115	0.27		Eastern, Valley-Devers	Aug NQC	QF/Selfgen
DEVERS_1_QF		SEAWIND	115	2.03		Eastern, Valley-Devers	Aug NQC	QF/Selfgen
DEVERS_1_QF		VENWIND	115	1.54		Eastern, Valley-Devers	Aug NQC	QF/Selfgen
DEVERS_1_QF		VENWIND	115	3.61	Q1	Eastern, Valley-Devers	Aug NQC	QF/Selfgen
DEVERS_1_QF		VENWIND	115	2.43	Q2	Eastern, Valley-Devers	Aug NQC	QF/Selfgen
DEVERS_1_QF		SANWIND	115	0.81	Q1	Eastern, Valley-Devers	Aug NQC	QF/Selfgen
DEVERS_1_SEPV05	1			0.00		Eastern, Valley-Devers	Energy Only	Market
 DEVERS_1_SOLAR				0.00		Eastern, Valley-Devers	Not modeled Energy Only	Market
DEVERS_1_SOLAR1				0.00		Eastern, Valley-Devers	Not modeled Energy Only	Market
DEVERS_1_SOLAR2				0.00		Eastern, Valley-Devers	Not modeled Energy Only	Market
DMDVLY_1_UNITS	25425	ESRP P2	6.9	7.16		Eastern, Eastern Metro	Not modeled Aug NQC	QF/Selfgen
DREWS_6_PL1X4	25301	CLTNDREW	13.8	36.00	1	Eastern, Eastern Metro	Aug NQC	MUNI
DVLCYN_1_UNITS		DVLCYN3G	13.8	67.15	3	Eastern, Eastern Metro	Aug NQC	MUNI
DVLCYN_1_UNITS		DVLCYN4G	13.8		4	Eastern, Eastern Metro	Aug NQC	MUNI

DVLCYN_1_UNITS	25648	DVLCYN1G	13.8	50.34	1	Eastern, Eastern Metro	Aug NQC	MUNI
DVLCYN_1_UNITS		DVLCYN2G	13.8	50.34	2	Eastern, Eastern Metro	Aug NQC	MUNI
ELLIS_2_QF	24197	ELLIS	66	0.01		Western	Not modeled Aug NQC	QF/Selfgen
ELSEGN_2_UN1011	28903	ELSEG6ST	18	68	6	Western, El Nido	Aug NQC	Market
ELSEGN_2_UN1011	28904	ELSEG5ST	18	195	5	Western, El Nido	Aug NQC	Market
ELSEGN_2_UN2021	28901	ELSEG8ST	18	68.68	8	Western, El Nido	Aug NQC	Market
ELSEGN_2_UN2021	28902	ELSEG7GT	18	195	7	Western, El Nido	Aug NQC	Market
ELSEGN_7_UNIT 4	24048	ELSEG4 G	18	335.00	4	Western, El Nido	0	Market
ETIWND_2_CHMPNE				0.00		Eastern, Eastern Metro	Not modeled Energy Only	Market
ETIWND_2_FONTNA	24055	ETIWANDA	66	0.66		Eastern, Eastern Metro	Not modeled Aug NQC	QF/Selfgen
ETIWND_2_QF		ETIWANDA	66	15.13		Eastern, Eastern Metro	Not modeled Aug NQC	QF/Selfgen
ETIWND_6_GRPLND		ETWPKGEN	13.8	46.00	1	Eastern, Eastern Metro		Market
ETIWND_6_MWDETI	25422	ETI MWDG	13.8	8.06	1	Eastern, Eastern Metro	Aug NQC	Market
ETIWND_7_MIDVLY		ETIWANDA	66	1.67		Eastern, Eastern Metro	Not modeled Aug NQC	QF/Selfgen
ETIWND_7_UNIT 3		MTNVIST3	18	320.00	3	Eastern, Eastern Metro		Market
ETIWND_7_UNIT 4	24053	MTNVIST4	18	320.00	4	Eastern, Eastern Metro		Market
GARNET_1_SOLAR	24815	GARNET	115	0.00		Eastern, Valley-Devers	Not modeled Energy Only	Market
GARNET_1_UNITS		GARNET	115	1.56	G1	Eastern, Valley-Devers	Aug NQC	Market
GARNET_1_UNITS		GARNET	115	0.55	G2	Eastern, Valley-Devers	Aug NQC	Market
GARNET_1_UNITS		GARNET	115	1.12	G3	Eastern, Valley-Devers	Aug NQC	Market
GARNET_1_WIND		GARNET	115	0.18	PC	Eastern, Valley-Devers	Aug NQC	Wind
GARNET_1_WINDS		GARNET	115	1.92		Eastern, Valley-Devers	Aug NQC	Wind
GARNET_1_WINDS	24815	GARNET	115	1.91	W3	Eastern, Valley-Devers	Aug NQC	Wind
GARNET_1_WT3WND			115	0.00		Eastern, Valley-Devers	Not modeled Energy Only	Market
GLNARM_7_UNIT 1		PASADNA1	13.8	22.07	1	Western		MUNI
GLNARM_7_UNIT 2		PASADNA2	13.8	22.30	1	Western	NI / 1 1	MUNI
GLNARM_7_UNIT 3		PASADNA1	13.8	44.83		Western	Not modeled	MUNI
GLNARM_7_UNIT 4		PASADNA2	13.8	42.42		Western	Not modeled	MUNI
HARBGN_7_UNITS		HARBOR G	13.8	76.28	1	Western		Market
HARBGN_7_UNITS		HARBOR G		11.86		Western		Market
HARBGN_7_UNITS		HARBORG4	4.16	11.86	LP	Western		Market
HINSON_6_CARBGN		CARBOGEN	13.8		1	Western	Aug NQC	Market
HINSON_6_LBECH1		LBEACH12	13.8	65.00	1	Western		Market
HINSON_6_LBECH2		LBEACH12	13.8	65.00	2	Western		Market
HINSON_6_LBECH3		LBEACH34	13.8	65.00	3	Western		Market
HINSON_6_LBECH4		LBEACH34	13.8	65.00	4	Western		Market
HINSON_6_SERRGN		SERRFGEN	13.8	27.07	D1	Western	Aug NQC	QF/Selfgen
HNTGBH_7_UNIT 1		HUNT1 G	13.8		1	Western		Market
HNTGBH_7_UNIT 2		HUNT2 G	13.8		2	Western		Market
INDIGO_1_UNIT 1			13.8	42.00	1	Eastern, Valley-Devers		Market
INDIGO_1_UNIT 2			13.8		1	Eastern, Valley-Devers		Market Market
INDIGO_1_UNIT 3	29180	WINTEC8	13.8	42.00	1	Eastern, Valley-Devers		Market
INLDEM_5_UNIT 1	29041	IEEC-G1	19.5	335.00	1	Eastern, Valley, Valley- Devers	Aug NQC	Market
INLDEM_5_UNIT 2	29042	IEEC-G2	19.5	335.00	1	Eastern, Valley, Valley- Devers	Aug NQC	Market

JOHANN_6_QFA1	24072	JOHANNA	230	0.01		Western	Not modeled Aug NQC	QF/Selfgen
LACIEN_2_VENICE	24337	VENICE	13.8	3.15	1	Western, El Nido	Aug NQC	MUNI
LAGBEL_6_QF	24075	LAGUBELL	66	9.90		Western	Not modeled Aug NQC	QF/Selfgen
LGHTHP_6_ICEGEN	24070	ICEGEN	13.8	48.00	1	Western	Aug NQC	QF/Selfgen
LGHTHP_6_QF	24083	LITEHIPE	66	0.61		Western	Not modeled Aug NQC	QF/Selfgen
MESAS_2_QF	24209	MESA CAL	66	0.30		Western	Not modeled Aug NQC	QF/Selfgen
MIRLOM_2_CORONA				1.92		Eastern, Eastern Metro	Not modeled Aug NQC	QF/Selfgen
MIRLOM_2_ONTARO				0.00		Eastern, Eastern Metro	Energy Only	Market
MIRLOM_2_TEMESC				1.92		Eastern, Eastern Metro	Not modeled Aug NQC	QF/Selfgen
MIRLOM_6_DELGEN		DELGEN	13.8	29.49	1	Eastern, Eastern Metro	Aug NQC	QF/Selfgen
MIRLOM_6_PEAKER	29307	MRLPKGEN	13.8	46.00	1	Eastern, Eastern Metro		Market
MIRLOM_7_MWDLKM			66	4.60		Eastern, Eastern Metro	Not modeled Aug NQC	MUNI
MOJAVE_1_SIPHON		MJVSPHN1	13.8	4.20	1	Eastern, Eastern Metro	Aug NQC	Market
		MJVSPHN1	13.8	4.19	2	Eastern, Eastern Metro	Aug NQC	Market
		MJVSPHN1	13.8	4.19	3	Eastern, Eastern Metro	Aug NQC	Market
MTWIND_1_UNIT 1		MOUNTWND		7.53	S1	Eastern, Valley-Devers	Aug NQC	Wind
MTWIND_1_UNIT 2		MOUNTWND		3.30		Eastern, Valley-Devers	Aug NQC	Wind
MTWIND_1_UNIT 3		MOUNTWND		6.10	S3	Eastern, Valley-Devers	Aug NQC	Wind
		OLINDA	66	3.13	-	Western	Not modeled	QF/Selfgen
OLINDA_2_LNDFL2		BREAPWR2	13.8	3.48	C1	Western	Aug NQC	Market
OLINDA_2_LNDFL2		BREAPWR2	13.8	3.48	C2	Western	Aug NQC	Market
OLINDA_2_LNDFL2		BREAPWR2	13.8	3.48	C3	Western	Aug NQC	Market
OLINDA_2_LNDFL2		BREAPWR2	13.8	3.48	C4	Western	Aug NQC	Market
OLINDA_2_LNDFL2		BREAPWR2	13.8	6.26	S1	Western	Aug NQC	Market
OLINDA_2_QF	24211	OLINDA	66	0.16	1	Western	Aug NQC	QF/Selfgen
OLINDA_7_LNDFIL	24211	OLINDA	66	2.03		Western	Not modeled Aug NQC	QF/Selfgen
PADUA_2_ONTARO	24111	PADUA	66	1.25		Eastern, Eastern Metro	Not modeled Aug NQC	QF/Selfgen
PADUA_6_MWDSDM	24111	PADUA	66	3.71		Eastern, Eastern Metro	Not modeled Aug NQC	MUNI
PADUA_6_QF	24111	PADUA	66	0.44		Eastern, Eastern Metro	Not modeled Aug NQC	QF/Selfgen
PADUA_7_SDIMAS	24111	PADUA	66	1.05		Eastern, Eastern Metro	Not modeled Aug NQC	Market
PANSEA_1_PANARO	25640	PANAERO	115	1.84	QF	Eastern, Valley-Devers	Aug NQC	Wind
PWEST_1_UNIT				0.11		Western	Not modeled Aug NQC	Market
REDOND_7_UNIT 5	24121	REDON5 G	18	178.87	5	Western		Market
REDOND_7_UNIT 6	24122	REDON6 G	18	175.00	6	Western		Market
REDOND_7_UNIT 7	24123	REDON7 G	20	505.96	7	Western		Market
REDOND_7_UNIT 8		REDON8 G	20	495.90	8	Western		Market
RENWD_1_QF		RENWIND	115	1.57	Q2	Eastern, Valley-Devers	Aug NQC	QF/Selfgen
RHONDO_2_QF	24213	RIOHONDO	66	1.60		Western	Not modeled Aug NQC	QF/Selfgen

RHONDO_6_PUENTE	24213	RIOHONDO	66	0.00		Western	Not modeled Aug NQC	Net Seller
RVSIDE_2_RERCU3	24299	RERC2G3	13.8	48.50	1	Eastern, Eastern Metro		MUNI
	24300	RERC2G4	13.8	48.50	1	Eastern, Eastern Metro		MUNI
RVSIDE_6_RERCU1	24242	RERC1G	13.8	48.35	1	Eastern, Eastern Metro		MUNI
RVSIDE_6_RERCU2		RERC2G	13.8		1	Eastern, Eastern Metro		MUNI
RVSIDE_6_SPRING	24244	SPRINGEN	13.8	36.00	1	Eastern, Eastern Metro		Market
SANTGO_6_COYOTE			66	6.31	1	Western	Aug NQC	Market
SANWD_1_QF		SANWIND	115	2.62		Eastern, Valley-Devers	Aug NQC	Wind
-						Eastern, West of	nagnao	Villa
SBERDO_2_PSP3	24921	MNTV-CT1	18	129.71	1	Devers, Eastern Metro		Market
SBERDO_2_PSP3	24922	MNTV-CT2	18	129.71	1	Eastern, West of Devers, Eastern Metro		Market
SBERDO_2_PSP3	24923	MNTV-ST1	18	225.08	1	Eastern, West of Devers, Eastern Metro		Market
SBERDO_2_PSP4	24924	MNTV-CT3	18	129.71	1	Eastern, West of Devers, Eastern Metro		Market
SBERDO_2_PSP4	24925	MNTV-CT4	18	129.71	1	Eastern, West of Devers, Eastern Metro		Market
SBERDO_2_PSP4	24926	MNTV-ST2	18	225.08	1	Eastern, West of Devers, Eastern Metro		Market
				_		Eastern, West of	Not modeled	
SBERDO_2_QF	24214	SANBRDNO	66	0.08		Devers, Eastern Metro	Aug NQC	QF/Selfgen
	04044		~~	0.00		Eastern, West of		Manlant
SBERDO_2_REDLND	24214	SANBRDNO	66	0.00		Devers, Eastern Metro	Energy Only	Market
	04044		~~~	0.07		Eastern, West of	Not modeled	
SBERDO_2_SNTANA	24214	SANBRDNO	66	0.37		Devers, Eastern Metro	Aug NQC	QF/Selfgen
SBERDO_6_MILLCK	24214	SANBRDNO	66	1.74		Eastern, West of Devers, Eastern Metro	Not modeled Aug NQC	QF/Selfgen
SENTNL 2 CTG1	29101	TOT032G1	13.8	91	1	Eastern, Valley-Devers	7.00g 1.000	Market
SENTNL_2_CTG2		TOT032G2	13.8	91	1	Eastern, Valley-Devers		Market
SENTNL_2_CTG3		TOT032G3	13.8	91	1	Eastern, Valley-Devers		Market
SENTNL_2_CTG4		TOT032G4	13.8	91	1	Eastern, Valley-Devers		Market
SENTNL_2_CTG5		TOT032G5	13.8	91	1	Eastern, Valley-Devers		Market
SENTNL_2_CTG6		TOT032G6	13.8	91	1	Eastern, Valley-Devers		Market
SENTNL_2_CTG7		TOT032G7	13.8	91	1	Eastern, Valley-Devers		Market
SENTNL_2_CTG8		TOT032G8	13.8	91	1	Eastern, Valley-Devers		Market
TIFFNY_1_DILLON				12.66		Western	Not modeled Aug NQC	Wind
TRNSWD_1_QF	25637	TRANWIND	115	5.97	QF	Eastern, Valley-Devers	Aug NQC	Wind
						Eastern, Valley, Valley-	Not modeled	
VALLEY_5_PERRIS	24160	VALLEYSC	115	7.94		Devers	Aug NQC	QF/Selfgen
VALLEY_5_REDMTN	24160	VALLEYSC	115	3.37		Eastern, Valley, Valley- Devers	Not modeled Aug NQC	QF/Selfgen
VALLEY_7_BADLND	24160	VALLEYSC	115	0.54		Eastern, Valley, Valley- Devers	Not modeled Aug NQC	Market
VALLEY_7_UNITA1	24160	VALLEYSC	115	2.30		Eastern, Valley, Valley- Devers	Not modeled Aug NQC	Market
VERNON_6_GONZL1		1		5.75		Western	Not modeled	MUNI
VERNON_6_GONZL2	1	1		5.75		Western	Not modeled	MUNI
	24000		12.0		C1		NULTIOUEIEU	
VERNON_6_MALBRG			13.8	42.37		Western		MUNI
VERNON_6_MALBRG			13.8	42.37		Western		MUNI
VERNON_6_MALBRG	24241	MALBRG3G	13.8	49.26	S3	Western		MUNI
VILLPK_2_VALLYV	24216	VILLA PK	66	4.10		Western	Not modeled Aug NQC	QF/Selfgen

VILLPK_6_MWDYOR	24216	VILLA PK	66	2.60		Western	Not modeled Aug NQC	MUNI
VISTA_2_RIALTO	24901		230	0.00		Eastern, Eastern Metro	Energy Only	Market
VISTA_6_QF	24902		66	0.15	1	Eastern, Eastern Metro	Aug NQC	QF/Selfgen
WALCRK_2_CTG1		EME WCG1	13.8	96	1	Western		Market
WALCRK_2_CTG2	29202	EME WCG2	13.8	96	1	Western		Market
WALCRK_2_CTG3	29203	EME WCG3	13.8	96	1	Western		Market
WALCRK_2_CTG4	29204	EME WCG4	13.8	96	1	Western		Market
WALCRK_2_CTG5	29205	EME WCG5	13.8	96.65	1	Western		Market
WALNUT_6_HILLGEN	24063	HILLGEN	13.8	48.03	D1	Western	Aug NQC	QF/Selfgen
WALNUT_7_WCOVCT			66	2.16		Western	Not modeled Aug NQC	Market
WALNUT_7_WCOVST	24157	WALNUT	66	5.19		Western	Not modeled Aug NQC	Market
WHTWTR_1_WINDA1	29061	WHITEWTR	33	7.18	1	Eastern, Valley-Devers	Aug NQC	Wind
ARCOGN_2_UNITS	2/018	BRIGEN	13.8	0.00	1	Western	No NQC - hist.	Net Seller
	24010	BRIGEN	13.0	0.00	I	western	data	Net Seller
HINSON_6_QF	24064	HINSON	66	0.00	1	Western	No NQC - hist. data	QF/Selfgen
INLAND_6_UNIT	24071	INLAND	13.8	30.30	1	Eastern, Eastern Metro	No NQC - hist. data	QF/Selfgen
MOBGEN_6_UNIT 1	24094	MOBGEN	13.8	20.20	1	Western, El Nido	No NQC - hist. data	QF/Selfgen
NA	24324	SANIGEN	13.8	6.80	D1	Eastern, Eastern Metro	No NQC - hist. data	QF/Selfgen
NA	24325	ORCOGEN	13.8	0.00	1	Western	No NQC - hist. data	QF/Selfgen
NA	24327	THUMSGEN	13.8	40.00	1	Western	No NQC - hist. data	QF/Selfgen
NA	24328	CARBGEN2	13.8	15.2	1	Western	No NQC - hist. data	Market
NA	24329	MOBGEN2	13.8	20.2	1	Western, El Nido	No NQC - hist. data	QF/Selfgen
NA	24330	OUTFALL1	13.8	0.00	1	Western, El Nido	No NQC - hist. data No NQC - hist.	QF/Selfgen
NA	24331	OUTFALL2	13.8	0.00	1	Western, El Nido	data	QF/Selfgen
NA	24332	PALOGEN	13.8	3.60	D1	Western, El Nido	No NQC - hist. data	QF/Selfgen
NA	24341	COYGEN	13.8	0.00	1	Western	No NQC - hist. data	QF/Selfgen
ΝΑ	24342	FEDGEN	13.8	0.00	1	Western	No NQC - hist. data	QF/Selfgen
NA	29021	WINTEC6	115	0.00	1	Eastern, Valley-Devers	No NQC - hist. data	Wind
NA	29023	WINTEC4	12	0.00	1	Eastern, Valley-Devers	No NQC - hist. data	Wind
NA	29260	ALTAMSA4	115	0.00	1	Eastern, Valley-Devers	No NQC - hist. data	Wind
NA	29338	CLRWTRCT	13.8	0.00	G1	Eastern, Eastern Metro	No NQC - hist. data	QF/Selfgen
NA	29339	DELGEN	13.8	0.00	1	Eastern, Eastern Metro	No NQC - hist. data	QF/Selfgen
NA	29340	CLRWTRST	13.8	0.00	S1	Eastern, Eastern Metro	No NQC - hist. data	QF/Selfgen
NA	29951	REFUSE	13.8	9.90	D1	Western	No NQC - Pmax	QF/Selfaen

NA	29953	SIGGEN	13.8	24.90	D1	Western	No NQC - Pmax	QF/Selfgen
SONGS_7_UNIT 2	24129	S.ONOFR2	22	0.00	R2	None	Retired	Nuclear
SONGS_7_UNIT 3	24130	S.ONOFR3	22	0.00	R3	None	Retired	Nuclear

Major new projects modeled:

- 1. Talega SVC
- 2. Huntington Beach 3 and 4 Synchronous Condensers

Critical Contingency Analysis Summary

El Nido sub-area

The most critical contingency for the El Nido sub-area is the loss of the La Fresa – Hinson 230 kV line followed by the loss of the La Fresa – Redondo #1 and #2 230 kV lines, which would cause voltage collapse. This limiting contingency establishes a LCR of 580 MW in 2016 (includes 44 MW of QF and 3 MW of MUNI generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

Western Sub-Area:

The most critical contingency for the Western sub-area is the loss of Serrano – Villa Park #2 230 kV line followed by the loss of the Serrano – Lewis 230 kV line or vice versa, which would result in thermal overload of the remaining Serrano – Villa Park 230 kV line. This limiting contingency establishes a LCR of 4,472 MW (includes 284 MW of QF, 13 MW of Wind and 583 MW of Muni generation) in 2016 as the generation capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

The following table has units that have at least 5% effectiveness to the abovementioned constraint:

Gen Bus	Gen Name	Gen ID	MW Eff Fctr (%)
29309	BARPKGEN	1	24
25208	DowlingCTG	1	23
25211	CanyonGT 1	1	23
25212	CanyonGT 2	2	23
25213	CanyonGT 3	3	23
25214	CanyonGT 4	4	23

24066	HUNT1 G	1	20
24067	HUNT2 G	2	20
24325	ORCOGEN	1	20
24005	ALAMT5 G	5	17
24161	ALAMT6 G	6	17
24001	ALAMT1 G	1	17
24002	ALAMT2 G	2	17
24003	ALAMT3 G	3	17
24004	ALAMT4 G	4	17
24162	ALAMT7 G	R7	17
24133	SANTIAGO	1	13
24341	COYGEN	1	13
24018	BRIGEN	1	13
24011	ARCO 1G	1	11
24012	ARCO 2G	2	11
24013	ARCO 3G	3	11
24014	ARCO 4G	4	11
24020	CARBGEN1	1	11
24064	HINSON	1	11
24080	LBEACH8G	R8	11
24081	LBEACH9G	R9	11
24139	SERRFGEN	D1	11
24163	ARCO 5G	5	11
24164	ARCO 6G	6	11
24170	LBEACH12	2	11
24170	LBEACH12	1	11
24171	LBEACH34	3	11
24171	LBEACH34	4	11
24327	THUMSGEN	1	11
24328	CARBGEN2	1	11
24062	HARBOR G	1	11
24062	HARBOR G	HP	11
25510	HARBORG4	LP	11
24079	LBEACH7G	R7	11
24173	LBEACH5G	R5	11
24174	LBEACH6G	R6	11
24070	ICEGEN	D1	11
29308	CTRPKGEN	1	10
29953	SIGGEN	D1	10
24022	CHEVGEN1	1	9
24023	CHEVGEN2	2	9
24047	ELSEG3 G	3	9
24048	ELSEG4 G	4	9
24094	MOBGEN1	1	9
24329	MOBGEN2	1	9

24330	OUTFALL1	1	9
24331	OUTFALL2	1	9
24332	PALOGEN	D1	9
24333	REDON1 G	R1	9
24334	REDON2 G	R2	9
24335	REDON3 G	R3	9
24336	REDON4 G	R4	9
24337	VENICE	1	9
29009	CHEVGEN5	1	9
29009	CHEVGEN5	2	9
29901	ELSEG5GT	5	9
29902	ELSEG6ST	6	9
29903	ELSEG7GT	7	9
29904	ELSEG8ST	8	9
24121	REDON5 G	5	9
24122	REDON6 G	6	9
24123	REDON7 G	7	9
24124	REDON8 G	8	9
24239	MALBRG1G	C1	8
24240	MALBRG2G	C2	8
24241	MALBRG3G	S3	8
24342	FEDGEN	1	8
29951	REFUSE	D1	8
29005	PASADNA1	1	5
29006	PASADNA2	1	5
29007	BRODWYSC	1	5

There are numerous other combinations of contingencies in the area that could overload a significant number of 230 kV lines in this sub-area and have less LCR need. As such, anyone of them (combination of contingencies) could become binding for any given set of procured resources. As a result, effectiveness factors may not be the best indicator towards informed procurement.

West of Devers Sub-area:

The most critical contingency is the loss of San Bernardino – Etiwanda 230 kV and San Bernardino – Vista 230 kV lines, which could result in voltage collapse. This limiting contingency establishes a local capacity need of 488 MW (includes 2 MW of QF generation) in 2016 as the minimum capacity necessary for reliable load serving capability within this sub-area.

Valley-Devers Sub-Area:

The most critical contingency for the Valley-Devers sub-area is the loss of Palo Verde – Colorado River 500 kV line and Valley SC – Serrano 500 kV line or vice versa, which would result in overload on Camino – Iron Mountain 230 kV line. This limiting contingency establishes a LCR of 1,722 MW (includes 35 MW of QF and 53 MW of wind generation) in 2016 as the generation capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

The generators inside the sub-area have the same effectiveness factors.

Valley Sub-area:

Resources needed to meet the Valley-Devers sub-area are enough to meet this subarea requirement as well.

Eastern LA Basin Sub-area:

Resources needed to meet the West of Devers and Valley-Devers sub-areas are enough to meet this sub-area requirement as well.

LA Basin Overall:

The most critical contingency is the loss of Lugo – Victorville 500 kV line followed by the loss of Sylmar – Gould 230 kV line. This limiting contingency establishes a LCR need of 8,887 MW in 2016 (includes 481 MW of QF, 66 MW of wind, 1163 MW of MUNI and 0 MW of Nuclear generation) as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

The most critical single contingency for LA Basin is the loss of Redondo #7 unit followed by Sylmar – Gould 230 kV line, which could result in thermal overload of the Sylmar – Eagle Rock 230 kV line. This limiting contingency establishes a LCR of 7,576 MW in 2016 (includes 481 MW of QF, 66 MW of wind, 1163 MW of MUNI and 0 MW of Nuclear generation).

Effectiveness factors:

The following table has units that have at least 5% effectiveness to the abovementioned constraint within the LA Basin area:

Gen Bus	Gen Name	Gen ID	MW Eff Fctr (%)
29005	PASADNA1	1	24
29006	PASADNA2	1	24
29007	BRODWYSC	1	24
24239	MALBRG1G	C1	13
24240	MALBRG2G	C2	13
24241	MALBRG3G	S3	13
24342	FEDGEN	1	13
29951	REFUSE	D1	13
24022	CHEVGEN1	1	11
24023	CHEVGEN2	2	11
24047	ELSEG3 G	3	11
24048	ELSEG4 G	4	11
24094	MOBGEN1	1	11
24329	MOBGEN2	1	11
24330	OUTFALL1	1	11
24331	OUTFALL2	1	11
24332	PALOGEN	D1	11
24333	REDON1 G	R1	11
24334	REDON2 G	R2	11
24335	REDON3 G	R3	11
24336	REDON4 G	R4	11
24337	VENICE	1	11
29009	CHEVGEN5	1	11
29009	CHEVGEN5	2	11
29901	ELSEG5GT	5	11
29902	ELSEG6ST	6	11
29903	ELSEG7GT	7	11
29904	ELSEG8ST	8	11
24121	REDON5 G	5	10
24122	REDON6 G	6	10
24123	REDON7 G	7	10
24124	REDON8 G	8	10
24011	ARCO 1G	1	10
24012	ARCO 2G	2	10
24013	ARCO 3G	3	10
24014	ARCO 4G	4	10
24020	CARBGEN1	1	10

24064	HINSON	1	10
24080	LBEACH8G	R8	10
24081	LBEACH9G	R9	10
24139	SERRFGEN	D1	10
24163	ARCO 5G	5	10
24164	ARCO 6G	6	10
24170	LBEACH12	2	10
24170	LBEACH12	1	10
24171	LBEACH34	3	10
24171	LBEACH34	4	10
24327	THUMSGEN	1	10
24328	CARBGEN2	1	10
24062	HARBOR G	1	10
24062	HARBOR G	HP	10
25510	HARBORG4	LP	10
24079	LBEACH7G	R7	10
24173	LBEACH5G	R5	10
24174	LBEACH6G	R6	10
24070	ICEGEN	D1	9
24018	BRIGEN	1	9
29308	CTRPKGEN	1	9
29953	SIGGEN	D1	9
24001	ALAMT1 G	1	8
24002	ALAMT2 G	2	8
24003	ALAMT3 G	3	8
24004	ALAMT4 G	4	8
24162	ALAMT7 G	R7	8
24005	ALAMT5 G	5	7
24161	ALAMT6 G	6	7
24063	HILLGEN	D1	7
29201	EME WCG1	1	7
29202	EME WCG2	1	7
29203	EME WCG3	1	7
29204	EME WCG4	1	7
29205	EME WCG5	1	7
24211	OLINDA	1	7
29011	BREAPWR2	C1	7
29011	BREAPWR2	C2	7
29011	BREAPWR2	C3	7
29011	BREAPWR2	C4	7
29011	BREAPWR2	S1	7
29309	BARPKGEN	1	6
24066	HUNT1 G	1	5
24067	HUNT2 G	2	5
24325	ORCOGEN	1	5

Changes compared to last year's results:

Compared with 2015 the load forecast went up by 198 MW. The LCR need has decreased by 210 MW, mainly due to decrease in load and other new transmission projects in San Diego area.

LA Basin Overall Requirements:

2016	QF	Wind	Muni	Nuclear	Market	Max. Qualifying
	(MW)	(MW)	(MW)	(MW)	(MW)	Capacity (MW)
Available generation	481	66	1163	0	9259	10969

2016	Existing Generation Capacity Needed (MW)	Deficiency (MW)	Total MW LCR Need
Category B (Single) ²³	7576	0	7576
Category C (Multiple) ²⁴	8887	0	8887

9. Big Creek/Ventura Area

Area Definition

The transmission tie lines into the Big Creek/Ventura Area are:

- 1) Antelope #1 and #2 500/230 kV Transformers
- 2) Sylmar-Pardee #1 230 kV Line
- 3) Sylmar-Pardee #2 230 kV Line
- 4) Eagle Rock-Pardee #1 230 kV Line
- 5) Vincent-Pardee 230 kV Line
- 6) Vincent-Santa Clara 230 kV Line

These sub-stations form the boundary surrounding the Big Creek/Ventura area:

²³ A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

²⁴ Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

- 1) Antelope 500 kV is out Antelope 230 KV is in
- 2) Sylmar is out Pardee is in
- 3) Sylmar is out Pardee is in
- 4) Eagle Rock is out Pardee is in
- 5) Vincent is out Pardee is in
- 6) Vincent is out Santa Clara is in

Total 2016 busload within the defined area is 4,446 MW with -74 MW of AAEE, 65 MW of losses and 369 MW of pumps resulting in total load + losses + pumps of 4,806 MW.

MKT/SCHED RESOURCE ID	BUS #	BUS NAME	kV	NQC		LCR SUB-AREA NAME	NQC Comments	CAISO Tag
ALAMO_6_UNIT	25653	ALAMO SC	13.8	15.07	1	Big Creek	Aug NQC	Market
BIGCRK_2_EXESWD	24306	B CRK1-1	7.2	19.38	1	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24306	B CRK1-1	7.2	21.03	2	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24307	B CRK1-2	13.8	21.03	3	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24307	B CRK1-2	13.8	30.39	4	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24308	B CRK2-1	13.8	49.48	1	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24308	B CRK2-1	13.8	50.64	2	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24309	B CRK2-2	7.2	18.22	3	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24309	B CRK2-2	7.2	19.19	4	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24310	B CRK2-3	7.2	16.55	5	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24310	B CRK2-3	7.2	18.02	6	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24311	B CRK3-1	13.8	34.09	1	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24311	B CRK3-1	13.8	34.09	2	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24312	B CRK3-2	13.8	34.09	3	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24312	B CRK3-2	13.8	39.93	4	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24313	B CRK3-3	13.8	37.99	5	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24314	B CRK 4	11.5	49.09	41	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24314	B CRK 4	11.5	49.28	42	Big Creek, Rector, Vestal	Aug NQC	Market

Total units and qualifying capacity available in the Big Creek/Ventura area:

BIGCRK_2_EXESWD	24315	B CRK 8	13.8	23.76	81	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24315	B CRK 8	13.8	42.85		Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24317	MAMOTH1G	13.8	91.07	1	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24318	MAMOTH2G	13.8	91.07	2	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24323	PORTAL	4.8	9.35	1	Big Creek, Rector, Vestal	Aug NQC	Market
EASTWD_7_UNIT	24319	EASTWOOD	13.8	199.00	1	Big Creek, Rector, Vestal		Market
EDMONS_2_NSPIN	25605	EDMON1AP	14.4	25.00	1	Big Creek	Pumps	MUNI
EDMONS_2_NSPIN	25606	EDMON2AP	14.4	25.00	2	Big Creek	Pumps	MUNI
EDMONS_2_NSPIN	25607	EDMON3AP	14.4	25.00	3	Big Creek	Pumps	MUNI
EDMONS_2_NSPIN	25607	EDMON3AP	14.4	25.00	4	Big Creek	Pumps	MUNI
EDMONS_2_NSPIN		EDMON4AP	14.4	25.00		Big Creek	Pumps	MUNI
EDMONS_2_NSPIN		EDMON4AP	14.4	25.00	6	Big Creek	Pumps	MUNI
EDMONS_2_NSPIN		EDMON5AP	14.4	25.00	7	Big Creek	Pumps	MUNI
EDMONS_2_NSPIN		EDMON5AP	14.4	25.00	8	Big Creek	Pumps	MUNI
EDMONS_2_NSPIN		EDMON6AP	14.4	25.00		Big Creek	Pumps	MUNI
EDMONS_2_NSPIN		EDMON6AP	14.4			Big Creek	Pumps	MUNI
EDMONS_2_NSPIN		EDMON7AP	14.4	25.00		Big Creek	Pumps	MUNI
EDMONS_2_NSPIN		EDMON7AP	14.4	25.00		Big Creek	Pumps	MUNI
EDMONS_2_NSPIN		EDMON8AP	14.4	25.00		Big Creek	Pumps	MUNI
EDMONS_2_NSPIN		EDMON8AP	14.4	25.00		Big Creek	Pumps	MUNI
GLOW_6_SOLAR		APPINV	0.42	0.00		Big Creek	Energy Only	Market
GOLETA_2_QF		GOLETA	66	0.09		Ventura, S.Clara, Moorpark	Not modeled Aug NQC	QF/Selfgen
GOLETA_6_ELLWOD	29004	ELLWOOD	13.8	54.00	1	Ventura, S.Clara, Moorpark		Market
GOLETA_6_EXGEN	24057	GOLETA	66	0.79		Ventura, S.Clara, Moorpark	Not modeled Aug NQC	QF/Selfgen
GOLETA_6_GAVOTA	24057	GOLETA	66	0.75		Ventura, S.Clara, Moorpark	Not modeled Aug NQC	Market
GOLETA_6_TAJIGS		GOLETA	66	2.82		Ventura, S.Clara, Moorpark	Not modeled Aug NQC	Market
LEBECS_2_UNITS	29051	PSTRIAG1	18	157.90	G1	Big Creek	Aug NQC	Market
LEBECS_2_UNITS	29052	PSTRIAG2	18	157.90		Big Creek	Aug NQC	Market
LEBECS_2_UNITS	29053	PSTRIAS1	18	162.40	S1	Big Creek	Aug NQC	Market
LEBECS_2_UNITS	29054	PSTRIAG3	18	157.90	G3	Big Creek	Aug NQC	Market
LEBECS_2_UNITS	29055	PSTRIAS2	18	78.90	S2	Big Creek	Aug NQC	Market
LITLRK_6_SEPV01				0.00		Big Creek	Not modeled Energy Only	Market
MNDALY_6_MCGRTH					1	Ventura, S.Clara, Moorpark		Market
MNDALY_7_UNIT 1		MANDLY1G		215.00	1	Ventura, Moorpark		Market
MNDALY_7_UNIT 2	24090	MANDLY2G	13.8	215.29	2	Ventura, Moorpark		Market
MNDALY_7_UNIT 3		MANDLY3G	16	130.00	3	Ventura, S.Clara, Moorpark		Market
MOORPK_2_CALABS	24099	MOORPARK	230	6.96		Ventura, Moorpark	Not modeled	Market

MOORPK_6_QF	24098	MOORPARK	66	26.52		Ventura, Moorpark	Not modeled Aug NQC	QF/Selfgen
MOORPK_7_UNITA1	24098	MOORPARK	66	2.12		Ventura, Moorpark	Not modeled Aug NQC	QF/Selfgen
NEENCH_6_SOLAR	29900	ALPINE_G	0.48	53.44	EQ	Big Creek	Aug NQC	Market
OMAR_2_UNIT 1	24102	OMAR 1G	13.8	77.10	1	Big Creek		Net Seller
OMAR_2_UNIT 2	24103	OMAR 2G	13.8	77.25	2	Big Creek		Net Seller
OMAR_2_UNIT 3	24104	OMAR 3G	13.8	77.25	3	Big Creek		Net Seller
OMAR_2_UNIT 4	24105	OMAR 4G	13.8	77.25	4	Big Creek		Net Seller
ORMOND_7_UNIT 1	24107	ORMOND1G	26	741.27	1	Ventura, Moorpark		Market
ORMOND_7_UNIT 2		ORMOND2G	26	775.00	2	Ventura, Moorpark		Market
OSO_6_NSPIN		OSO A P	13.2	2.38	1	Big Creek	Pumps	MUNI
OSO_6_NSPIN		OSO A P	13.2	2.38		Big Creek	Pumps	MUNI
OSO_6_NSPIN	25614	OSO A P	13.2	2.38	3	Big Creek	Pumps	MUNI
OSO_6_NSPIN		OSO A P	13.2	2.38	4	Big Creek	Pumps	MUNI
OSO_6_NSPIN	25615	OSO B P	13.2	2.38	5	Big Creek	Pumps	MUNI
OSO_6_NSPIN	25615	OSO B P	13.2	2.38	6	Big Creek	Pumps	MUNI
OSO_6_NSPIN	25615	OSO B P	13.2	2.38	7	Big Creek	Pumps	MUNI
OSO_6_NSPIN	25615	OSO B P	13.2	2.38	8	Big Creek	Pumps	MUNI
PANDOL_6_UNIT	24113	PANDOL	13.8	25.70	1	Big Creek, Vestal	Aug NQC	Market
PANDOL_6_UNIT	24113	PANDOL	13.8	20.94	2	Big Creek, Vestal	Aug NQC	Market
RECTOR_2_KAWEAH	24212	RECTOR	66	0.63		Big Creek, Rector, Vestal	Not modeled Aug NQC	Market
RECTOR_2_KAWH 1	24212	RECTOR	66	1.28		Big Creek, Rector, Vestal	Not modeled Aug NQC	Market
RECTOR_2_QF	24212	RECTOR	66	8.78		Big Creek, Rector, Vestal	Not modeled Aug NQC	QF/Selfgen
RECTOR_7_TULARE	24212	RECTOR	66	0.00		Big Creek, Rector, Vestal	Not modeled	Market
RSMSLR_6_SOLAR1				0.00		Big Creek	Not modeled Energy Only	Market
RSMSLR_6_SOLAR2				0.00		Big Creek	Not modeled Energy Only	Market
SAUGUS_2_TOLAND	24135	SAUGUS	66	0.00		Big Creek	Not modeled Energy Only	Market
SAUGUS_6_MWDFTH	24135	SAUGUS	66	7.36		Big Creek	Not modeled Aug NQC	MUNI
SAUGUS_6_PTCHGN	24118	PITCHGEN	13.8	19.33	D1	Big Creek	Aug NQC	MUNI
SAUGUS_6_QF	24135	SAUGUS	66	0.94		Big Creek	Not modeled Aug NQC	QF/Selfgen
SAUGUS_7_CHIQCN	24135	SAUGUS	66	3.49		Big Creek	Not modeled Aug NQC	Market
SAUGUS_7_LOPEZ	24135	SAUGUS	66	5.34		Big Creek	Not modeled Aug NQC	QF/Selfgen
SNCLRA_6_OXGEN	24110	OXGEN	13.8	35.65	D1	Ventura, S.Clara, Moorpark	Aug NQC	QF/Selfgen
SNCLRA_6_PROCGN	24119	PROCGEN	13.8	45.03	D1	Ventura, S.Clara, Moorpark	Aug NQC	Market
SNCLRA_6_QF	24127	S.CLARA	66	0.00	1	Ventura, S.Clara, Moorpark	Aug NQC	QF/Selfgen
SNCLRA_6_WILLMT	24159	WILLAMET	13.8	13.72	D1	Ventura, S.Clara, Moorpark	Aug NQC	QF/Selfgen

SPRGVL_2_QF	24215	SPRINGVL	66	0.21		Big Creek, Rector, Vestal	Not modeled Aug NQC	QF/Selfgen
SPRGVL_2_TULE	24215	SPRINGVL	66	0.00		Big Creek, Rector, Vestal	Not modeled Aug NQC	Market
SPRGVL_2_TULESC	24215	SPRINGVL	66	0.00		Big Creek, Rector, Vestal	Not modeled Aug NQC	Market
SUNSHN_2_LNDFL				15.23			Aug NQC	Market
SYCAMR_2_UNITS	24143	SYCCYN1G	13.8	56.53	1	Big Creek	Aug NQC	Net Seller
SYCAMR_2_UNITS	24144	SYCCYN2G	13.8	85.00	2	Big Creek	Aug NQC	Net Seller
SYCAMR_2_UNITS	24145	SYCCYN3G	13.8	56.53	3	Big Creek	Aug NQC	Net Seller
SYCAMR_2_UNITS	24146	SYCCYN4G	13.8	85.00	4	Big Creek	Aug NQC	Net Seller
TENGEN_2_PL1X2	24148	TENNGEN1	13.8	18.00	D1	Big Creek	Aug NQC	Net Seller
TENGEN_2_PL1X2	24149	TENNGEN2	13.8	18.00	D2	Big Creek	Aug NQC	Net Seller
VESTAL_2_KERN	24372	KR 3-1	11	8.37	1	Big Creek, Vestal	No NQC - hist. data	QF/Selfgen
VESTAL_2_KERN	24373	KR 3-2	11	8.37	1	Big Creek, Vestal	No NQC - hist. data	QF/Selfgen
VESTAL_2_WELLHD	24116	VESTAL	13.8	49.00	1	Big Creek, Vestal		Market
VESTAL_6_QF	24152	VESTAL	66	3.73		Big Creek, Vestal	Not modeled Aug NQC	QF/Selfgen
VESTAL_6_ULTRGN	24150	ULTRAGEN	13.8	32.48	1	Big Creek, Vestal	Aug NQC	QF/Selfgen
WARNE_2_UNIT	25651	WARNE1	13.8	38.00	1	Big Creek	Aug NQC	Market
WARNE_2_UNIT	25652	WARNE2	13.8	38.00	1	Big Creek	Aug NQC	Market
APPGEN_6_UNIT 1	24009	APPGEN1G	13.8	0.00	1	Big Creek	No NQC - hist. data	Market
APPGEN_6_UNIT 1	24010	APPGEN2G	13.8	0.00	2	Big Creek	No NQC - hist. data	Market
APPGEN_6_UNIT 1	24361	APPGEN3G	13.8	0.00	3	Big Creek	No NQC - hist. data	Market
NA	24326	EXGEN1	13.8	15.00	S1	Ventura, S.Clara, Moorpark	No NQC - hist. data	QF/Selfgen
NA	24340	CHARMIN	13.8	15.00	1	Ventura, S.Clara, Moorpark	No NQC - hist. data	QF/Selfgen
NA	24362	EXGEN2	13.8	0.00	G1	Ventura, S.Clara, Moorpark	No NQC - hist. data	QF/Selfgen
NA	24370	KAWGEN	13.8	17.00	1	Big Creek, Rector, Vestal	No NQC - hist. data	Market
NA	24422	PALMDALE	66	0.00	1	Big Creek	No NQC - hist. data	Market
VESTAL_6_WDFIRE	29008	LAKEGEN	13.8	11.00	1	Big Creek, Vestal	Aug NQC	QF/Selfgen
New Unit	29884	DAWNGEN	0.82	20.00	EQ	Big Creek	No NQC - Pmax	Market
New Unit	29888	TWILGHTG	0.82	20.00	EQ	Big Creek	No NQC - Pmax	Market
New Unit	29918	VLYFLR_G	0.2	20.00	EQ	Big Creek	No NQC - Pmax	Market
New Unit	29952	CAMGEN	14.2	28.00	D1	Ventura, S.Clara, Moorpark	No NQC - Pmax	Market
New Unit	29954	WDT273	66	10.00	EQ	Big Creek	No NQC - Pmax	Market

Major new projects modeled: None

Critical Contingency Analysis Summary

Rector Sub-area

The most critical contingency for the Rector sub-area is the loss of one of the Rector-Vestal 230 kV lines with the Eastwood unit out of service, which would thermally overload the remaining Rector-Vestal 230 kV line. This limiting contingency establishes a LCR of 492 MW (includes 9 MW of QF generation) in 2016 as the minimum capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

The following table has units that have at least 5% effectiveness to the abovementioned constraint within Rector sub-area:

Gen Bus	Gen Name	Gen ID	MW Eff Fctr (%)
24370	KAWGEN	1	51
24306	B CRK1-1	1	45
24306	B CRK1-1	2	45
24307	B CRK1-2	3	45
24307	B CRK1-2	4	45
24319	EASTWOOD	1	45
24323	PORTAL	1	45
24308	B CRK2-1	1	45
24308	B CRK2-1	2	45
24309	B CRK2-2	3	45
24309	B CRK2-2	4	45
24310	B CRK2-3	5	45
24310	B CRK2-3	6	45
24315	B CRK 8	81	45
24315	B CRK 8	82	45
24311	B CRK3-1	1	45
24311	B CRK3-1	2	45
24312	B CRK3-2	3	45
24312	B CRK3-2	4	45
24313	B CRK3-3	5	45
24317	MAMOTH1G	1	45
24318	MAMOTH2G	2	45
24314	B CRK 4	41	43
24314	B CRK 4	42	43

Vestal Sub-area

The most critical contingency for the Vestal sub-area is the loss of one of the Magunden-Vestal 230 kV lines with the Eastwood unit out of service, which would thermally overload the remaining Magunden-Vestal 230 kV line. This limiting contingency establishes a LCR of 739 MW in 2016 (includes 73 MW of QF generation)

as the minimum capacity necessary for reliable load serving capability within this subarea.

Effectiveness factors:

The following table has units that have at least 5% effectiveness to the above-

mentioned constraint within Vestal sub-area:

Gen Bus	Gen Name	Gen ID	MW Eff Fctr (%)
24113	PANDOL	1	64
24113	PANDOL	2	64
24116	WELLGEN	1	64
24150	ULTRAGEN	1	64
24372	KR 3-1	1	64
24373	KR 3-2	2	64
28019	WDT190G	1	64
29008	LAKEGEN	1	64
24370	KAWGEN	1	49
24306	B CRK1-1	1	44
24306	B CRK1-1	2	44
24307	B CRK1-2	3	44
24307	B CRK1-2	4	44
24319	EASTWOOD	1	44
24323	PORTAL	1	44
24308	B CRK2-1	1	44
24308	B CRK2-1	2	44
24309	B CRK2-2	3	44
24309	B CRK2-2	4	44
24310	B CRK2-3	5	44
24310	B CRK2-3	6	44
24315	B CRK 8	81	44
24315	B CRK 8	82	44
24311	B CRK3-1	1	44
24311	B CRK3-1	2	44
24312	B CRK3-2	3	44
24312	B CRK3-2	4	44
24313	B CRK3-3	5	44
24317	MAMOTH1G	1	44
24318	MAMOTH2G	2	44
24314	B CRK 4	41	42
24314	B CRK 4	42	42

S. Clara sub-areas

The most critical contingency for the S.Clara sub-area is the loss of the Pardee to

S.Clara 230 kV line followed by the loss of the Moorpark to S.Clara #1 and #2 230 kV lines, which would cause voltage collapse. This limiting contingency establishes a LCR of 247 MW in 2016 (which includes 80 MW of QF generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

The generators inside the sub-area have the same effectiveness factors.

Moorpark sub-areas

The most critical contingency for the Moorpark sub-area is the loss of one of the Pardee to Moorpark 230 kV lines followed by the loss of the remaining two Moorpark to Pardee 230 kV lines, which would cause voltage collapse. This limiting contingency establishes a LCR of 462 MW in 2016 (which includes 109 MW of QF generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

The generators inside the sub-area have the same effectiveness factors.

Big Creek/Ventura overall:

The most critical contingency is the loss of the Lugo-Victorville 500 kV followed by Sylmar-Pardee #1 or #2 230 kV line, which could thermally overload the remaining Sylmar-Pardee 230 kV line. This limiting contingency establishes a LCR of 2,398 MW in 2016 (includes 188 MW of QF and 396 MW of MUNI generation) as the minimum generation capacity necessary for reliable load serving capability within this area.

The most critical single contingency is the loss of Sylmar-Pardee #1 (or # 2) line followed by Ormond Beach Unit #2, which could thermally overload the remaining Sylmar-Pardee 230 kV line. This limiting contingency establishes a LCR of 2,141 MW in 2016 (includes 188 MW of QF and 396 MW of MUNI generation).

Effectiveness factors:

The following table has units that have at least 5% effectiveness to any one of the Sylmar-Pardee 230 kV lines after the loss of the Lugo-Victorville 500 kV followed by one of the other Sylmar-Pardee 230 kV line in this area:

Gen Bus	Gen Name	Gen ID	MW Eff Fctr (%)
24009	APPGEN1G	1	29
24010	APPGEN2G	2	29
24118	PITCHGEN	D1	29
24148	TENNGEN1	D1	29
24149	TENNGEN2	D2	29
24361	APPGEN3G	3	29
29954	WDT273	EQ	29
24107	ORMOND1G	1	28
24108	ORMOND2G	2	28
25651	WARNE1	1	26
25652	WARNE2	1	26
24089	MANDLY1G	1	25
24090	MANDLY2G	2	25
24110	OXGEN	D1	25
24119	PROCGEN	D1	25
24127	S.CLARA	1	25
24159	WILLAMET	D1	25
24222	MANDLY3G	3	25
24326	EXGEN1	S1	25
24340	CHARMIN	1	25
24362	EXGEN2	G1	25
29004	ELLWOOD	1	25
29306	MCGPKGEN	1	25
29952	CAMGEN	D1	25
25653	ALAMO SC	1	24
29051	PSTRIAG1	G1	24
29052	PSTRIAG2	G2	24
29053	PSTRIAS1	S1	24
29054	PSTRIAG3	G3	24
29055	PSTRIAS2	S2	24
24102	OMAR 1G	1	20
24103	OMAR 2G	2	20
24104	OMAR 3G	3	20
24105	OMAR 4G	4	20
24113	PANDOL	1	20
24113	PANDOL	2	20
24116	WELLGEN	1	20
24143	SYCCYN1G	1	20
24144	SYCCYN2G	2	20
24145	SYCCYN3G	3	20

24146	SYCCYN4G	4	20
24150	ULTRAGEN	1	20
24306	B CRK1-1	1	20
24306	B CRK1-1	2	20
24307	B CRK1-2	3	20
24307	B CRK1-2	4	20
24308	B CRK2-1	1	20
24308	B CRK2-1	2	20
24309	B CRK2-2	3	20
24309	B CRK2-2	4	20
24310	B CRK2-3	5	20
24310	B CRK2-3	6	20
24311	B CRK3-1	1	20
24311	B CRK3-1	2	20
24312	B CRK3-2	3	20
24312	B CRK3-2	4	20
24313	B CRK3-3	5	20
24314	B CRK 4	41	20
24314	B CRK 4	42	20
24315	B CRK 8	81	20
24315	B CRK 8	82	20
24317	MAMOTH1G	1	20
24318	MAMOTH2G	2	20
24319	EASTWOOD	1	20
24323	PORTAL	1	20
24370	KAWGEN	1	20
24372	KR 3-1	1	20
24373	KR 3-2	2	20
28019	WDT190G	1	20
29008	LAKEGEN	1	20
29900	ALPINE_G	EQ	17
24422	PALMDALE	1	10
29884	DAWNGEN	EQ	10
29888	TWILGHTG	EQ	10
29896	APPINV	EQ	10
29918	VLYFLR_G	EQ	10

Changes compared to last year's results:

Compared with 2015 the load forecast is down by 1 MW and the LCR need has increased by 128 MW, mainly due to LA Basin and San Diego/Imperial Valley significant reduction in LCR requirements.

Big Creek Overall Requirements:

2016	QF (MW)	MUNI (MW)	Market (MW)		Max. Qualifying Capacity (MW)			
Available generation	188	396	4951		5535			
2016	Existing Ge	eneration	Deficien	су	Total MW			
	Capacity Nee	(MW)	-	LCR Need				
Category B (Single) ²⁵	214	0		2141				
Category C (Multiple) ²⁶	239	0		2398				

10. San Diego-Imperial Valley Area

Area Definition

The transmission tie lines forming a boundary around the Greater San Diego-Imperial

Valley area include:

- 1) Imperial Valley North Gila 500 kV Line
- 2) Otay Mesa Tijuana 230 kV Line
- 3) San Onofre San Luis Rey #1 230 kV Line
- 4) San Onofre San Luis Rey #2 230 kV Line
- 5) San Onofre San Luis Rey #3 230 kV Line
- 6) San Onofre Talega #1 230 kV Line
- 7) San Onofre Talega #2 230 kV Line
- 8) Imperial Valley Dixiland 230 kV Line
- 9) Liebert Fern 230 kV Line
- 10) Imperial Valley Fern 230 kV Line
- 11) Imperial Valley La Rosita 230 kV Line

The substations that delineate the Greater San Diego-Imperial Valley area are:

- 1) Imperial Valley is in North Gila is out
- 2) Otay Mesa is in Tijuana is out
- 3) San Onofre is out San Luis Rey is in
- 4) San Onofre is out San Luis Rey is in

²⁵ A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

²⁶ Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

- 5) San Onofre is out San Luis Rey is in
- 6) San Onofre is out Talega is in
- 7) San Onofre is out Talega is in
- 8) Imperial Valley is in Dixiland is out
- 9) Liebert is in Fern is out
- 10) Imperial Valley is in Fern is out
- 11) Imperial Valley is in La Rosita is out

Total 2016 busload within the defined area: 5206 MW with -81 MW of AAEE and 158 MW of losses resulting in total load + losses of 5283 MW.

MKT/SCHED RESOURCE ID	BUS #	BUS NAME	kV	NQC	-	LCR SUB-AREA NAME	NQC Comments	CAISO Tag
BORDER_6_UNITA1	22149	CALPK_BD	13.8	48.00	1	San Diego, Border		Market
BREGGO_6_DEGRSL				4.72		San Diego	Not modeled Aug NQC	Market
BREGGO_6_SOLAR		BR GEN1	0.21	21.51	1	San Diego	Aug NQC	Market
CBRLLO_6_PLSTP1	22092	CABRILLO	69	2.96	1	San Diego	Aug NQC	Market
CCRITA_7_RPPCHF	22124	CHCARITA	138	3.70	1	San Diego	Aug NQC	Market
CHILLS_1_SYCENG	22120	CARLTNHS	138	0.50	1	San Diego	Aug NQC	QF/Selfgen
CHILLS_7_UNITA1	22120	CARLTNHS	138	1.52	2	San Diego	Aug NQC	QF/Selfgen
CNTNLA_2_SOLAR1	23463	DW GEN3&4	0.33	95.06	1	None	Aug NQC	Market
CNTNLA_2_SOLAR1	23463	DW GEN3&4	0.33	0.00	2	None	Energy Only	Market
CPSTNO_7_PRMADS	22112	CAPSTRNO	138	5.45	1	San Diego	Aug NQC	Market
CPVERD_2_SOLAR	23301	IV GEN3 G2	0.32	52.03	G2	None	Aug NQC	Market
CPVERD_2_SOLAR	23309	IV GEN3 G1	0.32	52.02	G1	None	Aug NQC	Market
CRELMN_6_RAMON1				1.50		San Diego	Not modeled Aug NQC	Market
CRELMN_6_RAMON2				3.74		San Diego	Not modeled Aug NQC	Market
CRSTWD_6_KUMYAY	22915	KUMEYAAY	34.5	5.22	1	San Diego	Aug NQC	Wind
CSLR4S_2_SOLAR	23298	DW GEN1 G1	0.32	48.66	G1	None	Aug NQC	Market
CSLR4S_2_SOLAR	23299	DW GEN1 G2	0.32	48.65	G2	None	Aug NQC	Market
DIVSON_6_NSQF	22172	DIVISION	69	39.96	1	San Diego	Aug NQC	QF/Selfgen
ELCAJN_6_LM6K		EC GEN2	13.8		1	San Diego, El Cajon		Market
ELCAJN_6_UNITA1		EC GEN1	13.8	45.42	1	San Diego, El Cajon		Market
ENCINA_7_EA1		ENCINA 1		106.00	1	San Diego, Encina		Market
ENCINA_7_EA2		ENCINA 2		104.00	1	San Diego, Encina		Market
ENCINA_7_EA3		ENCINA 3		110.00	1	San Diego, Encina		Market
ENCINA_7_EA4		ENCINA 4	22	300.00	1	San Diego, Encina		Market
ENCINA_7_EA5		ENCINA 5	24	330.00	1	San Diego, Encina		Market
ENCINA_7_GT1		ENCINAGT		14.50	1	San Diego, Encina		Market
ESCNDO_6_PL1X2	22257	ESGEN	13.8	48.71	1	San Diego, Escondido		Market
ESCNDO_6_UNITB1	22153	CALPK_ES	13.8	48.00	1	San Diego, Escondido		Market
ESCO_6_GLMQF	22332	GOALLINE	69	38.06	1	San Diego, Esco, Escondido	Aug NQC	QF/Selfgen
IVSLRP_2_SOLAR1	23440	DW GEN2 G1	0.36	49.91	1	None	Aug NQC	Market

Total units and qualifying capacity available in this area:

VSLRP_2_SOLAR1	23441	DW GEN2 G2	0.36	49,90	1	None	Aug NQC	Market
IVSLRP_2_SOLAR1		DW GEN2 G3			1	None	Aug NQC	Market
LAKHDG_6_UNIT 1		LKHODG1	13.8		1	San Diego	, lug ride	Market
LAKHDG_6_UNIT 2		LKHODG2	13.8	20.00		San Diego		Market
LARKSP_6_UNIT 1		LRKSPBD1	13.8	46.00	1	San Diego, Border		Market
LARKSP_6_UNIT 2		LRKSPBD2	13.8	46.00	1	San Diego, Border		Market
LAROA1_2_UNITA1		LRP-U1	16	165	1	None		Market
LAROA2_2_UNITA1		INTBST	18	157	1	None		Market
LAROA2_2_UNITA1		INTBCT	16	165	1	None		Market
MRGT_6_MEF2		MEF_MR2	13.8	47.90	1	San Diego, Miramar		Market
MRGT_6_MMAREF		MEF_MR1	13.8	48.00	1	San Diego, Miramar		Market
MSHGTS_6_MMARLF			69	3.61	1	San Diego, Mission	Aug NQC	Market
MSSION_2_QF		MISSION	69	0.79	1	San Diego	Aug NQC	QF/Selfgen
NIMTG_6_NIQF	22576	NOISLMTR	69	35.72	1	San Diego	Aug NQC	QF/Selfgen
OCTILO_5_WIND		OCO GEN G1	0.69	15.61	G1	None	Aug NQC	Wind
OCTILO_5_WIND		OCO GEN G2		15.60	G2	None	Aug NQC	Wind
OGROVE_6_PL1X2		PA GEN1	13.8	49.95	1	San Diego, Pala		Market
OGROVE_6_PL1X2		PA GEN2	13.8	49.95	2	San Diego, Pala		Market
OTAY_6_PL1X2		OYGEN	13.8	35.50	1	San Diego, Border		Market
OTAY_6_UNITB1	22604		69	2.94	1	San Diego, Border	Aug NQC	Market
OTAY_7_UNITC1	22604		69	2.95		San Diego, Border	Aug NQC	QF/Selfgen
OTMESA_2_PL1X3		OTAYMGT1	18	185.06	1	San Diego		Market
OTMESA_2_PL1X3		OTAYMGT2	18	185.06	1	San Diego		Market
OTMESA_2_PL1X3		OTAYMST1	16	233.48	1	San Diego		Market
PALOMR_2_PL1X3		PEN_CT1	18	162.39	1	San Diego		Market
PALOMR_2_PL1X3		PEN_CT2	18	162.39	1	San Diego		Market
PALOMR_2_PL1X3		PEN_CT2	18	240.83	1	San Diego		Market
		POINTLMA	69	1.91	2	San Diego	Aug NQC	QF/Selfgen
PTLOMA_6_NTCQF				18.50	 1			-
			69			San Diego	Aug NQC	QF/Selfgen
		SAMPSON	12.5	0.57	1	San Diego	Aug NQC	Net Seller
SMRCOS_6_UNIT 1		SANMRCOS	69	0.65	1	San Diego	Aug NQC	QF/Selfgen
TERMEX_2_PL1X3		TDM STG	18	281	1	None		Market
TERMEX_2_PL1X3		TDM CTG2	18	156	1	None		Market
TERMEX_2_PL1X3	22983	TDM CTG3	18	156	1	None		Market
VLCNTR_6_VCSLR1				1.87		San Diego, Pala	Not modeled Aug NQC	Market
VLCNTR_6_VCSLR2				3.74		San Diego, Pala	Not modeled Aug NQC	Market
ELCAJN_7_GT1		ELCAJNGT	12.5	16.00	1	San Diego, El Cajon	Not modeled	Market
KEARNY_7_KY2		KEARN2AB	12.5		1	San Diego, Mission	Not modeled	Market
KEARNY_7_KY2		KEARN2AB	12.5		2	San Diego, Mission	Not modeled	Market
KEARNY_7_KY2		KEARN2CD	12.5		1	San Diego, Mission	Not modeled	Market
KEARNY_7_KY2		KEARN2CD	12.5	13.95	2	San Diego, Mission	Not modeled	Market
KEARNY_7_KY3 KEARNY_7_KY3		KEARN3AB KEARN3AB	12.5 12.5	14.98 16.05	1	San Diego, Mission San Diego, Mission	Not modeled Not modeled	Market Market
KEARNY_7_KY3		KEARN3CD	12.5	14.98	<u> </u>	San Diego, Mission	Not modeled	Market
KEARNY_7_KY3		KEARN3CD	12.5	14.98	2	San Diego, Mission	Not modeled	Market
MRGT_7_UNITS		MIRAMRGT	12.5	18.55	1	San Diego, Miramar	Not modeled	Market
MRGT_7_UNITS		MIRAMRGT	12.5	17.45	2	San Diego, Miramar	Not modeled	Market
EGATE_7_NOCITY		EASTGATE	69	0.20	1	San Diego	Aug NQC	QF/Selfgen
NA	22916	PFC-AVC	0.6	0.00	1	San Diego	No NQC - hist. data	QF/Selfgen
New Unit	23100	ECO GEN1 G1	0.69	51.00	G1	None	No NQC - est. data	Wind

New Unit	23120	BULLMOOS	13.8	27.00	1	San Diego, Border	No NQC - P max	Market
New Unit	23155	c608 G1	0.2	75.00	G1	None	No NQC - P max	Market
New Unit	23156	c608_G2	0.2	75.00	G2	None	No NQC - P max	Market
New Unit	23487	Q653EDG	0.31	20.00	1	None	No NQC - P max	Market

Major new projects modeled:

- 1. Reconductor of Los Coches–Loveland 69 kV line
- 2. Miguel-Otay Mesa-South Bay-Sycamore 230 kV re-configuration
- Reactor on TL23040 Otay Mesa-Tijuana 230 kV line with the tie line rated at 850 MVA under emergency
- 4. Talega Synchronous Condenser (2x225 MVAR)
- 5. 2nd Encina 230/138 Bank #61
- 6. East County 500kV Substation (ECO)
- 7. Reconductor of San Luis Rey-Oceanside Tap 69 kV line
- 8. 2nd Hassayampa-North Gila 500 kV line
- 9. Imperial Valley Dixieland 230 kV tie with IID
- 10. Imperial Valley-Liebert-Fern-El Centro 230 kV tie re-configuration

Critical Contingency Analysis Summary

El Cajon Sub-area:

The most critical contingency for the El Cajon sub-area is the loss of the El Cajon-Jamacha 69 kV line (TL624) followed by the loss of Miguel-Granite-Los Coches 69 kV line (TL632), which could thermally overload the El Cajon – Los Coches 69 kV line (TL631). This limiting contingency establishes a LCR of 109 MW (including 0 MW of QF generation) in 2016 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

The most critical single contingency for this sub-area is the loss of Miguel-Granite-Los Coches 69 kV line (TL632) with El Cajon unit #1 or #2 out of service, which could thermally overload the El Cajon – Los Coches 69 kV line (TL631). This limiting contingency establishes a LCR of 65 MW (including 0 MW of QF generation) in 2016. It is recommended to maintain the El Cajon GT operational until the TL632 Granite Loop-in and TL6914 reconfiguration project, which replaced the previous approved El Cajon – Los Coches 69 kV line (TL631) reconductor, is completed. Without the El Cajon GT this sub-area will have a 15 MW deficiency.

Effectiveness factors:

All units within this sub-area (El Cajon CalPeak, El Cajon GT and El Cajon Energy Center) have the same effectiveness factor.

Mission Sub-area

The most critical contingency for the Mission sub-area is the loss of Mission - Kearny 69 kV line (TL663) followed by the loss of Mission – Mesa Heights 69kV line (TL676), which could thermally overload the Kearny - Clairmont Tap 69kV line (TL600). This limiting contingency establishes a local capacity need of 54 MW (including 0 MW of QF generation) in 2016 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

It is recommended to retain part of Kearney peakers operational (at least 50 MW), until the concern is mitigated. Without part of the Kearney peakers this sub-area will have a 50 MW deficiency.

Effectiveness factors:

All Kearny peakers have the same effectiveness factor.

Esco Sub-area

The most critical contingency for the Esco sub-area is the loss of Poway-Pomerado 69 kV line (TL6913) followed by the loss of Esco - Escondido 69kV line (TL6908) which could thermally overload the Bernardo – Rancho Carmel 69 kV line (TL633). This limiting contingency establishes a LCR of 110 MW (including 38 MW of QF generation and 72 MW of deficiency) in 2016 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

Only unit within this sub-area (Goal line) is needed so no effectiveness factor is required.

Pala Sub-area

The most critical contingency for the Pala sub-area is the loss of Pendleton – San Luis Rey 69 kV line (TL6912) followed by the loss of Lilac - Pala 69kV line (TL6932) which could thermally overload the Melrose – Morro Hill Tap 69 kV line (TL694). This limiting contingency establishes a LCR of 35 MW (including 0 MW of QF generation) in 2016 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

All units within this sub-area (Pala) have the same effectiveness factor.

Border Sub-area

The most critical contingency for the Border sub-area is the loss of Bay Boulevard – Otay 69kV line #1 (TL645) followed by Bay Boulevard - Otay 69kV line #2 (TL646), which could overload the Imperial Beach – Bay Boulevard 69 kV line (TL647). This limiting contingency establishes a local capacity need of 66 MW in 2016 (includes 3 MW of QF generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

All units within this area have the same effectiveness factor.

Miramar Sub-area

The most critical contingency for the Miramar sub-area is the loss of Miguel – Silvergate 230 kV line (TL23042) followed by the loss of Sycamore – Palomar 230 kV line (TL23051), which could thermally overload the Sycamore - Scripps 69 kV line (TL6916). This limiting contingency establishes a LCR of 118 MW (including 0 MW of QF generation) in 2016 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

The most critical single contingency for this sub-area is the loss of Miguel – Silvergate 230 kV line (TL23042) with Miramar Energy Facility #1 or #2 out of service, which could thermally overload the Sycamore - Scripps 69 kV line (TL6916). This limiting contingency establishes a LCR of 82 MW (including 0 MW of QF generation) in 2016.

It is recommended to retain the Miramar GTs (Cabrillo Power II) until the concern is mitigated. Without the Miramar GTs this sub-area will have a 22 MW deficiency.

Effectiveness factors:

All units within this sub-area (Miramar Energy Facility and Miramar GTs) have the same effectiveness factor.

San Diego Sub-area:

The most limiting contingency is the L-1-1 outage of Ocotillo-Suncrest 500 kV line followed by the loss of ECO-Miguel 500 kV line, which could potentially lead to post-transient voltage instability concern in the San Diego sub-area and LA Basin area. Since the generating facilities in the local San Diego sub-area are more effective to mitigate the voltage instability concern than the generating resources in the LA Basin areas, the generating facilities in the San Diego sub-area shall be acquired as most effective resources needed in order to minimize the LCR need in the two sub-areas. This contingency establishes a LCR of 3112 MW in 2016 (includes 141 MW of QF generation and 5 MW of Wind) as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

The most limiting single contingency in the San Diego sub-area is a (G-1/N-1) contingency described by the outage of ECO-Miguel 500 kV line with Otay Mesa Combined-Cycle Power Plant (604 MW) already out of service, which could trigger the

SPS to cross trip either the Otay Mesa-Tijuana 230 tie (TL23040) or Imperial Valley-La Rosita 230 kV tie (TL23050) with CFE, and consequentially thermally overload the Suncrest-Sycamore 230 kV lines (TL23054 and TL23055) of its latest emergency rating. This contingency establishes a LCR of 2610 MW in 2016 (includes 141 MW of QF generation and 5 MW of Wind).

It is recommended to retain the Miramar GTs, El Cajon CT, and part of Kearny GTs, generating facilities until the concern is mitigated.

Effectiveness factors:

All units within this area have the same effectiveness factor.

San Diego-Imperial Valley Area Overall:

The most limiting contingency in the San Diego-Imperial Valley area is described by the outage of 500 kV Southwest Power Link (SWPL) between Imperial Valley and N. Gila Substations over-lapping with an outage of the Otay Mesa Power plant (604 MW), which could potentially lead to post-transient voltage instability in the San Diego-Imperial Valley and LA Basin areas. This limiting constraint establishes a local capacity need of 2850 MW in 2016 (includes 141 MW of QF and 87 MW of Wind generation) as the minimum capacity necessary for reliable load serving capability within this area.

Effectiveness factors:

All units within this area have the same effectiveness factor.

Changes compared to last year's results:

The load forecast went down by 124 MW and overall local resource capacity needed for the San Diego-Imperial Valley reduced by 928 MW mostly due to the dynamic reactive support facility added and other network upgrades in the areas as well as decrease in load forecast.

It is recommended to retain the Miramar GTs, El Cajon CT and part of Kearny GTs

generating facilities until the most limiting contingencies are mitigated in the El Cajon, Mission, Miramar and San Diego sub-areas.

2016	QF	Wind	Market	Max. Qualifying
	(MW)	(MW)	(MW)	Capacity (MW)
Available generation	141	87	4687	4915

San Diego-Imperial Valley Area Overall Requirements:
--

2016	Existing Generation Capacity Needed (MW)	Deficiency (MW)	Total MW LCR Need
Category B (Single) ²⁷	2850	0	2850
Category C (Multiple) ²⁸	3112	72	3184

11. Valley Electric Area

Valley Electric Association LCR area has been eliminated on the basis of the following:

- No generation exists in this area
- No category B issues were observed in this area
- Category C and beyond
 - No common-mode N-2 issues were observed
 - No issues were observed for category B outage followed by a commonmode N-2 outage
 - All the N-1-1 issues that were observed can either be mitigated by the existing UVLS or by an operating procedure

²⁷ A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

²⁸ Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.