

### 2015 LOCAL CAPACITY TECHNICAL ANALYSIS

# DRAFT REPORT AND STUDY RESULTS

April 3, 2014

# Local Capacity Technical Study Overview and Results

#### I. Executive Summary

This Report documents the results and recommendations of the 2015 Local Capacity Technical (LCT) Study. The LCT Study assumptions, processes, and criteria were discussed and recommended through the 2014 Local Capacity Technical Study Criteria, Methodology and Assumptions Stakeholder Meeting held on October 30, 2013. On balance, the assumptions, processes, and criteria used for the 2015 LCT Study mirror those used in the 2007-2014 LCT Studies, which were previously discussed and recommended through the LCT Study Advisory Group ("LSAG")<sup>1</sup>, an advisory group formed by the CAISO to assist the CAISO in its preparation for performing prior LCT Studies.

The 2015 LCT study results are provided to the CPUC for consideration in its 2015 resource adequacy requirements program. These results will also be used by the CAISO as "Local Capacity Requirements" or "LCR" (minimum quantity of local capacity necessary to meet the LCR criteria) and for assisting in the allocation of costs of any CAISO procurement of capacity needed to achieve the Reliability Standards notwithstanding the resource adequacy procurement of Load Serving Entities (LSEs).<sup>2</sup>

<sup>&</sup>lt;sup>1</sup> The LSAG consists of a representative cross-section of stakeholders, technically qualified to assess the issues related to the study assumptions, process and criteria of the existing LCT Study methodology and to recommend changes, where needed.

<sup>&</sup>lt;sup>2</sup> For information regarding the conditions under which the CAISO may engage in procurement of local capacity and the allocation of the costs of such procurement, please see Sections 41 and 43 of the current CAISO Tariff, at: <a href="http://www.caiso.com/238a/238acd24167f0.html">http://www.caiso.com/238a/238acd24167f0.html</a>.

Below is a comparison of the 2015 vs. 2014 total LCR:

### **2015 Local Capacity Requirements**

|                               | Qualifying Capacity |                |               | 2015 LCR Need Based on<br>Category B |                |               |                                  |                |               |
|-------------------------------|---------------------|----------------|---------------|--------------------------------------|----------------|---------------|----------------------------------|----------------|---------------|
| Local Area Name               | QF/<br>Muni<br>(MW) | Market<br>(MW) | Total<br>(MW) | Existing<br>Capacity<br>Needed       | Deficien<br>cy | Total<br>(MW) | Existing<br>Capacity<br>Needed** | Deficien<br>cy | Total<br>(MW) |
| Humboldt                      | 36                  | 171            | 207           | 116                                  | 0              | 116           | 166                              | 0              | 166           |
| North Coast /<br>North Bay    | 130                 | 771            | 901           | 550                                  | 0              | 550           | 550                              | 0              | 550           |
| Sierra                        | 1299                | 771            | 2070          | 1392                                 | 29*            | 1421          | 1803                             | 397*           | 2200          |
| Stockton                      | 197                 | 392            | 589           | 357                                  | 0              | 357           | 396                              | 311*           | 707           |
| Greater Bay                   | 1262                | 6243           | 7505          | 3492                                 | 0              | 3492          | 4231                             | 136*           | 4367          |
| Greater Fresno                | 316                 | 2532           | 2848          | 2393                                 | 0              | 2393          | 2393                             | 46*            | 2439          |
| Kern                          | 408                 | 87             | 495           | 108                                  | 26*            | 134           | 411                              | 26*            | 437           |
| LA Basin                      | 2208                | 8985           | 11193         | 8620                                 | 0              | 8620          | 9097                             | 0              | 9097          |
| Big Creek/<br>Ventura         | 1160                | 4203           | 5363          | 2095                                 | 0              | 2095          | 2270                             | 0              | 2270          |
| San Diego/<br>Imperial Valley | 219                 | 4328           | 4547          | 3910                                 | 0              | 3910          | 3910                             | 202*           | 4112          |
| Total                         | 7235                | 28483          | 35718         | 23033                                | 55             | 23088         | 25227                            | 1118           | 26345         |

### **2014 Local Capacity Requirements**

|                            | Quali               | fying Ca       | apacity       | 2014 LCR Need Based on<br>Category B |                |               |                                  |                |               |
|----------------------------|---------------------|----------------|---------------|--------------------------------------|----------------|---------------|----------------------------------|----------------|---------------|
| Local Area Name            | QF/<br>Muni<br>(MW) | Market<br>(MW) | Total<br>(MW) | Existing<br>Capacity<br>Needed       | Deficien<br>cy | Total<br>(MW) | Existing<br>Capacity<br>Needed** | Deficien<br>cy | Total<br>(MW) |
| Humboldt                   | 70                  | 173            | 243           | 145                                  | 0              | 145           | 195                              | 0              | 195           |
| North Coast /<br>North Bay | 150                 | 771            | 921           | 623                                  | 0              | 623           | 623                              | 0              | 623           |
| Sierra                     | 1288                | 762            | 2050          | 1414                                 | 0              | 1414          | 1803                             | 285*           | 2088          |
| Stockton                   | 212                 | 392            | 604           | 354                                  | 25*            | 379           | 446                              | 255*           | 701           |
| Greater Bay                | 1336                | 6280           | 7616          | 3747                                 | 0              | 3747          | 4423                             | 215*           | 4638          |
| Greater Fresno             | 318                 | 2510           | 2828          | 1857                                 | 0              | 1857          | 1857                             | 0              | 1857          |
| Kern                       | 613                 | 64             | 677           | 421                                  | 14*            | 435           | 421                              | 41*            | 462           |
| LA Basin                   | 2242                | 9547           | 11789         | 10063                                | 0              | 10063         | 10430                            | 0              | 10430         |
| Big Creek/<br>Ventura      | 1112                | 4206           | 5318          | 2156                                 | 0              | 2156          | 2250                             | 0              | 2250          |
| San Diego                  | 200                 | 4506           | 4706          | 3605                                 | 167*           | 3772          | 3605                             | 458*           | 4063          |
| Total                      | 7541                | 29211          | 36752         | 24385                                | 206            | 24591         | 26053                            | 1254           | 27307         |

Overall, the LCR needs have decreased by about 1,000 MW or about 3.5% from 2014 to 2015. The LCR needs have decreased in the following areas: Humboldt, North Coast/North Bay, Stockton and Bay Area due to downward trend for load; LA Basin due to new transmission projects and Kern due to area redefinition required after transmission project. The LCR needs have increased in Big Creek/Ventura and San Diego due to load growth; Sierra due to load growth and delay in development of transmission projects and Fresno due to effectiveness factors and requirements of the second worst contingency. The slight increase of San Diego LCR needs is due to availability of new transmission projects else the increase driven by load growth would have been much bigger.

This Valley Electric Association (VEA) area is eliminated due to new transmission projects, the incorporation of the VEA UVLS model into the contingency analysis as well as the availability of ISO operating procedure 7910 that addresses some category C issues.

The write-up for each Local Capacity Area lists important new projects included in the base cases as well as a description of reason for changes between 2015 and 2014 LCRs.

<sup>\*</sup> No local area is "overall deficient". Resource deficiency values result from a few deficient sub-areas; and since there are no resources that can mitigate this deficiency the numbers are carried forward into the total area needs. Resource deficient sub-area implies that in order to comply with the criteria, at summer peak, load may be shed immediately after the first contingency.

<sup>\*\*</sup> Since "deficiency" cannot be mitigated by any available resource, the "Existing Capacity Needed" will be split among LSEs on a load share ratio during the assignment of local area resource responsibility.

### **Table of Contents**

| I.<br>II.        | Exe<br>Stu      | cutive Summarydy Overview: Inputs, Outputs and Optionsdy                            | 1<br>5           |
|------------------|-----------------|-------------------------------------------------------------------------------------|------------------|
| A                | . 0             | Objectives                                                                          | 5                |
| В                | . <i>K</i>      | Tey Study Assumptions                                                               |                  |
| $\boldsymbol{C}$ | . G             | Grid Reliability                                                                    | 7                |
| D                | ). A            | pplication of N-1, N-1-1, and N-2 Criteria                                          | 8                |
| E                | . <i>P</i>      | Performance Criteria                                                                | 8                |
| F<br>III.        | 1.<br>2.<br>Ope | Option 1- Meet LCR Performance Criteria Category B                                  | 15<br>able<br>15 |
|                  |                 |                                                                                     |                  |
| A                | 1.<br>2.<br>3.  | Power Flow Assessment:  Post Transient Load Flow Assessment:  Stability Assessment: | 17<br>18         |
| В                | 1.<br>2.        | Load Forecast                                                                       | 18               |
| (C<br><b>IV.</b> |                 | Power Flow Program Used in the LCT analysisocal Capacity Requirement Study Results  |                  |
| A                | . S             | ummary of Study Results                                                             | . 21             |
| В                | . S             | ummary of Zonal Needs                                                               | . 23             |
| C                |                 | ummary of Results by Local Area                                                     |                  |
|                  | 1.              | Humboldt Area                                                                       |                  |
|                  | 2.              | North Coast / North Bay Area                                                        | 28               |
|                  | 3.              | Sierra Area                                                                         | 33               |
|                  | 4.              | Stockton Area                                                                       | . 45             |
|                  | 5.              | Greater Bay Area                                                                    | . 49             |
|                  | 6.              | Greater Fresno Area                                                                 | . 58             |
|                  | 7.              | Kern Area                                                                           | . 65             |
|                  | 8.              | LA Basin Area                                                                       | . 68             |
|                  | 9.              | Big Creek/Ventura Area                                                              | . 83             |
|                  | 10.             | San Diego-Imperial Valley Area                                                      | . 93             |
|                  | 11.             | Valley Electric Area                                                                | 102              |

#### II. Study Overview: Inputs, Outputs and Options

#### A. Objectives

As was the objective of the five previous annual LCT Studies, the intent of the 2015 LCT Study is to identify specific areas within the CAISO Balancing Authority Area that have limited import capability and determine the minimum generation capacity (MW) necessary to mitigate the local reliability problems in those areas.

#### B. Key Study Assumptions

#### 1. Inputs and Methodology

The CAISO incorporated into its 2015 LCT study the same criteria, input assumptions and methodology that were incorporated into its previous years LCR studies. These inputs, assumptions and methodology were discussed and agreed to by stakeholders at the 2015 LCT Study Criteria, Methodology and Assumptions Stakeholder Meeting held on October 30, 2013.

The following table sets forth a summary of the approved inputs and methodology that have been used in the previous LCT studies as well as this 2015 LCT Study:

### **Summary Table of Inputs and Methodology Used in this LCT Study:**

| Issue:                                                                               | How are they incorporated into this LCT study:                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input Assumptions:                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Transmission System     Configuration                                                | The existing transmission system has been modeled, including all projects operational on or before June 1, of the study year and all other feasible operational solutions brought forth by the PTOs and as agreed to by the CAISO.                                                                                                                                                                                                                                                                            |
| Generation Modeled                                                                   | The existing generation resources has been modeled and also includes all projects that will be on-line and commercial on or before June 1, of the study year                                                                                                                                                                                                                                                                                                                                                  |
| Load Forecast                                                                        | Uses a 1-in-10 year summer peak load forecast                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Methodology:                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Maximize Import Capability                                                           | Import capability into the load pocket has been maximized, thus minimizing the generation required in the load pocket to meet applicable reliability requirements.                                                                                                                                                                                                                                                                                                                                            |
| QF/Nuclear/State/Federal Units                                                       | Regulatory Must-take and similarly situated units like QF/Nuclear/State/Federal resources have been modeled on-line at qualifying capacity output values for purposes of this LCT Study.                                                                                                                                                                                                                                                                                                                      |
| Maintaining Path Flows                                                               | Path flows have been maintained below all established path ratings into the load pockets, including the 500 kV. For clarification, given the existing transmission system configuration, the only 500 kV path that flows directly into a load pocket and will, therefore, be considered in this LCR Study is the South of Lugo transfer path flowing into the LA Basin.                                                                                                                                       |
| Performance Criteria:                                                                | C 1 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Performance Level B & C,<br>including incorporation of PTO<br>operational solutions  | This LCT Study is being published based on Performance Level B and Performance Level C criterion, yielding the low and high range LCR scenarios. In addition, the CAISO will incorporate all new projects and other feasible and CAISO-approved operational solutions brought forth by the PTOs that can be operational on or before June 1, of the study year. Any such solutions that can reduce the need for procurement to meet the Performance Level C criteria will be incorporated into the LCT Study. |
| Load Pocket:                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Fixed Boundary, including<br>limited reference to published<br>effectiveness factors | This LCT Study has been produced based on load pockets defined by a fixed boundary. The CAISO only publishes effectiveness factors where they are useful in facilitating procurement where excess capacity exists within a load pocket.                                                                                                                                                                                                                                                                       |

Further details regarding the 2015 LCT Study methodology and assumptions are provided in Section III, below.

#### C. Grid Reliability

Service reliability builds from grid reliability because grid reliability is reflected in the Reliability Standards of the North American Electric Reliability Council (NERC) and the Western Electricity Coordinating Council ("WECC") Regional Criteria (collectively "Reliability Standards"). The Reliability Standards apply to the interconnected electric system in the United States and are intended to address the reality that within an integrated network, whatever one Balancing Authority Area does can affect the reliability of other Balancing Authority Areas. Consistent with the mandatory nature of the Reliability Standards, the CAISO is under a statutory obligation to ensure efficient use and reliable operation of the transmission grid consistent with achievement of the Reliability Standards.<sup>3</sup> The CAISO is further under an obligation, pursuant to its FERC-approved Transmission Control Agreement, to secure compliance with all "Applicable Reliability Criteria." Applicable Reliability Criteria consists of the Reliability Standards as well as reliability criteria adopted by the CAISO (Grid Planning Standards).

The Reliability Standards define reliability on interconnected electric systems using the terms "adequacy" and "security." "Adequacy" is the ability of the electric systems to supply the aggregate electrical demand and energy requirements of their customers at all times, taking into account physical characteristics of the transmission system such as transmission ratings and scheduled and reasonably expected unscheduled outages of system elements. "Security" is the ability of the electric systems to withstand sudden disturbances such as electric short circuits or unanticipated loss of system elements. The Reliability Standards are organized by Performance Categories. Certain categories require that the grid operator not only ensure that grid integrity is maintained under certain adverse system conditions (e.g., security), but also that all customers continue to receive electric supply to meet demand (e.g., adequacy). In that case, grid reliability and service reliability would overlap. But there are other levels of performance where security can be maintained without ensuring adequacy.

-

<sup>&</sup>lt;sup>3</sup> Pub. Utilities Code § 345

#### D. Application of N-1, N-1-1, and N-2 Criteria

The CAISO will maintain the system in a safe operating mode at all times. This obligation translates into respecting the Reliability Criteria at all times, for example during normal operating conditions Category A (N-0) the CAISO must protect for all single contingencies Category B (N-1) and common mode Category C5 (N-2) double line outages. Also, after a single contingency, the CAISO must re-adjust the system to support the loss of the next most stringent contingency. This is referred to as the N-1-1 condition.

The N-1-1 vs N-2 terminology was introduced only as a mere temporal differentiation between two existing NERC Category C events. N-1-1 represents NERC Category C3 ("category B contingency, manual system adjustment, followed by another category B contingency"). The N-2 represents NERC Category C5 ("any two circuits of a multiple circuit tower line") as well as requirement R1.1 of the WECC Regional Criteria³ ("two adjacent circuits") with no manual system adjustment between the two contingencies.

#### E. Performance Criteria

As set forth on the Summary Table of Inputs and Methodology, this LCT Report is based on NERC performance level B and performance level C standard. The NERC Standards refer mainly to system being stable and both thermal and voltage limits be within applicable ratings. However, the CAISO also tests the electric system in regards to the dynamic and reactive margin compliance with the existing WECC regional criteria that further specifies the dynamic and reactive margin requirements for the same NERC performance levels. These performance levels can be described as follows:

#### a. LCR Performance Criteria- Category B

Category B describes the system performance that is expected immediately following the loss of a single transmission element, such as a transmission circuit, a generator, or a transformer.

Category B system performance requires that system is stable and all thermal and voltage limits must be within their "Applicable Rating," which, in this case, are the emergency ratings as generally determined by the PTO or facility owner. Applicable Rating includes a temporal element such that emergency ratings can only be maintained for certain duration. Under this category, load cannot be shed in order to assure the Applicable Ratings are met; however there is no guarantee that facilities are returned to within normal ratings or to a state where it is safe to continue to operate the system in a reliable manner such that the next element out will not cause a violation of the Applicable Ratings.

#### b. LCR Performance Criteria- Category C

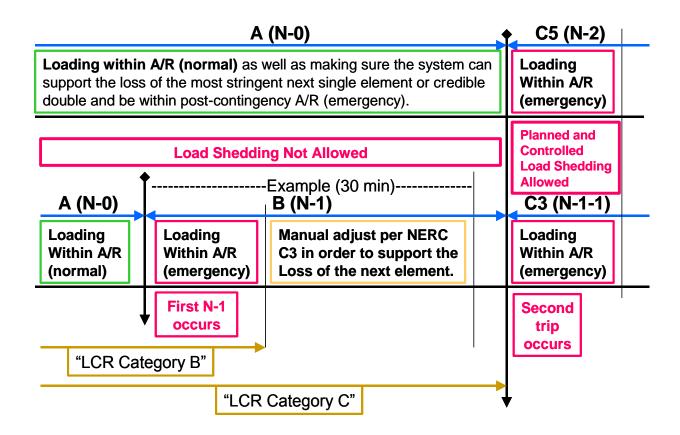
The Reliability Standards require system operators to "look forward" to make sure they safely prepare for the "next" N-1 following the loss of the "first" N-1 (stay within Applicable Ratings after the "next" N-1). This is commonly referred to as N-1-1. Because it is assumed that some time exists between the "first" and "next" element losses, operating personnel may make any reasonable and feasible adjustments to the system to prepare for the loss of the second element, including, operating procedures, dispatching generation, moving load from one substation to another to reduce equipment loading, dispatching operating personnel to specific station locations to manually adjust load from the substation site, or installing a "Special Protection Scheme" that would remove pre-identified load from service upon the loss of the "next" element.<sup>4</sup> All Category C requirements in this report refer to situations when in real time

9

-

<sup>&</sup>lt;sup>4</sup> A Special Protection Scheme is typically proposed as an operational solution that does not require

(N-0) or after the first contingency (N-1) the system requires additional readjustment in order to prepare for the next worst contingency. In this time frame, load drop is not allowed per existing Reliability Standards.


Generally, Category C describes system performance that is expected following the loss of two or more system elements. This loss of two elements is generally expected to happen simultaneously, referred to as N-2. It should be noted that once the "next" element is lost after the first contingency, as discussed above under the Performance Criteria B, N-1-1 scenario, the event is effectively a Category C. As noted above, depending on system design and expected system impacts, the **planned and controlled** interruption of supply to customers (load shedding), the removal from service of certain generators and curtailment of exports may be utilized to maintain grid "security."

#### c. <u>CAISO Statutory Obligation Regarding Safe Operation</u>

The CAISO will maintain the system in a safe operating mode at all times. This obligation translates into respecting the Reliability Standards at all times, for example during normal operating conditions Category A (N-0) the CAISO must protect for all single contingencies Category B (N-1) and common mode Category C5 (N-2) double line outages. As a further example, after a single contingency the CAISO must readjust the system in order to be able to support the loss of the next most stringent contingency Category C3 (N-1-1).

additional generation and permits operators to effectively prepare for the next event as well as ensure security should the next event occur. However, these systems have their own risks, which limit the extent to which they could be deployed as a solution for grid reliability augmentation. While they provide the value of protecting against the next event without the need for pre-contingency load shedding, they add points of potential failure to the transmission network. This increases the potential for load interruptions because sometimes these systems will operate when not required and other times they will not operate when needed.

Figure 1: Temporal graph of LCR Category B vs. LCR Category C:



The following definitions guide the CAISO's interpretation of the Reliability Standards governing safe mode operation and are used in this LCT Study:

#### Applicable Rating:

This represents the equipment rating that will be used under certain contingency conditions.

*Normal rating* is to be used under normal conditions.

<u>Long-term emergency ratings</u>, if available, will be used in all emergency conditions as long as "system readjustment" is provided in the amount of time given (specific to each element) to reduce the flow to within the normal ratings. If not available normal rating is to be used.

Short-term emergency ratings, if available, can be used as long as "system

readjustment" is provided in the "short-time" available in order to reduce the flow to within the long-term emergency ratings where the element can be kept for another length of time (specific to each element) before the flow needs to be reduced the below the normal ratings. If not available long-term emergency rating should be used.

<u>Temperature-adjusted ratings</u> shall not be used because this is a year-ahead study not a real-time tool, as such the worst-case scenario must be covered. In case temperature-adjusted ratings are the only ratings available then the minimum rating (highest temperature) given the study conditions shall be used.

<u>CAISO Transmission Register</u> is the only official keeper of all existing ratings mentioned above.

<u>Ratings for future projects</u> provided by PTO and agree upon by the CAISO shall be used.

<u>Other short-term ratings</u> not included in the CAISO Transmission Register may be used as long as they are engineered, studied and enforced through clear operating procedures that can be followed by real-time operators.

<u>Path Ratings</u> need to be maintained within their limits in order to assure that proper capacity is available in order to operate the system in real-time in a safe operating zone.

#### **Controlled load drop:**

This is achieved with the use of a Special Protection Scheme.

#### Planned load drop:

This is achieved when the most limiting equipment has short-term emergency ratings AND the operators have an operating procedure that clearly describes the actions that need to be taken in order to shed load.

#### **Special Protection Scheme:**

All known SPS shall be assumed. New SPS must be verified and approved by the CAISO and must comply with the new SPS guideline described in the CAISO Planning Standards.

#### **System Readjustment:**

This represents the actions taken by operators in order to bring the system within a safe operating zone after any given contingency in the system.

# Actions that can be taken as system readjustment after a single contingency (Category B):

- System configuration change based on validated and approved operating procedures
- 2. Generation re-dispatch
  - a. Decrease generation (up to 1150 MW) limit given by single contingency SPS as part of the CAISO Grid Planning standards (ISO G4)
  - b. Increase generation this generation will become part of the LCR need

# Actions, which shall not be taken as system readjustment after a single contingency (Category B):

 Load drop – based on the intent of the CAISO/WECC and NERC standards for category B contingencies.

This is one of the most controversial aspects of the interpretation of NERC Transmission Planning Standards since footnote b) mentions that load shedding can be done after a category B event in certain local areas in order to maintain compliance with performance criteria. However, the main body of the criteria spells out that no dropping of load should be done following a single contingency. All stakeholders and the CAISO agree that no involuntary interruption of load should be done immediately after a single contingency. Further, the CAISO and stakeholders now agree on the viability of dropping load as part of the system readjustment period – in order to protect for the next most limiting contingency. After a single contingency, it is understood that the system is in a Category B condition and the system should be planned based on the body of the criteria with no shedding of load regardless of whether it is done immediately or in 15-30 minute after the original contingency. Category C conditions only arrive after the second contingency has happened; at that point in time, shedding load is allowed in a planned and controlled manner.

A robust California transmission system should be, and under the LCT Study is being, planned based on the main body of the TPL Standards, and should not be planned based on footnote b) regarding Category B contingencies. Therefore, if there are available resources in the area, they are looked to meet reliability needs (and included in the LCR requirement) before resorting to involuntary load curtailment. The footnote may be applied for criteria compliance issues only where there are no resources available in the area.

#### Time allowed for manual readjustment:

This is the amount of time required for the operator to take all actions necessary to prepare the system for the next contingency. This time should be less than 30 minutes, based on existing CAISO Planning Standards.

This is a somewhat controversial aspect of the interpretation of existing criteria. This item is very specific in the CAISO Planning Standards. However, some will argue that 30 minutes only allows generation re-dispatch and automated switching where remote control is possible. If remote capability does not exist, a person must be dispatched in the field to do switching and 30 minutes may not allow sufficient time. If approved, an exemption from the existing time requirements may be given for small local areas with very limited exposure and impact, clearly described in operating procedures, and only until remote controlled switching equipment can be installed.

#### F. The Two Options Presented In This LCT Report

This LCT Study sets forth different solution "options" with varying ranges of potential service reliability consistent with CAISO's Planning Standard. The CAISO applies Option 2 for its purposes of identifying necessary local capacity needs and the corresponding potential scope of its backstop authority. Nevertheless, the CAISO continues to provide Option 1 as a point of reference for the CPUC and Local Regulatory Authorities in considering procurement targets for their jurisdictional LSEs.

#### 1. Option 1- Meet LCR Performance Criteria Category B

Option 1 is a service reliability level that reflects generation capacity that must be available to comply with reliability standards immediately after a NERC Category B given that load cannot be removed to meet this performance standard under Reliability Criteria. However, this capacity amount implicitly relies on load interruption as the **only means** of meeting any Reliability Standard that is beyond the loss of a single transmission element (N-1). These situations will likely require substantial load interruptions in order to maintain system continuity and alleviate equipment overloads prior to the actual occurrence of the second contingency.<sup>5</sup>

# 2. Option 2- Meet LCR Performance Criteria Category C and Incorporate Suitable Operational Solutions

Option 2 is a service reliability level that reflects generation capacity that is needed to readjust the system to prepare for the loss of a second transmission element (N-1-1) using generation capacity *after* considering all reasonable and feasible operating solutions (including those involving customer load interruption) developed and approved by the CAISO, in consultation with the PTOs. Under this option, there is no expected load interruption to end-use customers under normal or single contingency conditions as the CAISO operators prepare for the second contingency. However, the customer load may be interrupted in the event the second contingency occurs.

As noted, Option 2 is the local capacity level that the CAISO requires to reliably operate the grid per NERC, WECC and CAISO standards. As such, the CAISO recommends adoption of this Option to guide resource adequacy procurement.

#### III. Assumption Details: How the Study was Conducted

#### A. System Planning Criteria

<sup>5</sup> This potential for pre-contingency load shedding also occurs because real time operators must prepare for the loss of a common mode N-2 at all times.

The following table provides a comparison of system planning criteria, based on the performance requirements of the NERC Reliability Standard, used in the study:

**Table 4: Criteria Comparison** 

| Contingency Component(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ISO Grid<br>Planning<br>Standard          | Old RMR<br>Criteria | Local<br>Capacity<br>Criteria |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------|-------------------------------|
| A - No Contingencies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | X                                         | x                   | X                             |
| B – Loss of a single element  1. Generator (G-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | х                                         | х                   | χ1                            |
| 2. Transmission Circuit (L-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | X                                         | X                   | χ1                            |
| 3. Transformer (T-1) 4. Single Pole (dc) Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | X<br>X                                    | χ2<br>Χ             | χ1,2<br>χ1                    |
| 5. G-1 system readjusted L-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X                                         | X                   | χ,                            |
| C – Loss of two or more elements  1. Bus Section  2. Breaker (failure or internal fault)  3. L-1 system readjusted G-1  3. G-1 system readjusted T-1 or T-1 system readjusted G-1  3. L-1 system readjusted G-1  3. G-1 system readjusted G-1  3. L-1 system readjusted G-1  3. L-1 system readjusted L-1  4. Bipolar (dc) Line  5. Two circuits (Common Mode or Adjacent Circuit) L-2  6. SLG fault (stuck breaker or protection failure) for G-1  7. SLG fault (stuck breaker or protection failure) for T-1  8. SLG fault (stuck breaker or protection failure) for Bus section | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X |                     | X<br>X<br>X<br>X<br>X         |
| WECC-R1.2. Two generators (Common Mode) G-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | χ3                                        |                     | X                             |
| D – Extreme event – loss of two or more elements  Any B1-4 system readjusted (Common Mode or Adjacent Circuit) L-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | χ4                                        |                     | χ3                            |
| All other extreme combinations D1-14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | χ4                                        |                     |                               |

<sup>1</sup> System must be able to readjust to a safe operating zone in order to be able to support the loss of the next contingency.

<sup>2</sup> A thermal or voltage criterion violation resulting from a transformer outage may not be cause for a local area reliability requirement if the violation is considered marginal (e.g. acceptable loss of facility life or low voltage), otherwise, such a violation will necessitate creation of a requirement.

<sup>&</sup>lt;sup>3</sup> Evaluate for risks and consequence, per NERC standards. No voltage collapse or dynamic instability allowed.

<sup>4</sup> Evaluate for risks and consequence, per NERC standards.

A significant number of simulations were run to determine the most critical contingencies within each Local Capacity Area. Using power flow, post-transient load flow, and stability assessment tools, the system performance results of all the contingencies that were studied were measured against the system performance requirements defined by the criteria shown in Table 4. Where the specific system performance requirements were not met, generation was adjusted such that the minimum amount of generation required to meet the criteria was determined in the Local Capacity Area. The following describes how the criteria were tested for the specific type of analysis performed.

#### 1. Power Flow Assessment:

| Contingencies              | Thermal Criteria <sup>3</sup>  | Voltage Criteria <sup>4</sup>  |
|----------------------------|--------------------------------|--------------------------------|
| Generating unit 1,6        | Applicable Rating              | Applicable Rating              |
| Transmission line 1,6      | Applicable Rating              | Applicable Rating              |
| Transformer 1,6            | Applicable Rating <sup>5</sup> | Applicable Rating <sup>5</sup> |
| (G-1)(L-1) <sup>2, 6</sup> | Applicable Rating              | Applicable Rating              |
| Overlapping 6, 7           | Applicable Rating              | Applicable Rating              |

- <sup>1</sup> All single contingency outages (i.e. generating unit, transmission line or transformer) will be simulated on Participating Transmission Owners' local area systems.
- Key generating unit out, system readjusted, followed by a line outage. This over-lapping outage is considered a single contingency within the ISO Grid Planning Criteria. Therefore, load dropping for an overlapping G-1, L-1 scenario is not permitted.
- <sup>3</sup> Applicable Rating Based on ISO Transmission Register or facility upgrade plans including established Path ratings.
- <sup>4</sup> Applicable Rating ISO Grid Planning Criteria or facility owner criteria as appropriate including established Path ratings.
- A thermal or voltage criterion violation resulting from a transformer outage may not be cause for a local area reliability requirement if the violation is considered marginal (e.g. acceptable loss of facility life or low voltage), otherwise, such a violation will necessitate creation of a requirement.
- Following the first contingency (N-1), the generation must be sufficient to allow the operators to bring the system back to within acceptable (normal) operating range (voltage and loading) and/or appropriate OTC following the studied outage conditions.
- During normal operation or following the first contingency (N-1), the generation must be sufficient to allow the operators to prepare for the next worst N-1 or common mode N-2 without pre-contingency interruptible or firm load shedding. SPS/RAS/Safety Nets may be utilized to satisfy the criteria after the second N-1

or common mode N-2 except if the problem is of a thermal nature such that short-term ratings could be utilized to provide the operators time to shed either interruptible or firm load. T-2s (two transformer bank outages) would be excluded from the criteria.

#### 2. Post Transient Load Flow Assessment:

### Contingencies Selected 1

## Reactive Margin Criteria <sup>2</sup> Applicable Rating

If power flow results indicate significant low voltages for a given power flow contingency, simulate that outage using the post transient load flow program. The post-transient assessment will develop appropriate Q/V and/or P/V curves.

Applicable Rating – positive margin based on the higher of imports or load increase by 5% for N-1 contingencies, and 2.5% for N-2 contingencies.

#### 3. Stability Assessment:

### Contingencies Selected 1

# Stability Criteria <sup>2</sup> Applicable Rating

Base on historical information, engineering judgment and/or if power flow or post transient study results indicate significant low voltages or marginal reactive margin for a given contingency.

Applicable Rating – ISO Grid Planning Criteria or facility owner criteria as appropriate.

#### B. Load Forecast

#### 1. System Forecast

The California Energy Commission (CEC) derives the load forecast at the system and Participating Transmission Owner (PTO) levels. This relevant CEC forecast is then distributed across the entire system, down to the local area, division and substation level. The PTOs use an econometric equation to forecast the system load. The predominant parameters affecting the system load are (1) number of households, (2) economic activity (gross metropolitan products, GMP), (3) temperature and (4) increased energy efficiency and distributed generation programs.

#### 2. Base Case Load Development Method

The method used to develop the loads in the base case is a melding process that extracts, adjusts and modifies the information from the system, distribution and municipal utility forecasts. The melding process consists of two parts: Part 1 deals with the PTO load and Part 2 deals with the municipal utility load. There may be small differences between the methodologies used by each PTO to disaggregate the CEC load forecast to their level of local area as well as bar-bus model.

#### a. PTO Loads in Base Case

The methods used to determine the PTO loads are, for the most part, similar. One part of the method deals with the determination of the division<sup>6</sup> loads that would meet the requirements of 1-in-5 or 1-in-10 system or area base cases and the other part deals with the allocation of the division load to the transmission buses.

#### i. Determination of division loads

The annual division load is determined by summing the previous year division load and the current division load growth. Thus, the key steps are the determination of the initial year division load and the annual load growth. The initial year for the base case development method is based heavily on recorded data. The division load growth in the system base case is determined in two steps. First, the total PTO load growth for the year is determined, as the product of the PTO load and the load growth rate from the system load forecast. Then this total PTO load growth is allocated to the division, based on the relative magnitude of the load growth projected for the divisions by the distribution planners. For example, for the 1-in-10 area base case, the division load growth determined for the system base case is adjusted to the 1-in-10 temperature using the load temperature relation determined from the latest peak load and temperature data of the division.

19

-

<sup>&</sup>lt;sup>6</sup> Each PTO divides its territory in a number of smaller area named divisions. These are usually smaller and compact areas that have the same temperature profile.

#### ii. Allocation of division load to transmission bus level

Since the base case loads are modeled at the various transmission buses, the division loads developed must be allocated to those buses. The allocation process is different depending on the load types. For the most part, each PTO classifies its loads into four types: conforming, non-conforming, self-generation and generation-plant loads. Since the non-conforming and self-generation loads are assumed to not vary with temperature, their magnitude would be the same in the system or area base cases of the same year. The remaining load (the total division load developed above, less the quantity of non-conforming and self-generation load) is the conforming load. The remaining load is allocated to the transmission buses based on the relative magnitude of the distribution forecast. The summation of all loads in the base case is generally higher than the load forecast because some load, i.e., self-generation and generation-plant, are behind the meter and must be modeled in the base cases. However, for the most part, metered or aggregated data with telemetry is used to come up with the load forecast.

#### b. Municipal Loads in Base Case

The municipal utility forecasts that have been provided to the CEC and PTOs for the purposes of their base cases were also used for this study.

#### C. Power Flow Program Used in the LCT analysis

The technical studies were conducted using General Electric's Power System Load Flow (GE PSLF) program version 18.1. This GE PSLF program is available directly from GE or through the Western System Electricity Council (WECC) to any member.

To evaluate Local Capacity Areas, the starting base case was adjusted to reflect the latest generation and transmission projects as well as the one-in-ten-year peak load forecast for each Local Capacity Area as provided to the CAISO by the PTOs.

Electronic contingency files provided by the PTOs were utilized to perform the numerous contingencies required to identify the LCR. These contingency files include remedial action and special protection schemes that are expected to be in operation

during the year of study. An CAISO created EPCL (a GE programming language contained within the GE PSLF package) routine was used to run the combination of contingencies; however, other routines are available from WECC with the GE PSFL package or can be developed by third parties to identify the most limiting combination of contingencies requiring the highest amount of generation within the local area to maintain power flows within applicable ratings.

#### IV. Local Capacity Requirement Study Results

#### A. Summary of Study Results

LCR is defined as the amount of generating capacity that is needed within a Local Capacity Area to reliably serve the load located within this area. The results of the CAISO's analysis are summarized in the Executive Summary Tables.

Table 5: 2015 Local Capacity Needs vs. Peak Load and Local Area Generation

|                       | 2015Total<br>LCR (MW) | Peak Load<br>(1 in10)<br>(MW) | 2015 LCR<br>as % of<br>Peak Load | Total Dependable<br>Local Area<br>Generation (MW) | 2015 LCR as %<br>of Total Area<br>Generation |
|-----------------------|-----------------------|-------------------------------|----------------------------------|---------------------------------------------------|----------------------------------------------|
| Humboldt              | 166                   | 195                           | 85%                              | 207                                               | 80%                                          |
| North Coast/North Bay | 550                   | 1458                          | 38%                              | 901                                               | 61%                                          |
| Sierra                | 2200                  | 1961                          | 112%                             | 2070                                              | 106%**                                       |
| Stockton              | 707                   | 1105                          | 64%                              | 589                                               | 120%**                                       |
| Greater Bay           | 4367                  | 10229                         | 43%                              | 7505                                              | 58%**                                        |
| Greater Fresno        | 2439                  | 3217                          | 76%                              | 2848                                              | 86%**                                        |
| Kern                  | 437                   | 731                           | 60%                              | 495                                               | 88%**                                        |
| LA Basin              | 9097                  | 19970                         | 46%                              | 11193                                             | 81%                                          |
| Big Creek/Ventura     | 2270                  | 4807                          | 47%                              | 5363                                              | 42%                                          |
| San Diego             | 4112                  | 5407                          | 76%                              | 4547                                              | 90%**                                        |
| Total                 | 26345                 | 49080*                        | 54%*                             | 35718                                             | 74%                                          |

Table 6: 2014 Local Capacity Needs vs. Peak Load and Local Area Generation

|                       | 2014<br>Total LCR<br>(MW) | Peak Load<br>(1 in10)<br>(MW) | 2014 LCR<br>as % of<br>Peak Load | Total Dependable<br>Local Area<br>Generation (MW) | 2014 LCR as %<br>of Total Area<br>Generation |
|-----------------------|---------------------------|-------------------------------|----------------------------------|---------------------------------------------------|----------------------------------------------|
| Humboldt              | 195                       | 195                           | 100%                             | 243                                               | 80%                                          |
| North Coast/North Bay | 623                       | 1465                          | 43%                              | 921                                               | 68%                                          |
| Sierra                | 2088                      | 1958                          | 107%                             | 2050                                              | 102%**                                       |
| Stockton              | 701                       | 1163                          | 60%                              | 604                                               | 116%**                                       |
| Greater Bay           | 4638                      | 10419                         | 45%                              | 7616                                              | 61%**                                        |
| Greater Fresno        | 1857                      | 3246                          | 57%                              | 2828                                              | 66%                                          |
| Kern                  | 462                       | 1281                          | 36%                              | 677                                               | 68%**                                        |
| LA Basin              | 10430                     | 19694                         | 53%                              | 11789                                             | 88%                                          |
| Big Creek/Ventura     | 2250                      | 4580                          | 49%                              | 5318                                              | 42%                                          |
| San Diego             | 4063                      | 5200                          | 78%                              | 4706                                              | 86%**                                        |
| Total                 | 27307                     | 49201*                        | 56%*                             | 36752                                             | 74%                                          |

<sup>\*</sup> Value shown only illustrative, since each local area peaks at a time different from the system coincident peak load.

Tables 5 and 6 shows how much of the Local Capacity Area load is dependent on local generation and how much local generation must be available in order to serve the load in those Local Capacity Areas in a manner consistent with the Reliability Criteria. These tables also indicate where new transmission projects, new generation additions or demand side management programs would be most useful in order to reduce the dependency on existing, generally older and less efficient local area generation.

The term "Qualifying Capacity" used in this report is the latest "Net Qualifying Capacity" ("NQC") posted on the CAISO web site at:

http://www.caiso.com/planning/Pages/ReliabilityRequirements/Default.aspx
The NQC list includes the area (if applicable) where each resource is located for units already operational. Neither the NQC list nor this report incorporates Demand Side Management programs and their related NQC. Units scheduled to become operational before 6/1/2015 have been included in this 2015 LCR Report and added to the total

<sup>\*\*</sup> Generation deficient LCA (or with sub-area that is deficient) – deficiency included in LCR. Generator deficient area implies that in order to comply with the criteria, at summer peak, load may be shed immediately after the first contingency.

NQC values for those respective areas (see detail write-up for each area).

The first column, "Qualifying Capacity," reflects two sets of generation. The first set is comprised of generation that would normally be expected to be on-line such as Municipal generation and Regulatory Must-take generation (state, federal, QFs, wind and nuclear units). The second set is "market" generation. The second column, "2015 LCR Requirement Based on Category B" identifies the local capacity requirements, and deficiencies that must be addressed, in order to achieve a service reliability level based on Performance Criteria- Category B. The third column, "2015 LCR Requirement Based on Category C with Operating Procedure", sets forth the local capacity requirements, and deficiencies that must be addressed, necessary to attain a service reliability level based on Performance Criteria-Category C with operational solutions.

#### B. Summary of Zonal Needs

Based on the existing import allocation methodology, the only major 500 kV constraint not accounted for is path 26 (Midway-Vincent). *The current method allocates capacity on path 26 similar to the way imports are allocated to LSEs.* The total resources needed (based on the latest CEC load forecast) in each the two relevant zones, SP26 and NP26 is:

| Zone           | Load<br>Forecast | 15%<br>reserves | (-) Allocated | (-) Allocated<br>Path 26 Flow | Total Zonal<br>Resource |
|----------------|------------------|-----------------|---------------|-------------------------------|-------------------------|
|                | (MW)             | (MW)            | imports (MW)  | (MW)                          | Need (MW)               |
| SP26           | 28672            | 4301            | -8686         | -3750                         | 20537                   |
| NP26=NP15+ZP26 | 22393            | 3359            | -4710         | -2902                         | 18140                   |

#### Where:

<u>Load Forecast</u> is the most recent 1 in 2 CEC forecast for year 2015 - Final California Energy Demand Forecast, 2014 - 2024, Mid Demand Baseline, Mid AAEE Savings dated February 8, 2014.

Reserve Margin is 15% the minimum CPUC approved planning reserve margin.

<u>Allocated Imports</u> are the actual 2014 Available Import Capability for loads in the CAISO control area numbers that are not expected to change much by 2015 because there are no additional import transmission additions to the grid between now and

summer of 2015.

<u>Allocated Path 26 flow</u> The CAISO determines the amount of Path 26 transfer capacity available for RA counting purposes after accounting for (1) Existing Transmission Contracts (ETCs) that serve load outside the CAISO Balancing Area<sup>7</sup> and (2) loop flow<sup>8</sup> from the maximum path 26 rating of 4000 MW (North-to-South) and 3000 MW (South-to-North).

Both NP 26 and SP 26 load forecast, import allocation and zonal results refer to the CAISO Balancing Area only. This is done in order to be consistent with the import allocation methodology.

All resources that are counted as part of the Local Area Capacity Requirements fully count toward the Zonal Need. The local areas of San Diego, LA Basin and Big Creek/Ventura are all situated in SP26 and the remaining local areas are in NP26.

#### Changes compared to last year's results:

- The load forecast went up in Southern California by about 30 MW and up in Northern California by about 250 MW.
- The Import Allocations went up in Southern California by about 170 MW and down in Northern California by about 200 MW.
- The Path 26 transfer capability has not changed and is not envisioned to change in the near future. As such, the LSEs should assume that their load/share ratio allocation for path 26 will stay at the same levels as 2014. If there are any changes, they will be heavily influenced by the pre-existing "grandfathered contracts" and when they expire most of the LSEs will likely see their load share ratio going up, while the owners of these grandfathered contracts may see their share decreased to the load-share ratio.

<sup>&</sup>lt;sup>7</sup> The transfer capability on Path 26 must be de-rated to accommodate ETCs on Path 26 that are used to serve load outside of the CAISO Balancing Area. These particular ETCs represent physical transmission capacity that cannot be allocated to LSEs within the CAISO Balancing Area.

<sup>&</sup>lt;sup>8</sup> "Loop flow" is a phenomenon common to large electric power systems like the Western Electricity Coordinating Council. Power is scheduled to flow point-to-point on a Day-ahead and Hour-ahead basis through the CAISO. However, electric grid physics prevails and the actual power flow in real-time will differ from the pre-arranged scheduled flows. Loop flow is real, physical energy and it uses part of the available transfer capability on a path. If not accommodated, loop flow will cause overloading of lines, which can jeopardize the security and reliability of the grid.

#### C. Summary of Results by Local Area

Each Local Capacity Area's overall requirement is determined by also achieving each sub-area requirement. Because these areas are a part of the interconnected electric system, the total for each Local Capacity Area is not simply a summation of the sub-area needs. For example, some sub-areas may overlap and therefore the same units may count for meeting the needs in both sub-areas.

#### 1. Humboldt Area

#### **Area Definition**

The transmission tie lines into the area include:

- 1) Bridgeville-Cottonwood 115 kV line #1
- 2) Humboldt-Trinity 115 kV line #1
- 3) Willits-Garberville 60 kV line #1
- 4) Trinity-Maple Creek 60 kV line #1

The substations that delineate the Humboldt Area are:

- 1) Bridgeville and Low Gap are in, Cottonwood and First Glen are out
- 2) Humboldt is in, Trinity is out
- 3) Willits and Lytonville are out, Kekawaka and Garberville are in
- 4) Trinity is out, Ridge Cabin and Maple Creek are in

Total 2015 busload within the defined area: 186 MW with 9 MW of losses resulting in total load + losses of 195 MW.

Total units and qualifying capacity available in this area:

| MKT/SCHED<br>RESOURCE ID | BUS<br># | BUS NAME | kV   | NQC   | UNIT<br>ID | LCR SUB-<br>AREA NAME | NQC Comments           | CAISO Tag  |
|--------------------------|----------|----------|------|-------|------------|-----------------------|------------------------|------------|
| BLULKE_6_BLUELK          | 31156    | BLUELKPP | 12.5 | 8.49  | 1          | Humboldt 60 kV        |                        | Market     |
| BRDGVL_7_BAKER           |          |          |      | 0.00  |            | None                  | Not modeled Aug<br>NQC | QF/Selfgen |
| FAIRHV_6_UNIT            | 31150    | FAIRHAVN | 13.8 | 16.05 | 1          | Humboldt 60 kV        | Aug NQC                | QF/Selfgen |
| FTSWRD_6_TRFORK          |          |          |      | 0.00  |            | Humboldt 60 kV        | Energy Only            | Market     |
| FTSWRD_7_QFUNTS          |          |          |      | 0.50  |            | Humboldt 60 kV        | Not modeled Aug<br>NQC | QF/Selfgen |
| GRSCRK_6_BGCKWW          |          |          |      | 0.00  |            | Humboldt 60 kV        | Energy Only            | QF/Selfgen |
| HUMBPP_1_UNITS3          | 31180    | HUMB_G1  | 13.8 | 16.27 | 1          | None                  |                        | Market     |

| HUMBPP_1_UNITS3                           | 31180          | HUMB_G1              | 13.8         | 16.27                | 2        | None                                               |                             | Market                                 |
|-------------------------------------------|----------------|----------------------|--------------|----------------------|----------|----------------------------------------------------|-----------------------------|----------------------------------------|
| HUMBPP_1_UNITS3                           | 31180          | HUMB_G1              | 13.8         | 16.27                | 3        | None                                               |                             | Market                                 |
| HUMBPP_1_UNITS3                           | 31180          | HUMB_G1              | 13.8         | 16.27                | 4        | None                                               |                             | Market                                 |
| HUMBPP_6_UNITS1                           | 31181          | HUMB_G2              | 13.8         | 16.27                | 5        | Humboldt 60 kV                                     |                             | Market                                 |
| HUMBPP_6_UNITS1                           | 31181          | HUMB_G2              | 13.8         | 16.27                | 6        | Humboldt 60 kV                                     |                             | Market                                 |
| HUMBPP_6_UNITS1                           | 31181          | HUMB_G2              | 13.8         | 16.27                | 7        | Humboldt 60 kV                                     |                             | Market                                 |
| HUMBPP_6_UNITS2                           | 31182          | HUMB_G2              | 13.8         | 16.27                | 8        | Humboldt 60 kV                                     |                             | Market                                 |
| HUMBPP_6_UNITS2                           | 31182          | HUMB_G2              | 13.8         | 16.27                | 9        | Humboldt 60 kV                                     |                             | Market                                 |
| HUMBPP_6_UNITS2                           | 31182          | HUMB G2              | 13.8         | 16.27                | 10       | Humboldt 60 kV                                     |                             | Market                                 |
|                                           |                |                      |              |                      |          |                                                    |                             |                                        |
| HUMBSB_1_QF                               |                | _                    |              | 0.00                 |          | None                                               | Not modeled Aug<br>NQC      | QF/Selfgen                             |
| HUMBSB_1_QF KEKAWK_6_UNIT                 | 31166          | KEKAWAK              | 9.1          | 0.00                 | 1        | None<br>Humboldt 60 kV                             | _                           | QF/Selfgen<br>QF/Selfgen               |
|                                           |                | KEKAWAK<br>PAC.LUMB  | 9.1<br>13.8  |                      | 1 1      |                                                    | NQC                         | , ,                                    |
| KEKAWK_6_UNIT                             |                |                      |              | 0.00                 | <u> </u> | Humboldt 60 kV                                     | NQC<br>Aug NQC              | QF/Selfgen                             |
| KEKAWK_6_UNIT PACLUM_6_UNIT               | 31152          | PAC.LUMB             | 13.8         | 0.00<br>7.60         | 1        | Humboldt 60 kV<br>Humboldt 60 kV                   | NQC<br>Aug NQC<br>Aug NQC   | QF/Selfgen<br>QF/Selfgen               |
| KEKAWK_6_UNIT PACLUM_6_UNIT PACLUM_6_UNIT | 31152<br>31152 | PAC.LUMB<br>PAC.LUMB | 13.8<br>13.8 | 0.00<br>7.60<br>7.60 | 1 2      | Humboldt 60 kV<br>Humboldt 60 kV<br>Humboldt 60 kV | NQC Aug NQC Aug NQC Aug NQC | QF/Selfgen<br>QF/Selfgen<br>QF/Selfgen |

#### Major new projects modeled:

- 1. Humboldt 115/60 kV #1 and #2 transformer replacement
- 2. Bridgeville 115/60 kV #1 transformer replacement
- 3. Garberville Reactive Support

#### Critical Contingency Analysis Summary

#### **Humboldt Overall:**

The most critical contingency for the Humboldt area is the outage of the Bridgeville-Cottonwood 115 kV Line overlapping with an outage of one of the tie-line connecting the new Humboldt Bay units on the 115 kV side. The area limitation is the overload on the Humboldt – Trinity 115 kV Line. This contingency establishes a LCR of 166 MW in 2015 (includes 36 MW of QF/Selfgen) as the minimum capacity necessary for reliable load serving capability within this area.

For the single contingency, the most critical one is an outage of the Bridgeville-Cottonwood 115 kV Line when one of the Humboldt Bay Power Plant units connected to the 115 kV bus is out of service. The limitation is the overload on the Humboldt – Trinity 115 kV Line. This limiting contingency establishes a LCR of 116 MW in 2014 (includes 36 MW of QF/Selfgen).

#### **Effectiveness factors:**

The following units have at least 5% effective to the above-mentioned constraint:

| Gen Bus | Gen Name | Gen ID | Eff Fctr (%) |
|---------|----------|--------|--------------|
| 31156   | BLUELKPP | 1      | 65           |
| 31180   | HUMB_G1  | 4      | 64           |
| 31180   | HUMB_G1  | 3      | 64           |
| 31180   | HUMB_G1  | 2      | 64           |
| 31180   | HUMB_G1  | 1      | 64           |
| 31150   | FAIRHAVN | 1      | 61           |
| 31158   | LP SAMOA | 1      | 61           |
| 31182   | HUMB_G3  | 10     | 61           |
| 31182   | HUMB_G3  | 9      | 61           |
| 31182   | HUMB_G3  | 8      | 61           |
| 31181   | HUMB_G2  | 7      | 61           |
| 31181   | HUMB_G2  | 6      | 61           |
| 31181   | HUMB_G2  | 5      | 61           |
| 31152   | PAC.LUMB | 1      | 57           |
| 31152   | PAC.LUMB | 2      | 57           |
| 31153   | PAC.LUMB | 3      | 57           |
|         |          |        |              |

#### Changes compared to last year's results:

Compared to 2014 the total load and losses for the Humboldt area remain the same. The 60 kV sub-area has been eliminated due to the transformer upgrades. The overall LCR requirements in the Humboldt area have decreased by 29 MW.

#### **Humboldt Overall Requirements:**

2015 QF/Selfgen Market Max. Qualifying Capacity (MW) (MW) (MW) 207 Available generation 36 171

| 2015                                | Existing Generation<br>Capacity Needed (MW) | Deficiency<br>(MW) | Total MW<br>LCR Need |
|-------------------------------------|---------------------------------------------|--------------------|----------------------|
| Category B (Single) <sup>9</sup>    | 116                                         | 0                  | 116                  |
| Category C (Multiple) <sup>10</sup> | 166                                         | 0                  | 166                  |

<sup>&</sup>lt;sup>9</sup> A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

Multiple contingencies means that the system will be able the survive the loss of a single element, and

#### 2. North Coast / North Bay Area

#### **Area Definition**

The transmission tie facilities coming into the North Coast/North Bay area are:

- 1) Cortina-Mendocino 115 kV Line
- 2) Cortina-Eagle Rock 115 kV Line
- 3) Willits-Garberville 60 kV line #1
- 4) Vaca Dixon-Lakeville 230 kV line #1
- 5) Tulucay-Vaca Dixon 230 kV line #1
- 6) Lakeville-Sobrante 230 kV line #1
- 7) Ignacio-Sobrante 230 kV line #1

The substations that delineate the North Coast/North Bay area are:

- 1) Cortina is out, Mendocino and Indian Valley are in
- 2) Cortina is out, Eagle Rock, Highlands and Homestake are in
- 3) Willits and Lytonville are in, Garberville and Kekawaka are out
- 4) Vaca Dixon is out Lakeville is in
- 5) Tulucay is in Vaca Dixon is out
- 6) Lakeville is in, Sobrante is out
- 7) Ignacio is in, Sobrante and Crocket are out

Total 2015 busload within the defined area: 1419 MW with 39 MW of losses resulting in total load + losses of 1458 MW.

Total units and qualifying capacity available in this area are shown in the following table:

| MKT/SCHED<br>RESOURCE ID | BUS#  | BUS NAME | kV   | NQC   | UNI<br>T ID | LCR SUB-AREA<br>NAME             | NQC<br>Comments        | CAISO Tag  |
|--------------------------|-------|----------|------|-------|-------------|----------------------------------|------------------------|------------|
| ADLIN_1_UNITS            | 31435 | GEO.ENGY | 9.1  | 8.00  | 1           | Eagle Rock, Fulton,<br>Lakeville |                        | Market     |
| ADLIN_1_UNITS            | 31435 | GEO.ENGY | 9.1  | 8.00  | 2           | Eagle Rock, Fulton,<br>Lakeville |                        | Market     |
| BEARCN_2_UNITS           | 31402 | BEAR CAN | 13.8 | 6.50  | 1           | Fulton, Lakeville                |                        | Market     |
| BEARCN_2_UNITS           | 31402 | BEAR CAN | 13.8 | 6.50  | 2           | Fulton, Lakeville                |                        | Market     |
| FULTON_1_QF              |       |          |      | 0.08  |             | Fulton, Lakeville                | Not modeled<br>Aug NQC | QF/Selfgen |
| GEYS11_7_UNIT11          | 31412 | GEYSER11 | 13.8 | 65.00 | 1           | Eagle Rock, Fulton,<br>Lakeville |                        | Market     |
| GEYS12_7_UNIT12          | 31414 | GEYSER12 | 13.8 | 50.00 | 1           | Fulton, Lakeville                |                        | Market     |

the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

| GEYS13_7_UNIT13 | 31416 | GEYSER13 | 13.8 | 56.00 | 1 | Lakeville                        |                        | Market     |
|-----------------|-------|----------|------|-------|---|----------------------------------|------------------------|------------|
| GEYS14_7_UNIT14 | 31418 | GEYSER14 | 13.8 | 50.00 | 1 | Fulton, Lakeville                |                        | Market     |
| GEYS16_7_UNIT16 | 31420 | GEYSER16 | 13.8 | 49.00 | 1 | Fulton, Lakeville                |                        | Market     |
| GEYS17_2_BOTRCK | 31421 | BOTTLERK | 13.8 | 14.70 | 1 | Fulton, Lakeville                |                        | Market     |
| GEYS17_7_UNIT17 | 31422 | GEYSER17 | 13.8 | 53.00 | 1 | Fulton, Lakeville                |                        | Market     |
| GEYS18_7_UNIT18 | 31424 | GEYSER18 | 13.8 | 45.00 | 1 | Lakeville                        |                        | Market     |
| GEYS20_7_UNIT20 | _     | GEYSER20 |      | 40.00 | 1 | Lakeville                        |                        | Market     |
| GYS5X6_7_UNITS  |       | GEYSR5-6 |      | 40.00 | 1 | Eagle Rock, Fulton,<br>Lakeville |                        | Market     |
| GYS5X6_7_UNITS  | 31406 | GEYSR5-6 | 13.8 | 40.00 | 2 | Eagle Rock, Fulton,<br>Lakeville |                        | Market     |
| GYS7X8_7_UNITS  | 31408 | GEYSER78 | 13.8 | 38.00 | 1 | Eagle Rock, Fulton,<br>Lakeville |                        | Market     |
| GYS7X8_7_UNITS  | 31408 | GEYSER78 | 13.8 | 38.00 | 2 | Eagle Rock, Fulton,<br>Lakeville |                        | Market     |
| GYSRVL_7_WSPRNG |       |          |      | 1.68  |   | Fulton, Lakeville                | Not modeled<br>Aug NQC | QF/Selfgen |
| HILAND_7_YOLOWD |       |          |      | 0.00  |   | Eagle Rock, Fulton,<br>Lakeville | Energy Only            | Market     |
| HIWAY_7_ACANYN  |       |          |      | 0.59  |   | Lakeville                        | Not modeled<br>Aug NQC | QF/Selfgen |
| IGNACO_1_QF     |       |          |      | 0.00  |   | Lakeville                        | Not modeled<br>Aug NQC | QF/Selfgen |
| INDVLY_1_UNITS  | 31436 | INDIAN V | 9.1  | 1.28  | 1 | Eagle Rock, Fulton,<br>Lakeville | Aug NQC                | QF/Selfgen |
| MONTPH_7_UNITS  | 32700 | MONTICLO | 9.1  | 3.96  | 1 | Fulton, Lakeville                | Aug NQC                | QF/Selfgen |
| MONTPH_7_UNITS  | 32700 | MONTICLO | 9.1  | 3.95  | 2 | Fulton, Lakeville                | Aug NQC                | QF/Selfgen |
| MONTPH_7_UNITS  |       | MONTICLO | 9.1  | 0.94  | 3 | Fulton, Lakeville                | Aug NQC                | QF/Selfgen |
| NCPA_7_GP1UN1   | 38106 | NCPA1GY1 |      | 31.00 | 1 | Lakeville                        | Aug NQC                | MUNI       |
| NCPA_7_GP1UN2   | 38108 | NCPA1GY2 | 13.8 | 28.00 | 1 | Lakeville                        | Aug NQC                | MUNI       |
| NCPA_7_GP2UN3   | _     | NCPA2GY1 | 13.8 | 0.00  | 1 | Fulton, Lakeville                | Aug NQC                | MUNI       |
| NCPA_7_GP2UN4   | 38112 | NCPA2GY2 | 13.8 | 52.73 | 1 | Fulton, Lakeville                | Aug NQC                | MUNI       |
| POTTER_6_UNITS  | 31433 | POTTRVLY | 2.4  | 4.70  | 1 | Eagle Rock, Fulton,<br>Lakeville | Aug NQC                | Market     |
| POTTER_6_UNITS  | 31433 | POTTRVLY | 2.4  | 2.25  | 3 | Eagle Rock, Fulton,<br>Lakeville | Aug NQC                | Market     |
| POTTER_6_UNITS  | 31433 | POTTRVLY | 2.4  | 2.25  | 4 | Eagle Rock, Fulton,<br>Lakeville | Aug NQC                | Market     |
| POTTER_7_VECINO |       |          |      | 0.03  |   | Eagle Rock, Fulton,<br>Lakeville | Not modeled<br>Aug NQC | QF/Selfgen |
| SANTFG_7_UNITS  | 31400 | SANTA FE | 13.8 | 30.00 | 1 | Lakeville                        |                        | Market     |
| SANTFG_7_UNITS  | 31400 | SANTA FE | 13.8 | 30.00 | 2 | Lakeville                        |                        | Market     |
| SMUDGO_7_UNIT 1 | 31430 | SMUDGEO1 | 13.8 | 37.00 | 1 | Lakeville                        |                        | Market     |
| SNMALF_6_UNITS  | 31446 | SONMA LF | 9.1  | 4.14  | 1 | Fulton, Lakeville                | Aug NQC                | QF/Selfgen |
| UKIAH_7_LAKEMN  |       |          |      | 1.70  |   | Eagle Rock, Fulton,<br>Lakeville | Not modeled            | MUNI       |
| WDFRDF_2_UNITS  | 31404 | WEST FOR | 13.8 | 12.51 | 1 | Fulton, Lakeville                |                        | Market     |
| WDFRDF_2_UNITS  | 31404 | WEST FOR | 13.8 | 12.49 | 2 | Fulton, Lakeville                |                        | Market     |
| New Unit        | 31405 | RPSP1014 | 13.8 | 32    | 1 | Eagle Rock, Fulton,<br>Lakeville | No NQC - Pmax          | Market     |

### Major new projects modeled:

1. One new small renewable resource

#### Critical Contingency Analysis Summary

#### Eagle Rock Sub-area

The most critical contingency is the outage of Cortina-Mendocino 115 kV line and Geysers #5-Geysers #3 115 kV line. The sub-area area limitation is thermal overloading of the Eagle Rock-Cortina 115 kV line. This limiting contingency establishes a LCR of 180 MW in 2015 (includes 3 MW of QF/MUNI generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

The most critical single contingency is the outage of the Cortina-Mendocino 115 kV line with Geysers 11 generation unit out of service. The sub-area area limitation is thermal overloading of Eagle Rock-Cortina 115 kV line. This limiting contingency establishes a LCR of 165 MW in 2015 (includes 3 MW of QF/MUNI generation).

#### **Effectiveness factors:**

The following units have at least 5% effectiveness to the above-mentioned constraint:

| Gen Name | Gen ID                                                                                       | Eff Fctr (%)                                                                                                  |
|----------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| GEYSR5-6 | 1                                                                                            | 38                                                                                                            |
| GEYSR5-6 | 2                                                                                            | 38                                                                                                            |
| RPSP1014 | 1                                                                                            | 38                                                                                                            |
| GEYSER78 | 1                                                                                            | 38                                                                                                            |
| GEYSER78 | 2                                                                                            | 38                                                                                                            |
| GEYSER11 | 1                                                                                            | 38                                                                                                            |
| GEO.ENGY | 1                                                                                            | 38                                                                                                            |
| GEO.ENGY | 2                                                                                            | 38                                                                                                            |
| POTTRVLY | 1                                                                                            | 36                                                                                                            |
| POTTRVLY | 3                                                                                            | 36                                                                                                            |
| POTTRVLY | 4                                                                                            | 36                                                                                                            |
|          | GEYSR5-6<br>GEYSR5-6<br>RPSP1014<br>GEYSER78<br>GEYSER11<br>GEO.ENGY<br>GEO.ENGY<br>POTTRVLY | GEYSR5-6 1 GEYSR5-6 2 RPSP1014 1 GEYSER78 1 GEYSER78 2 GEYSER11 1 GEO.ENGY 1 GEO.ENGY 2 POTTRVLY 1 POTTRVLY 3 |

#### Fulton Sub-area

The most critical contingency is the outage of Lakeville-Fulton 230 kV line #1 and Fulton-Ignacio 230 kV line #1. The sub-area limitation is thermal overloading of Santa Rosa-Corona 115 kV line #1. This limiting contingency establishes a LCR of 268 MW in 2015 (includes 16 MW of QF and 54 MW of Muni generation) as the minimum capacity necessary for reliable load serving capability within this sub-area. All of the resources

needed to meet the Eagle Rock sub-area count towards the Fulton sub-area LCR need.

#### **Effectiveness factors:**

The following units have at least 5% effectiveness to the above-mentioned constraint:

| Gen Bus | Gen Name | Gen ID | Eff Fctr (%) |
|---------|----------|--------|--------------|
| 31404   | WEST FOR | 2      | 57           |
| 31402   | BEAR CAN | 1      | 57           |
| 31402   | BEAR CAN | 2      | 57           |
| 31404   | WEST FOR | 1      | 57           |
| 31414   | GEYSER12 | 1      | 57           |
| 31418   | GEYSER14 | 1      | 57           |
| 31420   | GEYSER16 | 1      | 57           |
| 31422   | GEYSER17 | 1      | 57           |
| 38110   | NCPA2GY1 | 1      | 57           |
| 38112   | NCPA2GY2 | 1      | 57           |
| 31421   | BOTTLERK | 1      | 57           |
| 31406   | GEYSR5-6 | 1      | 31           |
| 31406   | GEYSR5-6 | 2      | 31           |
| 31405   | RPSP1014 | 1      | 31           |
| 31408   | GEYSER78 | 1      | 31           |
| 31408   | GEYSER78 | 2      | 31           |
| 31412   | GEYSER11 | 1      | 31           |
| 31435   | GEO.ENGY | 1      | 31           |
| 31435   | GEO.ENGY | 2      | 31           |
| 31433   | POTTRVLY | 1      | 29           |
| 31433   | POTTRVLY | 3      | 29           |
| 31433   | POTTRVLY | 4      | 29           |
|         |          |        |              |

#### Lakeville Sub-area

The most limiting contingency is the outage of Vaca Dixon-Tulucay 230 kV line with DEC power plant out of service. The area limitation is thermal overloading of Vaca Dixon-Lakeville 230 kV. This limiting contingency establishes a LCR of 550 MW in 2015 (includes 17 MW of QF and 113 MW of MUNI generation). The LCR resources needed for Eagle Rock and Fulton sub-areas can be counted toward fulfilling the requirement of Lakeville sub-area.

#### **Effectiveness factors:**

The following units have at least 5% effectiveness to the above-mentioned constraint:

| Gen Bus | Gen Name | Gen ID | Eff Fctr (%) |
|---------|----------|--------|--------------|
| 31400   | SANTA FE | 2      | 38           |

| 31430 | SMUDGEO1 | 1 | 38 |
|-------|----------|---|----|
| 31400 | SANTA FE | 1 | 38 |
| 31416 | GEYSER13 | 1 | 38 |
| 31424 | GEYSER18 | 1 | 38 |
| 31426 | GEYSER20 | 1 | 38 |
| 38106 | NCPA1GY1 | 1 | 38 |
| 38108 | NCPA1GY2 | 1 | 38 |
| 31421 | BOTTLERK | 1 | 36 |
| 31404 | WEST FOR | 2 | 36 |
| 31402 | BEAR CAN | 1 | 36 |
| 31402 | BEAR CAN | 2 | 36 |
| 31404 | WEST FOR | 1 | 36 |
| 31414 | GEYSER12 | 1 | 36 |
| 31418 | GEYSER14 | 1 | 36 |
| 31420 | GEYSER16 | 1 | 36 |
| 31422 | GEYSER17 | 1 | 36 |
| 38110 | NCPA2GY1 | 1 | 36 |
| 38112 | NCPA2GY2 | 1 | 36 |
| 31446 | SONMA LF | 1 | 36 |
| 32700 | MONTICLO | 1 | 31 |
| 32700 | MONTICLO | 2 | 31 |
| 32700 | MONTICLO | 3 | 31 |
| 31406 | GEYSR5-6 | 1 | 18 |
| 31406 | GEYSR5-6 | 2 | 18 |
| 31405 | RPSP1014 | 1 | 18 |
| 31408 | GEYSER78 | 1 | 18 |
| 31408 | GEYSER78 | 2 | 18 |
| 31412 | GEYSER11 | 1 | 18 |
| 31435 | GEO.ENGY | 1 | 18 |
| 31435 | GEO.ENGY | 2 | 18 |
| 31433 | POTTRVLY | 1 | 15 |
| 31433 | POTTRVLY | 2 | 15 |
| 31433 | POTTRVLY | 3 | 15 |
|       |          |   |    |

#### Changes compared to last year's results:

The 2015 load forecast went down by 7 MW compared to the 2014 and total LCR need went down by 73 MW. The decrease in the LCR need is due to the lower load forecast and higher requirements for the Pittsburg/Oakland sub-area of the Bay Area.

### North Coast/North Bay Overall Requirements:

| 2015                 | QF/Selfgen | Muni | Market | Max. Qualifying |
|----------------------|------------|------|--------|-----------------|
|                      | (MW)       | (MW) | (MW)   | Capacity (MW)   |
| Available generation | 17         | 113  | 771    | 901             |

| 2015                                | Existing Generation  | Deficiency | Total MW |
|-------------------------------------|----------------------|------------|----------|
|                                     | Capacity Needed (MW) | (MW)       | LCR Need |
| Category B (Single) <sup>11</sup>   | 550                  | 0          | 550      |
| Category C (Multiple) <sup>12</sup> | 550                  | 0          | 550      |

#### 3. Sierra Area

#### Area Definition

The transmission tie lines into the Sierra Area are:

- 1) Table Mountain-Rio Oso 230 kV line
- Table Mountain-Palermo 230 kV line
- 3) Table Mt-Pease 60 kV line
- 4) Caribou-Palermo 115 kV line
- 5) Drum-Summit 115 kV line #1
- 6) Drum-Summit 115 kV line #2
- 7) Spaulding-Summit 60 kV line
- 8) Brighton-Bellota 230 kV line
- 9) Rio Oso-Lockeford 230 kV line
- 10) Gold Hill-Eight Mile Road 230 kV line
- 11) Lodi STIG-Eight Mile Road 230 kV line
- 12) Gold Hill-Lake 230 kV line

The substations that delineate the Sierra Area are:

- 1) Table Mountain is out Rio Oso is in
- 2) Table Mountain is out Palermo is in
- 3) Table Mt is out Pease is in
- 4) Caribou is out Palermo is in
- 5) Drum is in Summit is out
- 6) Drum is in Summit is out
- 7) Spaulding is in Summit is out
- 8) Brighton is in Bellota is out
- 9) Rio Oso is in Lockeford is out
- 10) Gold Hill is in Eight Mile is out
- 10) Cold I illi 15 ill Eight Wille 15 Out
- 11) Lodi STIG is in Eight Mile Road is out
- 12) Gold Hill is in Lake is out

<sup>&</sup>lt;sup>11</sup> A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

<sup>&</sup>lt;sup>12</sup> Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

Total 2015 busload within the defined area: 1843 MW with 118 MW of losses resulting in total load + losses of 1961 MW.

Total units and qualifying capacity available in this area:

| MKT/SCHED<br>RESOURCE ID | BUS<br># | BUS NAME | kV   | NQC    |   | LCR SUB-AREA<br>NAME                                                                                  | NQC<br>Comments            | CAISO Tag  |
|--------------------------|----------|----------|------|--------|---|-------------------------------------------------------------------------------------------------------|----------------------------|------------|
| APLHIL_1_SLABCK          |          |          |      | 0.00   | 1 | Placerville, South of<br>Rio Oso, South of<br>Palermo, South of<br>Table Mountain                     | Not modeled<br>Energy Only | Market     |
| BANGOR_6_HYDRO           |          |          |      | 0.00   |   | South of Table<br>Mountain                                                                            | Energy Only                | Market     |
| BELDEN_7_UNIT 1          | 31784    | BELDEN   | 13.8 | 115.00 | 1 | South of Palermo,<br>South of Table<br>Mountain                                                       | Aug NQC                    | Market     |
| BIOMAS_1_UNIT 1          | 32156    | WOODLAND | 9.1  | 24.70  | 1 | Drum-Rio Oso, South<br>of Palermo, South of<br>Table Mountain                                         | Aug NQC                    | QF/Selfgen |
| BNNIEN_7_ALTAPH          | 32376    | BONNIE N | 60   | 0.46   |   | Weimer, Placer,<br>Drum-Rio Oso, South<br>of Rio Oso, South of<br>Palermo, South of<br>Table Mountain | Not modeled<br>Aug NQC     | Market     |
| BOGUE_1_UNITA1           | 32451    | FREC     | 13.8 | 45.00  | 1 | Bogue, Drum-Rio<br>Oso, South of Table<br>Mountain                                                    | Aug NQC                    | Market     |
| BOWMN_6_UNIT             | 32480    | BOWMAN   | 9.1  | 2.95   | 1 | Drum-Rio Oso, South of Palermo, South of Table Mountain                                               | Aug NQC                    | MUNI       |
| BUCKCK_7_OAKFLT          |          |          |      | 1.12   |   | South of Palermo,<br>South of Table<br>Mountain                                                       | Not modeled<br>Aug NQC     | Market     |
| BUCKCK_7_PL1X2           | 31820    | BCKS CRK | 11   | 29.00  | 1 | South of Palermo,<br>South of Table<br>Mountain                                                       | Aug NQC                    | Market     |
| BUCKCK_7_PL1X2           | 31820    | BCKS CRK | 11   | 29.00  | 2 | South of Palermo,<br>South of Table<br>Mountain                                                       | Aug NQC                    | Market     |
| CAMPFW_7_FARWST          | 32470    | CMP.FARW | 9.1  | 3.80   | 1 | South of Table<br>Mountain                                                                            | Aug NQC                    | MUNI       |
| CHICPK_7_UNIT 1          | 32462    | CHI.PARK | 11.5 | 38.00  | 1 | Placer, Drum-Rio<br>Oso, South of Rio<br>Oso, South of<br>Palermo, South of<br>Table Mountain         | Aug NQC                    | MUNI       |
| COLGAT_7_UNIT 1          | 32450    | COLGATE1 | 13.8 | 161.65 | 1 | South of Table<br>Mountain                                                                            | Aug NQC                    | MUNI       |
| COLGAT_7_UNIT 2          | 32452    | COLGATE2 | 13.8 | 161.68 | 1 | South of Table<br>Mountain                                                                            | Aug NQC                    | MUNI       |
| CRESTA_7_PL1X2           | 31812    | CRESTA   | 11.5 | 35.00  | 1 | South of Palermo,<br>South of Table<br>Mountain                                                       | Aug NQC                    | Market     |
| CRESTA_7_PL1X2           | 31812    | CRESTA   | 11.5 | 35.00  | 2 | South of Palermo,<br>South of Table<br>Mountain                                                       | Aug NQC                    | Market     |
| DAVIS_7_MNMETH           |          |          |      | 1.95   |   | Drum-Rio Oso, South of Palermo, South of                                                              | Not modeled<br>Aug NQC     | Market     |

|                 | 1     | 1        | 1    |       |   |                                                                                               |                            | 1          |
|-----------------|-------|----------|------|-------|---|-----------------------------------------------------------------------------------------------|----------------------------|------------|
| DEADCK_1_UNIT   | 31862 | DEADWOOD | 9.1  | 0.00  | 1 | Table Mountain Drum-Rio Oso, South of Table Mountain                                          | Aug NQC                    | MUNI       |
| DEERCR_6_UNIT 1 | 32474 | DEER CRK | 9.1  | 3.48  | 1 | Drum-Rio Oso, South of Palermo, South of Table Mountain                                       | Aug NQC                    | Market     |
| DRUM_7_PL1X2    | 32504 | DRUM 1-2 | 6.6  | 13.00 | 1 | Drum-Rio Oso, South of Palermo, South of Table Mountain                                       | Aug NQC                    | Market     |
| DRUM_7_PL1X2    | 32504 | DRUM 1-2 | 6.6  | 13.00 | 2 | Drum-Rio Oso, South of Palermo, South of Table Mountain                                       | Aug NQC                    | Market     |
| DRUM_7_PL3X4    | 32506 | DRUM 3-4 | 6.6  | 13.70 | 1 | Drum-Rio Oso, South of Palermo, South of Table Mountain                                       | Aug NQC                    | Market     |
| DRUM_7_PL3X4    | 32506 | DRUM 3-4 | 6.6  | 13.70 | 2 | Drum-Rio Oso, South of Palermo, South of Table Mountain                                       | Aug NQC                    | Market     |
| DRUM_7_UNIT 5   | 32454 | DRUM 5   | 13.8 | 49.50 | 1 | Drum-Rio Oso, South<br>of Palermo, South of<br>Table Mountain                                 | Aug NQC                    | Market     |
| DUTCH1_7_UNIT 1 | 32464 | DTCHFLT1 | 11   | 22.00 | 1 | Placer, Drum-Rio<br>Oso, South of Rio<br>Oso, South of<br>Palermo, South of<br>Table Mountain | Aug NQC                    | Market     |
| DUTCH2_7_UNIT 1 | 32502 | DTCHFLT2 | 6.9  | 26.00 | 1 | Drum-Rio Oso, South of Palermo, South of Table Mountain                                       | Aug NQC                    | MUNI       |
| ELDORO_7_UNIT 1 | 32513 | ELDRADO1 | 21.6 | 11.00 | 1 | Placerville, South of<br>Rio Oso, South of<br>Palermo, South of<br>Table Mountain             |                            | Market     |
| ELDORO_7_UNIT 2 | 32514 | ELDRADO2 | 21.6 | 11.00 | 1 | Placerville, South of<br>Rio Oso, South of<br>Palermo, South of<br>Table Mountain             |                            | Market     |
| FMEADO_6_HELLHL | 32486 | HELLHOLE | 9.1  | 0.38  | 1 | South of Rio Oso,<br>South of Palermo,<br>South of Table<br>Mountain                          | Aug NQC                    | MUNI       |
| FMEADO_7_UNIT   | 32508 | FRNCH MD | 4.2  | 16.01 | 1 | South of Rio Oso,<br>South of Palermo,<br>South of Table<br>Mountain                          | Aug NQC                    | MUNI       |
| FORBST_7_UNIT 1 | 31814 | FORBSTWN | 11.5 | 37.50 | 1 | Drum-Rio Oso, South of Table Mountain                                                         | Aug NQC                    | MUNI       |
| GOLDHL_1_QF     |       |          |      | 0.00  |   | Placerville, South of<br>Rio Oso, South of<br>Palermo, South of<br>Table Mountain             | Not modeled                | QF/Selfgen |
| GRIDLY_6_SOLAR  |       |          |      | 0.00  |   | South of Table<br>Mountain                                                                    | Not modeled<br>Energy Only | Market     |
| GRNLF1_1_UNITS  | 32490 | GRNLEAF1 | 13.8 | 6.31  | 1 | Bogue, Drum-Rio<br>Oso, South of Table<br>Mountain                                            | Aug NQC                    | QF/Selfgen |
| GRNLF1_1_UNITS  | 32490 | GRNLEAF1 | 13.8 | 32.25 | 2 | Bogue, Drum-Rio<br>Oso, South of Table<br>Mountain                                            | Aug NQC                    | QF/Selfgen |
| GRNLF2_1_UNIT   | 32492 | GRNLEAF2 | 13.8 | 40.63 | 1 | Pease, Drum-Rio<br>Oso, South of Table                                                        | Aug NQC                    | QF/Selfgen |

|                 |       |          |      |        |   | Mountain                                                                                      |                        |            |
|-----------------|-------|----------|------|--------|---|-----------------------------------------------------------------------------------------------|------------------------|------------|
| HALSEY_6_UNIT   | 32478 | HALSEY F | 9.1  | 7.03   | 1 | Placer, Drum-Rio<br>Oso, South of Rio<br>Oso, South of<br>Palermo, South of<br>Table Mountain | Aug NQC                | Market     |
| HAYPRS_6_QFUNTS | 32488 | HAYPRES+ | 9.1  | 0.14   | 1 | Drum-Rio Oso, South of Palermo, South of Table Mountain                                       | Aug NQC                | QF/Selfgen |
| HAYPRS_6_QFUNTS | 32488 | HAYPRES+ | 9.1  | 0.15   | 2 | Drum-Rio Oso, South of Palermo, South of Table Mountain                                       | Aug NQC                | QF/Selfgen |
| HIGGNS_1_COMBIE |       |          |      | 0.00   |   | Drum-Rio Oso, South<br>of Rio Oso, South of<br>Palermo, South of<br>Table Mountain            | Energy Only            | Market     |
| HIGGNS_7_QFUNTS |       |          |      | 0.25   |   | Drum-Rio Oso, South<br>of Rio Oso, South of<br>Palermo, South of<br>Table Mountain            | Not modeled<br>Aug NQC | QF/Selfgen |
| KANAKA_1_UNIT   |       |          |      | 0.00   |   | Drum-Rio Oso, South of Table Mountain                                                         | Not modeled<br>Aug NQC | MUNI       |
| KELYRG_6_UNIT   | 31834 | KELLYRDG | 9.1  | 10.00  | 1 | Drum-Rio Oso, South of Table Mountain                                                         | Aug NQC                | MUNI       |
| LODIEC_2_PL1X2  | 38123 | LODI CT1 | 18   | 166.00 | 1 | South of Rio Oso,<br>South of Palermo,<br>South of Table<br>Mountain                          |                        | MUNI       |
| LODIEC_2_PL1X2  | 38124 | LODI ST1 | 18   | 114.00 | 1 | South of Rio Oso,<br>South of Palermo,<br>South of Table<br>Mountain                          |                        | MUNI       |
| MDFKRL_2_PROJCT | 32456 | MIDLFORK | 13.8 | 62.18  | 1 | South of Rio Oso,<br>South of Palermo,<br>South of Table<br>Mountain                          | Aug NQC                | MUNI       |
| MDFKRL_2_PROJCT | 32456 | MIDLFORK | 13.8 | 62.18  | 2 | South of Rio Oso,<br>South of Palermo,<br>South of Table<br>Mountain                          | Aug NQC                | MUNI       |
| MDFKRL_2_PROJCT | 32458 | RALSTON  | 13.8 | 84.32  | 1 | South of Rio Oso,<br>South of Palermo,<br>South of Table<br>Mountain                          | Aug NQC                | MUNI       |
| NAROW1_2_UNIT   | 32466 | NARROWS1 | 9.1  | 9.99   | 1 | South of Table<br>Mountain                                                                    | Aug NQC                | Market     |
| NAROW2_2_UNIT   | 32468 | NARROWS2 | 9.1  | 28.51  | 1 | South of Table<br>Mountain                                                                    | Aug NQC                | MUNI       |
| NWCSTL_7_UNIT 1 | 32460 | NEWCSTLE | 13.2 | 0.03   | 1 | Placer, Drum-Rio Oso, South of Rio Oso, South of Palermo, South of Table Mountain             | Aug NQC                | Market     |
| OROVIL_6_UNIT   | 31888 | OROVLLE  | 9.1  | 7.50   | 1 | Drum-Rio Oso, South of Table Mountain                                                         | Aug NQC                | QF/Selfgen |
| OXBOW_6_DRUM    | 32484 | OXBOW F  | 9.1  | 6.00   | 1 | Weimer, Drum-Rio<br>Oso, South of<br>Palermo, South of<br>Table Mountain                      | Aug NQC                | MUNI       |
| PACORO_6_UNIT   | 31890 | PO POWER | 9.1  | 7.07   | 1 | Drum-Rio Oso, South of Table Mountain                                                         | Aug NQC                | QF/Selfgen |

|                 | 1 1            |      |       |   | Drum Die Ose Couth                                                                 |                        |            |
|-----------------|----------------|------|-------|---|------------------------------------------------------------------------------------|------------------------|------------|
| PACORO_6_UNIT   | 31890 PO POWER | 9.1  | 7.07  | 2 | Drum-Rio Oso, South of Table Mountain                                              | Aug NQC                | QF/Selfgen |
| PLACVL_1_CHILIB | 32510CHILIBAR  | 4.2  | 3.46  | 1 | Placerville, South of<br>Rio Oso, South of<br>Palermo, South of<br>Table Mountain  | Aug NQC                | Market     |
| PLACVL_1_RCKCRE |                |      | 0.00  |   | Placerville, South of<br>Rio Oso, South of<br>Palermo, South of<br>Table Mountain  | Not modeled<br>Aug NQC | Market     |
| PLSNTG_7_LNCLND | 32408 PLSNT GR | 60   | 1.86  |   | Drum-Rio Oso, South<br>of Rio Oso, South of<br>Palermo, South of<br>Table Mountain | Not modeled<br>Aug NQC | Market     |
| POEPH_7_UNIT 1  | 31790POE 1     | 13.8 | 60.00 | 1 | South of Palermo,<br>South of Table<br>Mountain                                    | Aug NQC                | Market     |
| POEPH_7_UNIT 2  | 31792POE 2     | 13.8 | 60.00 | 1 | South of Palermo,<br>South of Table<br>Mountain                                    | Aug NQC                | Market     |
| RCKCRK_7_UNIT 1 | 31786ROCK CK1  | 13.8 | 56.00 | 1 | South of Palermo,<br>South of Table<br>Mountain                                    | Aug NQC                | Market     |
| RCKCRK_7_UNIT 2 | 31788ROCK CK2  | 13.8 | 56.00 | 1 | South of Palermo,<br>South of Table<br>Mountain                                    | Aug NQC                | Market     |
| RIOOSO_1_QF     |                |      | 1.37  |   | Drum-Rio Oso, South<br>of Palermo, South of<br>Table Mountain                      | Not modeled<br>Aug NQC | QF/Selfgen |
| ROLLIN_6_UNIT   | 32476 ROLLINSF | 9.1  | 11.09 | 1 | Weimer, Drum-Rio<br>Oso, South of<br>Palermo, South of<br>Table Mountain           | Aug NQC                | MUNI       |
| SLYCRK_1_UNIT 1 | 31832 SLY.CR.  | 9.1  | 10.36 | 1 | Drum-Rio Oso, South of Table Mountain                                              | Aug NQC                | MUNI       |
| SPAULD_6_UNIT 3 | 32472SPAULDG   | 9.1  | 6.12  | 3 | Drum-Rio Oso, South of Palermo, South of Table Mountain                            | Aug NQC                | Market     |
| SPAULD_6_UNIT12 | 32472SPAULDG   | 9.1  | 4.96  | 1 | Drum-Rio Oso, South of Palermo, South of Table Mountain                            | Aug NQC                | Market     |
| SPAULD_6_UNIT12 | 32472SPAULDG   | 9.1  | 4.96  | 2 | Drum-Rio Oso, South of Palermo, South of Table Mountain                            | Aug NQC                | Market     |
| SPI LI_2_UNIT 1 | 32498 SPILINCF | 12.5 | 9.34  | 1 | Drum-Rio Oso, South<br>of Rio Oso, South of<br>Palermo, South of<br>Table Mountain | Aug NQC                | QF/Selfgen |
| STIGCT_2_LODI   | 38114 Stig CC  | 13.8 | 49.50 | 1 | South of Rio Oso,<br>South of Palermo,<br>South of Table<br>Mountain               |                        | MUNI       |
| ULTRCK_2_UNIT   | 32500ULTR RCK  | 9.1  | 21.71 | 1 | Drum-Rio Oso, South<br>of Rio Oso, South of<br>Palermo, South of<br>Table Mountain | Aug NQC                | QF/Selfgen |
| WDLEAF_7_UNIT 1 | 31794WOODLEAF  | 13.8 | 55.00 | 1 | Drum-Rio Oso, South of Table Mountain                                              | Aug NQC                | MUNI       |
| WHEATL_6_LNDFIL | 32350WHEATLND  | 60   | 1.14  |   | South of Table<br>Mountain                                                         | Not modeled<br>Aug NQC | Market     |
| WISE_1_UNIT 1   | 32512WISE      | 12   | 11.44 | 1 | Placer, Drum-Rio                                                                   | Aug NQC                | Market     |

|                 |       |          |      |       |   | Oso, South of Rio<br>Oso, South of<br>Palermo, South of<br>Table Mountain                     |                        |            |
|-----------------|-------|----------|------|-------|---|-----------------------------------------------------------------------------------------------|------------------------|------------|
| WISE_1_UNIT 2   | 32512 | WISE     | 12   | 0.11  |   | Placer, Drum-Rio<br>Oso, South of Rio<br>Oso, South of<br>Palermo, South of<br>Table Mountain | Aug NQC                | Market     |
| YUBACT_1_SUNSWT | 32494 | YUBA CTY | 9.1  | 29.78 | 1 | Pease, Drum-Rio<br>Oso, South of Table<br>Mountain                                            | Aug NQC                | QF/Selfgen |
| YUBACT_6_UNITA1 | 32496 | YCEC     | 13.8 | 46.00 | 1 | Pease, Drum-Rio<br>Oso, South of Table<br>Mountain                                            |                        | Market     |
| NA              | 32162 | RIV.DLTA | 9.11 | 0.00  |   | Drum-Rio Oso, South<br>of Palermo, South of<br>Table Mountain                                 | No NQC -<br>hist. data | QF/Selfgen |
| UCDAVS_1_UNIT   | 32166 | UC DAVIS | 9.1  | 3.50  | 1 | Drum-Rio Oso, South of Palermo, South of Table Mountain                                       | No NQC -<br>hist. data | QF/Selfgen |

## Major new projects modeled:

1. Palermo-Rio Oso 115 kV Reconductoring

## <u>Critical Contingency Analysis Summary</u>

#### Placerville Sub-area

The most critical contingency is the loss of the Gold Hill-Clarksville 115 kV line followed by loss of the Gold Hill-Missouri Flat #2 115 kV line. The area limitation is thermal overloading of the Gold Hill-Missouri Flat #1 115 kV line. This limiting contingency establishes a LCR of 126 MW (includes 0 MW of QF and MUNI generation as well as 101 MW of deficiency) in 2015 as the minimum capacity necessary for reliable load serving capability within this sub-area.

#### **Effectiveness factors:**

All units within this area are needed therefore no effectiveness factor is required.

#### Placer Sub-area

The most critical contingency is the loss of the Gold Hill-Placer #1 115 kV line followed by loss of the Gold Hill-Placer #2 115 kV line. The area limitation is thermal overloading of the Drum-Higgins 115 kV line. This limiting contingency establishes a LCR of 125 MW (includes 38 MW of QF and MUNI generation as well as 46 MW of deficiency) in

2015 as the minimum capacity necessary for reliable load serving capability within this sub-area.

The single most critical contingency is the loss of the Gold Hill-Placer #2 115 kV line with Chicago Park unit out of service. The area limitation is thermal overloading of the Drum-Higgins 115 kV line. This limiting contingency establishes a local capacity need of 108 MW (includes 38 MW of QF and MUNI generation as well as 29 MW of deficiency) in 2015.

#### **Effectiveness factors:**

All units within this area (Chicago Park, Dutch Flat#1, Wise units 1&2, Newcastle and Halsey) have the same effectiveness factor.

#### Pease Sub-area

The most critical contingency is the loss of the Palermo-East Nicolaus 115 kV line with Yuba City Energy Center unit out of service. The area limitation is thermal overloading of the Palermo-Pease 115 kV line. This limiting contingency establishes a LCR of 116 MW (includes 70 MW of QF generation) in 2015 as the minimum capacity necessary for reliable load serving capability within this sub-area.

## **Effectiveness factors:**

All units within this area have the same effectiveness factor.

## Bogue Sub-area

No requirement due to the Palermo-Rio Oso reconductoring project. If this project is delayed all units within this area (Greenleaf #1 units 1&2 and Feather River EC) are needed.

#### South of Rio Oso Sub-area

The most critical contingency is the loss of the Rio Oso-Gold Hill 230 line followed by loss of the Rio Oso-Lincoln 115 kV line or vice versa. The area limitation is thermal overloading of the Rio Oso-Atlantic 230 kV line. This limiting contingency establishes a

LCR of 733 MW (includes 31 MW of QF and 593 MW of MUNI generation as well as 41 MW of deficiency) in 2015 as the minimum capacity necessary for reliable load serving capability within this sub-area.

The single most critical contingency is the loss of the Rio Oso-Gold Hill 230 line with the Ralston unit out of service. The area limitation is thermal overloading of the Rio Oso-Atlantic 230 kV line. This limiting contingency establishes a LCR of 640 MW (includes 31 MW of QF and 593 MW of MUNI generation) in 2015.

#### **Effectiveness factors:**

The following table has all units in South of Rio Oso sub-area and their effectiveness factor to the above-mentioned constraint.

| Gen Bus | Gen Name | Gen ID | Eff Fctr. (%) |
|---------|----------|--------|---------------|
| 32498   | SPILINCF | 1      | 49            |
| 32500   | ULTR RCK | 1      | 49            |
| 32456   | MIDLFORK | 1      | 33            |
| 32456   | MIDLFORK | 2      | 33            |
| 32458   | RALSTON  | 1      | 33            |
| 32513   | ELDRADO1 | 1      | 32            |
| 32514   | ELDRADO2 | 1      | 32            |
| 32510   | CHILIBAR | 1      | 32            |
| 32486   | HELLHOLE | 1      | 31            |
| 32508   | FRNCH MD | 1      | 30            |
| 32460   | NEWCSTLE | 1      | 26            |
| 32478   | HALSEY F | 1      | 24            |
| 32512   | WISE     | 1      | 24            |
| 38114   | Stig CC  | 1      | 14            |
| 38123   | Q267CT   | 1      | 14            |
| 38124   | Q267ST   | 1      | 14            |
| 32462   | CHI.PARK | 1      | 8             |
| 32464   | DTCHFLT1 | 1      | 4             |
|         |          |        |               |

#### Drum-Rio Oso Sub-area

The most critical contingency is the loss of the Rio Oso #2 230/115 transformer followed by loss of the Rio Oso-Brighton 230 kV line. The area limitation is thermal overloading of the Rio Oso #1 230/115 kV transformer. This limiting contingency establishes in 2015 a LCR of 596 MW (includes 192 MW of QF and 197 MW of MUNI generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

The single most critical contingency is the loss of the Rio Oso #2 230/115 transformer. The area limitation is thermal overloading of the Rio Oso #1 230/115 kV transformer. This limiting contingency establishes in 2015 a LCR of 220 MW (includes 192 MW of QF and 197 MW of MUNI generation).

## **Effectiveness factors:**

The following table has all units in Drum-Rio Oso sub-area and their effectiveness factor to the above-mentioned constraint.

| Gen Bus | Gen Name        | Gen ID | Eff Fctr. (%) |
|---------|-----------------|--------|---------------|
| 32156   | WOODLAND        | 1      | 22            |
| 32490   | GRNLEAF1        | 1      | 22            |
| 32490   | GRNLEAF1        | 2      | 22            |
| 32451   | FREC            | 1      | 21            |
| 32166   | UC DAVIS        | 1      | 18            |
| 32498   | SPILINCF        | 1      | 15            |
| 32502   | DTCHFLT2        | 1      | 15            |
| 32494   | YUBA CTY        | 1      | 14            |
| 32496   | YCEC            | 1      | 14            |
| 32492   | GRNLEAF2        | 1      | 13            |
| 32454   | DRUM 5          | 1      | 13            |
| 32476   | ROLLINSF        | 1      | 13            |
| 32474   | DEER CRK        | 1      | 13            |
| 32504   | DRUM 1-2        | 1      | 13            |
| 32504   | DRUM 1-2        | 2      | 13            |
| 32506   | DRUM 3-4        | 1      | 13            |
| 32506   | DRUM 3-4        | 2      | 13            |
| 32484   | OXBOW F         | 1      | 13            |
| 32472   | SPAULDG         | 3      | 12            |
| 32472   | SPAULDG         | 1      | 12            |
| 32472   | SPAULDG         | 2      | 12            |
| 32488   | HAYPRES+        | 1      | 12            |
| 32480   | BOWMAN          | 1      | 12            |
| 32488   | <b>HAYPRES+</b> | 2      | 12            |
| 32464   | DTCHFLT1        | 1      | 11            |
| 32162   | RIV.DLTA        | 1      | 11            |
| 32462   | CHI.PARK        | 1      | 9             |
| 32500   | ULTR RCK        | 1      | 6             |
| 31862   | DEADWOOD        | 1      | 5             |
| 31814   | FORBSTWN        | 1      | 5             |
| 31832   | SLY.CR.         | 1      | 5             |
| 31794   | WOODLEAF        | 1      | 5             |
| 32478   | HALSEY F        | 1      | 2             |
| 31888   | OROVLLE         | 1      | 2             |
| 32512   | WISE            | 1      | 2             |

| 31834 | KELLYRDG | 1 | 2 |
|-------|----------|---|---|
| 31890 | PO POWER | 1 | 2 |
| 31890 | PO POWER | 2 | 2 |
| 32460 | NEWCSTLE | 1 | 1 |

## South of Palermo Sub-area

The most critical contingency is the loss of the Double Circuit Tower Line Table Mountain-Rio Oso and Colgate-Rio Oso 230 kV lines. The area limitation is thermal overloading of the Pease-Rio Oso 115 kV line. This limiting contingency establishes a LCR of 1727 MW (includes 61 MW of QF and 639 MW of MUNI generation as well as 358 MW of deficiency) in 2015 as the minimum capacity necessary for reliable load serving capability within this sub-area.

The most critical single contingency is the loss of the Palermo- East Nicolaus 115 kV line with Belden unit out of service. The area limitation is thermal overloading of the Pease-Rio Oso 115 kV line. This contingency establishes in 2015 a LCR of 1290 MW (includes 61 MW of QF and 639 MW of MUNI generation).

#### Effectiveness factors:

All units within the South of Palermo are needed therefore no effectiveness factor is required.

### South of Table Mountain Sub-area

The most critical contingency is the loss of the Table Mountain-Rio Oso 230 kV and Table Mountain-Palermo double circuit tower line outage. The area limitation is thermal overloading of the Caribou-Palermo 115 kV line. This limiting contingency establishes in 2015 a LCR of 1803 MW (includes 192 MW of QF and 1107 MW of MUNI generation) as the minimum capacity necessary for reliable load serving capability within this area.

The units required for the South of Palermo sub-area satisfy the single contingency requirement for this sub-area.

### Effectiveness factors:

The following table has all units in Sierra area and their effectiveness factor to the above-mentioned constraint.

| Gen Bus | Gen Name | Gen ID | Eff Fctr. (%) |
|---------|----------|--------|---------------|
|         | FORBSTWN | 1      | 8             |
| 31794   | WOODLEAF | 1      | 8             |
| 31832   | SLY.CR.  | 1      | 7             |
| 31862   | DEADWOOD | 1      | 7             |
| 31888   | OROVLLE  | 1      | 6             |
| 31890   | PO POWER | 2      | 6             |
| 31890   | PO POWER | 1      | 6             |
| 31834   | KELLYRDG | 1      | 6             |
| 32452   | COLGATE2 | 1      | 5             |
| 32450   | COLGATE1 | 1      | 5             |
| 32466   | NARROWS1 | 1      | 5             |
| 32468   | NARROWS2 | 1      | 5             |
| 32470   | CMP.FARW | 1      | 5             |
| 32451   | FREC     | 1      | 5             |
| 32490   | GRNLEAF1 | 2      | 4             |
| 32490   | GRNLEAF1 | 1      | 4             |
| 32496   | YCEC     | 1      | 3             |
| 32494   | YUBA CTY | 1      | 3             |
| 32492   | GRNLEAF2 | 1      | 3             |
| 32156   | WOODLAND | 1      | 3             |
| 31820   | BCKS CRK | 1      | 2             |
| 31820   | BCKS CRK | 2      | 2             |
| 31788   | ROCK CK2 | 1      | 2             |
| 31812   | CRESTA   | 1      | 2             |
| 31812   | CRESTA   | 2      | 2             |
| 31792   | POE 2    | 1      | 2             |
| 31790   | POE 1    | 1      | 2             |
| 31786   | ROCK CK1 | 1      | 2             |
| 31784   | BELDEN   | 1      | 2             |
| 32166   | UC DAVIS | 1      | 2             |
| 32500   | ULTR RCK | 1      | 2             |
| 32498   | SPILINCF | 1      | 2             |
| 32162   | RIV.DLTA | 1      | 2             |
| 32510   | CHILIBAR | 1      | 2             |
| 32514   | ELDRADO2 | 1      | 2             |
| 32513   | ELDRADO1 | 1      | 2             |
| 32478   | HALSEY F | 1      | 2             |
| 32458   | RALSTON  | 1      | 2             |
| 32456   | MIDLFORK | 1      | 2             |
| 32456   | MIDLFORK | 2      | 2             |
| 38114   | Stig CC  | 1      | 2             |
| 32460   | NEWCSTLE | 1      | 2             |
| 32512   | WISE     | 1      | 2             |

| 32486 | HELLHOLE | 1 | 2 |
|-------|----------|---|---|
| 32508 | FRNCH MD | 1 | 2 |
| 32502 | DTCHFLT2 | 1 | 2 |
| 32462 | CHI.PARK | 1 | 2 |
| 32464 | DTCHFLT1 | 1 | 1 |
| 32454 | DRUM 5   | 1 | 1 |
| 32476 | ROLLINSF | 1 | 1 |
| 32484 | OXBOW F  | 1 | 1 |
| 32474 | DEER CRK | 1 | 1 |
| 32506 | DRUM 3-4 | 1 | 1 |
| 32506 | DRUM 3-4 | 2 | 1 |
| 32504 | DRUM 1-2 | 1 | 1 |
| 32504 | DRUM 1-2 | 2 | 1 |
| 32488 | HAYPRES+ | 1 | 1 |
| 32488 | HAYPRES+ | 2 | 1 |
| 32480 | BOWMAN   | 1 | 1 |
| 32472 | SPAULDG  | 1 | 1 |
| 32472 | SPAULDG  | 2 | 1 |
| 32472 | SPAULDG  | 3 | 1 |
| 38123 | Q267CT1  | 1 | 1 |
| 38124 | Q267ST1  | 1 | 1 |
|       |          |   |   |

## Changes compared to last year's results:

The Sierra Area load forecast went up by 3 MW and the LCR need has increased by 129 MW. The entire increase in LCR is solely due to increase in "deficiency" caused by load growth and delay in transmission project implementation.

## Sierra Overall Requirements:

| 2015                 | QF<br>(MW) | Muni<br>(MW) | Market<br>(MW) | Max. Qualifying Capacity (MW) |
|----------------------|------------|--------------|----------------|-------------------------------|
| Available generation | 192        | 1107         | 771            | 2070                          |

| 2015                                | Existing Generation  | Deficiency | Total MW |
|-------------------------------------|----------------------|------------|----------|
|                                     | Capacity Needed (MW) | (MW)       | LCR Need |
| Category B (Single) <sup>13</sup>   | 1329                 | 29         | 1421     |
| Category C (Multiple) <sup>14</sup> | 1803                 | 397        | 2200     |

-

<sup>&</sup>lt;sup>13</sup> A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

operations standards.

14 Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

#### 4. Stockton Area

## **Area Definition**

The transmission facilities that establish the boundary of the Tesla-Bellota Sub-area are:

- 1) Bellota 230/115 kV Transformer #1
- 2) Bellota 230/115 kV Transformer #2
- 3) Tesla-Tracy 115 kV Line
- 4) Tesla-Salado 115 kV Line
- 5) Tesla-Salado-Manteca 115 kV line
- 6) Tesla-Schulte #1 115 kV Line
- 7) Tesla-Schulte #2 115 kV Line

The substations that delineate the Tesla-Bellota Sub-area are:

- 1) Bellota 230 kV is out Bellota 115 kV is in
- Bellota 230 kV is out Bellota 115 kV is in
- 3) Tesla is out Tracy is in
- 4) Tesla is out Salado is in
- 5) Tesla is out Salado and Manteca are in
- 6) Tesla is out Schulte is in
- 7) Tesla is out Schulte is in

The transmission facilities that establish the boundary of the Lockeford Sub-area are:

- 1) Lockeford-Industrial 60 kV line
- 2) Lockeford-Lodi #1 60 kV line
- Lockeford-Lodi #2 60 kV line
- 4) Lockeford-Lodi #3 60 kV line

The substations that delineate the Lockeford Sub-area are:

- 1) Lockeford is out Industrial is in
- 2) Lockeford is out Lodi is in
- Lockeford is out Lodi is in
- 4) Lockeford is out Lodi is in

The transmission facilities that establish the boundary of the Weber Sub-area are:

- 1) Weber 230/60 kV Transformer #1
- 2) Weber 230/60 kV Transformer #2
- Weber 230/60 kV Transformer #2a

The substations that delineate the Weber Sub-area are:

- 1) Weber 230 kV is out Weber 60 kV is in
- 2) Weber 230 kV is out Weber 60 kV is in
- 3) Weber 230 kV is out Weber 60 kV is in

Total 2015 busload within the defined area: 1085 MW with 20 MW of losses resulting in total load + losses of 1105 MW.

Total units and qualifying capacity available in this area:

| MKT/SCHED<br>RESOURCE ID | BUS#  | BUS NAME | kV   | NQC    | UNIT<br>ID | LCR SUB-<br>AREA NAME        | NQC Comments           | CAISO Tag  |
|--------------------------|-------|----------|------|--------|------------|------------------------------|------------------------|------------|
| BEARDS_7_UNIT 1          | 34074 | BEARDSLY | 6.9  | 8.36   | 1          | Tesla-Bellota,<br>Stanislaus | Aug NQC                | MUNI       |
| CAMCHE_1_PL1X3           | 33850 | CAMANCHE | 4.2  | 1.44   | 1          | Tesla-Bellota                | Aug NQC                | MUNI       |
| CAMCHE_1_PL1X3           | 33850 | CAMANCHE | 4.2  | 1.44   | 2          | Tesla-Bellota                | Aug NQC                | MUNI       |
| CAMCHE_1_PL1X3           | 33850 | CAMANCHE | 4.2  | 1.45   | 3          | Tesla-Bellota                | Aug NQC                | MUNI       |
| COGNAT_1_UNIT            | 33818 | COG.NTNL | 12   | 25.46  | 1          | Weber                        | Aug NQC                | QF/Selfgen |
| CURIS_1_QF               |       |          |      | 0.94   |            | Tesla-Bellota                | Not modeled Aug<br>NQC | QF/Selfgen |
| DONNLS_7_UNIT            | 34058 | DONNELLS | 13.8 | 72.00  | 1          | Tesla-Bellota,<br>Stanislaus | Aug NQC                | MUNI       |
| FROGTN_7_UTICA           |       |          |      | 0.00   |            | Tesla-Bellota,<br>Stanislaus | Energy Only            | Market     |
| LODI25_2_UNIT 1          | 38120 | LODI25CT | 9.11 | 22.70  | 1          | Lockeford                    |                        | MUNI       |
| PHOENX_1_UNIT            |       |          |      | 1.33   |            | Tesla-Bellota,<br>Stanislaus | Not modeled Aug<br>NQC | Market     |
| SCHLTE_1_PL1X3           | 33805 | GWFTRCY1 | 13.8 | 83.56  | 1          | Tesla-Bellota                |                        | Market     |
| SCHLTE_1_PL1X3           | 33807 | GWFTRCY2 | 13.8 | 82.88  | 1          | Tesla-Bellota                |                        | Market     |
| SCHLTE_1_PL1X3           | 33811 | GWFTRCY3 | 13.8 | 132.96 | 1          | Tesla-Bellota                |                        | Market     |
| SNDBAR_7_UNIT 1          | 34060 | SANDBAR  | 13.8 | 13.11  | 1          | Tesla-Bellota,<br>Stanislaus | Aug NQC                | MUNI       |
| SPIFBD_1_PL1X2           | 33917 | FBERBORD | 115  | 0.63   | 1          | Tesla-Bellota,<br>Stanislaus | Aug NQC                | QF/Selfgen |
| SPRGAP_1_UNIT 1          | 34078 | SPRNG GP | 6    | 0.08   | 1          | Tesla-Bellota,<br>Stanislaus | Aug NQC                | Market     |
| STANIS_7_UNIT 1          | 34062 | STANISLS | 13.8 | 91.00  | 1          | Tesla-Bellota,<br>Stanislaus | Aug NQC                | Market     |
| STNRES_1_UNIT            | 34056 | STNSLSRP | 13.8 | 10.10  | 1          | Tesla-Bellota                | Aug NQC                | QF/Selfgen |
| TULLCK_7_UNITS           | 34076 | TULLOCH  | 6.9  | 8.23   | 1          | Tesla-Bellota                | Aug NQC                | MUNI       |
| TULLCK_7_UNITS           | 34076 | TULLOCH  | 6.9  | 8.24   | 2          | Tesla-Bellota                | Aug NQC                | MUNI       |
| ULTPCH_1_UNIT 1          | 34050 | CH.STN.  | 13.8 | 17.15  | 1          | Tesla-Bellota,<br>Stanislaus | Aug NQC                | QF/Selfgen |
| VLYHOM_7_SSJID           |       |          |      | 1.40   |            | Tesla-Bellota,<br>Stanislaus | Not modeled Aug<br>NQC | QF/Selfgen |
| NA                       | 33687 | STKTN WW | 60   | 1.50   | 1          | Weber                        | No NQC - hist. data    | QF/Selfgen |
| NA                       | 33830 | GEN.MILL | 9.11 | 2.50   | 1          | Lockeford                    | No NQC - hist. data    | QF/Selfgen |
| STOKCG_1_UNIT 1          | 33814 | CPC STCN | 12.5 | 0.00   | 1          | Tesla-Bellota                |                        | QF/Selfgen |

## Major new projects modeled:

1. Weber-Stockton "A" #1 & #2 60 kV Reconductoring

## Critical Contingency Analysis Summary

#### Stockton overall

The requirement for this area is driven by the sum of requirements for the Tesla-Bellota, Lockeford and Weber Sub-areas.

#### Stanislaus Sub-area

The critical contingency for the Stanislaus area is the loss of Bellota-Riverbank-Melones 115 kV circuit with Stanislaus PH out of service. The area limitation is thermal overloading of the River Bank Jct.-Manteca 115 kV line. This limiting contingency establishes a local capacity need of 112 MW (including 19 MW of QF and 94 MW of MUNI generation) in 2015 as the minimum capacity necessary for reliable load serving capability within this sub-area.

#### Effectiveness factors:

All units within this sub-area have the same effectiveness factor.

#### Tesla-Bellota Sub-area

The two most critical contingencies listed below together establish a local capacity need of 592 MW (includes 30 MW of QF and 114 MW of MUNI generation as well as 248 MW of deficiency) in 2015 as the minimum capacity necessary for reliable load serving capability within this sub-area.

The most critical contingency for the Tesla-Bellota pocket is the loss of Schulte-Kasson-Manteca 115 kV and Schulte-Lammers 115 kV. The area limitation is thermal overload of the Tesla-Tracy 115 kV line above its emergency rating. This limiting contingency establishes a local capacity need of 485 MW (includes 30 MW of QF and 114 MW of MUNI generation as well as 248 MW of deficiency) in 2015.

The second most critical contingency for the Tesla-Bellota pocket is the loss of Tesla-Tracy 115 kV and Tesla-Schulte #2 115 kV lines. The area limitation is thermal overload of the Tesla-Schulte #1 115 kV line. This limiting contingency establishes a

2015 local capacity need of 345 MW (includes 30 MW of QF and 114 MW of MUNI generation).

The single most critical contingency for the Tesla-Bellota pocket is the loss of Tesla-Schulte #2 115 kV line and the loss of the GWF Tracy unit #3. The area limitation is thermal overload of the Tesla-Schulte #1 115 kV line. This single contingency establishes a local capacity need of 339 MW (includes 30 MW of QF and 114 MW of MUNI generation) in 2015.

All of the resources needed to meet the Stanislaus sub-area count towards the Tesla-Bellota sub-area LCR need.

## **Effectiveness factors:**

All units within this sub-area are needed for the most limiting contingencies therefore no effectiveness factor is required.

## Lockeford Sub-area

The critical contingency for the Lockeford area is the loss of Lockeford-Industrial 60 kV circuit and Lockeford-Lodi #2 60 kV circuit. The area limitation is thermal overloading of the Lockeford-Lodi Jct. section of the Lockeford-Lodi #3 60 kV circuit. This limiting contingency establishes a 2015 local capacity need of 52 MW (including 2 MW of QF and 23 MW of MUNI generation as well as 27 MW of deficiency) as the minimum capacity necessary for reliable load serving capability within this area.

#### **Effectiveness factors:**

All units within this sub-area are needed therefore no effectiveness factor is required.

#### Weber Sub-area

The most critical contingency is the loss of the Weber 230/60 kV Transformer #1 and Cogeneration National unit. The area limitation is thermal overloading of the Weber 230/60 kV Transformer #2 & 2A. This limiting contingency establishes a LCR of 63 MW

(includes 27 MW of QF generation as well as 36 MW of deficiency) in 2015 as the minimum capacity necessary for reliable load serving capability within this sub-area.

The most critical single contingency is the loss of the Weber 230/60 kV Transformer #1. The area limitation is thermal overloading of the Weber 230/60 kV Transformer #2 & 2A. This contingency establishes in 2015 a LCR of 18 MW (includes 27 MW of QF generation).

## Changes compared to last year's results:

Overall the Stockton area load forecast went down by 58 MW. The overall requirement for the Stockton area increased by 6 MW mainly due to increase in deficiency. The overall need for existing generation capacity has decreased by 50 MW.

## Stockton Overall Requirements:

| 2015                 | QF<br>(MW) | MUNI<br>(MW) | Market<br>(MW) | Max. Qualifying Capacity (MW) |
|----------------------|------------|--------------|----------------|-------------------------------|
| Available generation | 60         | 137          | 392            | 589                           |

| 2015                                | Existing Generation Capacity Needed (MW) | Deficiency<br>(MW) | Total MW<br>LCR Need |
|-------------------------------------|------------------------------------------|--------------------|----------------------|
| Category B (Single) <sup>15</sup>   | 357                                      | 0                  | 357                  |
| Category C (Multiple) <sup>16</sup> | 396                                      | 311                | 707                  |

#### 5. **Greater Bay Area**

## Area Definition

The transmission tie lines into the Greater Bay Area are:

- 1) Lakeville-Sobrante 230 kV
- Ignacio-Sobrante 230 kV 2)

<sup>&</sup>lt;sup>15</sup> A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

<sup>&</sup>lt;sup>16</sup> Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

- 3) Parkway-Moraga 230 kV
- 4) Bahia-Moraga 230 kV
- 5) Lambie SW Sta-Vaca Dixon 230 kV
- 6) Peabody-Birds Landing SW Sta 230 kV
- 7) Tesla-Kelso 230 kV
- 8) Tesla-Delta Switching Yard 230 kV
- 9) Tesla-Pittsburg #1 230 kV
- 10) Tesla-Pittsburg #2 230 kV
- 11) Tesla-Newark #1 230 kV
- 12) Tesla-Newark #2 230 kV
- 13) Tesla-Ravenswood 230 kV
- 14) Tesla-Metcalf 500 kV
- 15) Moss Landing-Metcalf 500 kV
- 16) Moss Landing-Metcalf #1 230 kV
- 17) Moss Landing-Metcalf #2 230 kV
- 18) Oakdale TID-Newark #1 115 kV
- 19) Oakdale TID-Newark #2 115 kV

## The substations that delineate the Greater Bay Area are:

- 1) Lakeville is out Sobrante is in
- 2) Ignacio is out Crocket and Sobrante are in
- 3) Parkway is out Moraga is in
- 4) Bahia is out Moraga is in
- 5) Lambie SW Sta is in Vaca Dixon is out
- 6) Peabody is out Birds Landing SW Sta is in
- 7) Tesla and USWP Ralph are out Kelso is in
- 8) Tesla and Altmont Midway are out Delta Switching Yard is in
- 9) Tesla and Tres Vaqueros are out Pittsburg is in
- 10) Tesla and Flowind are out Pittsburg is in
- 11) Tesla is out Newark is in
- 12) Tesla is out Newark and Patterson Pass are in
- 13) Tesla is out Ravenswood is in
- 14) Tesla is out Metcalf is in
- 15) Moss Landing is out Metcalf is in
- 16) Moss Landing is out Metcalf is in
- 17) Moss Landing is out Metcalf is in
- 18) Oakdale TID is out Newark is in
- 19) Oakdale TID is out Newark is in

Total 2015 bus load within the defined area is 9781 MW with 184 MW of losses and 264 MW of pumps resulting in total load + losses + pumps of 10229 MW. This corresponds to about 9629 MW of load per CEC forecast since there are about 600 MW of loads behind the meter modeled in the base cases.

Total units and qualifying capacity available in this area:

| MKT/SCHED<br>RESOURCE ID | BUS#  | BUS NAME  | kV   | NQC    | UNIT<br>ID | LCR SUB-<br>AREA NAME | NQC Comments           | CAISO Tag  |
|--------------------------|-------|-----------|------|--------|------------|-----------------------|------------------------|------------|
| ALMEGT_1_UNIT 1          | 38118 | ALMDACT1  | 13.8 | 23.80  | 1          | Oakland               |                        | MUNI       |
| ALMEGT_1_UNIT 2          | 38119 | ALMDACT2  | 13.8 | 24.40  | 1          | Oakland               |                        | MUNI       |
| BANKPP_2_NSPIN           | 38760 | DELTA E   | 13.2 | 28.00  | 10         | Contra Costa          | Pumps                  | MUNI       |
| BANKPP_2_NSPIN           | 38760 | DELTA E   | 13.2 | 28.00  | 11         | Contra Costa          | Pumps                  | MUNI       |
| BANKPP_2_NSPIN           | 38765 | DELTA D   | 13.2 | 28.00  | 8          | Contra Costa          | Pumps                  | MUNI       |
| BANKPP_2_NSPIN           | 38765 | DELTA D   | 13.2 | 28.00  | 9          | Contra Costa          | Pumps                  | MUNI       |
| BANKPP_2_NSPIN           | 38770 | DELTA C   | 13.2 | 28.00  | 6          | Contra Costa          | Pumps                  | MUNI       |
| BANKPP_2_NSPIN           | 38770 | DELTA C   | 13.2 | 28.00  | 7          | Contra Costa          | Pumps                  | MUNI       |
| BANKPP_2_NSPIN           | 38815 | DELTA B   | 13.2 | 28.00  | 4          | Contra Costa          | Pumps                  | MUNI       |
| BANKPP_2_NSPIN           | 38815 | DELTA B   | 13.2 | 28.00  | 5          | Contra Costa          | Pumps                  | MUNI       |
| BANKPP_2_NSPIN           | 38820 | DELTA A   | 13.2 | 7.00   | 1          | Contra Costa          | Pumps                  | MUNI       |
| BANKPP_2_NSPIN           | 38820 | DELTA A   | 13.2 | 7.00   | 2          | Contra Costa          | Pumps                  | MUNI       |
| BANKPP_2_NSPIN           | 38820 | DELTA A   | 13.2 | 26.00  | 3          | Contra Costa          | Pumps                  | MUNI       |
| BLHVN_7_MENLOP           |       |           |      | 0.88   |            | None                  | Not modeled Aug<br>NQC | QF/Selfgen |
| BRDSLD_2_HIWIND          | 32172 | HIGHWINDS | 34.5 | 38.96  | 1          | Contra Costa          | Aug NQC                | Wind       |
| BRDSLD_2_MTZUM2          | 32179 | MNTZUMA2  | 0.69 | 13.02  | 1          | Contra Costa          | Aug NQC                | Wind       |
| BRDSLD_2_MTZUMA          | 32171 | HIGHWND3  | 34.5 | 7.12   | 1          | Contra Costa          | Aug NQC                | Wind       |
| BRDSLD_2_SHILO1          | 32176 | SHILOH    | 34.5 | 35.34  | 1          | Contra Costa          | Aug NQC                | Wind       |
| BRDSLD_2_SHILO2          | 32177 | SHILOH 2  | 34.5 | 36.13  | 1          | Contra Costa          | Aug NQC                | Wind       |
| BRDSLD_2_SHLO3A          | 32191 | SHLH3AC2  | 0.58 | 17.45  | 1          | Contra Costa          | Aug NQC                | Wind       |
| BRDSLD_2_SHLO3B          | 32194 | SHLH3BC2  | 0.58 | 17.45  | 1          | Contra Costa          | Aug NQC                | Wind       |
| CALPIN_1_AGNEW           | 35860 | OLS-AGNE  | 9.11 | 28.00  | 1          | San Jose              | Aug NQC                | QF/Selfgen |
| CARDCG_1_UNITS           | 33463 | CARDINAL  | 12.5 | 10.49  | 1          | None                  | Aug NQC                | QF/Selfgen |
| CARDCG_1_UNITS           | 33463 | CARDINAL  | 12.5 | 10.49  | 2          | None                  | Aug NQC                | QF/Selfgen |
| CLRMTK_1_QF              |       |           |      | 0.00   |            | Oakland               | Not modeled            | QF/Selfgen |
| COCOPP_2_CTG1            | 33188 | MARSHBS1  | 16.4 | 191.35 | 1          | Contra Costa          | Aug NQC                | Market     |
| COCOPP_2_CTG2            | 33188 | MARSHBS1  | 16.4 | 189.30 | 2          | Contra Costa          | Aug NQC                | Market     |
| COCOPP_2_CTG3            | 33189 | MARSHBS2  | 16.4 | 191.45 | 3          | Contra Costa          | Aug NQC                | Market     |
| COCOPP_2_CTG4            | 33189 | MARSHBS2  | 16.4 | 191.44 | 4          | Contra Costa          | Aug NQC                | Market     |
| CONTAN_1_UNIT            | 36856 | CCA100    | 13.8 | 27.70  | 1          | San Jose              | Aug NQC                | QF/Selfgen |
| CROKET_7_UNIT            | 32900 | CRCKTCOG  | 18   | 225.24 | 1          | Pittsburg             | Aug NQC                | QF/Selfgen |
| CSCCOG_1_UNIT 1          | 36854 | Cogen     | 12   | 3.00   | 1          | San Jose              |                        | MUNI       |
| CSCCOG_1_UNIT 1          | 36854 | Cogen     | 12   | 3.00   | 2          | San Jose              |                        | MUNI       |
| CSCGNR_1_UNIT 1          | 36858 | Gia100    | 13.8 | 24.00  | 1          | San Jose              |                        | MUNI       |
| CSCGNR_1_UNIT 2          | 36895 | Gia200    | 13.8 | 24.00  | 2          | San Jose              |                        | MUNI       |
| DELTA_2_PL1X4            | 33107 | DEC STG1  | 24   | 269.61 | 1          | Pittsburg             | Aug NQC                | Market     |
| DELTA_2_PL1X4            | 33108 | DEC CTG1  | 18   | 181.13 | 1          | Pittsburg             | Aug NQC                | Market     |
| DELTA_2_PL1X4            | 33109 | DEC CTG2  | 18   | 181.13 | 1          | Pittsburg             | Aug NQC                | Market     |
| DELTA_2_PL1X4            | 33110 | DEC CTG3  | 18   | 181.13 | 1          | Pittsburg             | Aug NQC                | Market     |
| DUANE_1_PL1X3            | 36863 | DVRaGT1   | 13.8 | 49.27  | 1          | San Jose              |                        | MUNI       |
| DUANE_1_PL1X3            | 36864 | DVRbGT2   | 13.8 | 49.27  | 1          | San Jose              |                        | MUNI       |
| DUANE_1_PL1X3            | 36865 | DVRaST3   | 13.8 | 49.26  | 1          | San Jose              |                        | MUNI       |
| FLOWD1_6_ALTPP1          | 35318 | FLOWDPTR  | 9.11 | 0.00   | 1          | Contra Costa          | Aug NQC                | Wind       |
| GATWAY_2_PL1X3           | 33118 | GATEWAY1  | 18   | 189.27 | 1          | Contra Costa          | Aug NQC                | Market     |
| GATWAY_2_PL1X3           | 33119 | GATEWAY2  | 18   | 185.36 | 1          | Contra Costa          | Aug NQC                | Market     |
| GATWAY_2_PL1X3           |       | GATEWAY3  | 18   | 185.36 | 1          | Contra Costa          | Aug NQC                | Market     |
| GILROY_1_UNIT            | 35850 | GLRY COG  | 13.8 | 69.30  | 1          | Llagas                | Aug NQC                | Market     |
| GILROY_1_UNIT            |       | GLRY COG  | 13.8 | 35.70  | 2          | Llagas                | Aug NQC                | Market     |
| GILRPP_1_PL1X2           | 35851 | GROYPKR1  | 13.8 | 45.50  | 1          | Llagas                | Aug NQC                | Market     |

| GILRPP_1_PL1X2  | 35852 | GROYPKR2 | 13.8 | 45.50  | 1 | Llagas       | Aug NQC                | Market     |
|-----------------|-------|----------|------|--------|---|--------------|------------------------|------------|
| GILRPP_1_PL3X4  |       | GROYPKR3 | 13.8 | 46.00  | 1 | Llagas       | Aug NQC                | Market     |
| GRZZLY_1_BERKLY |       | HILLSIDE | 115  | 24.92  | 1 | None         | Aug NQC                | QF/Selfgen |
| HICKS_7_GUADLP  |       |          |      | 1.74   |   | None         | Not modeled Aug<br>NQC | QF/Selfgen |
| KELSO_2_UNITS   | 33813 | MARIPCT1 | 13.8 | 45.95  | 1 | Contra Costa | Aug NQC                | Market     |
| KELSO_2_UNITS   | 33815 | MARIPCT2 | 13.8 | 45.95  | 2 | Contra Costa | Aug NQC                | Market     |
| KELSO_2_UNITS   | 33817 | MARIPCT3 | 13.8 | 45.95  | 3 | Contra Costa | Aug NQC                | Market     |
| KELSO_2_UNITS   | 33819 | MARIPCT4 | 13.8 | 45.96  | 4 | Contra Costa | Aug NQC                | Market     |
| KIRKER_7_KELCYN |       |          |      | 3.21   |   | Pittsburg    | Not modeled            | Market     |
| LAWRNC_7_SUNYVL |       |          |      | 0.11   |   | None         | Not modeled Aug<br>NQC | Market     |
| LECEF_1_UNITS   |       | LECEFGT1 | 13.8 | 46.50  | 1 | San Jose     | Aug NQC                | Market     |
| LECEF_1_UNITS   | 35855 | LECEFGT2 | 13.8 | 46.50  | 1 | San Jose     | Aug NQC                | Market     |
| LECEF_1_UNITS   | 35856 | LECEFGT3 | 13.8 | 46.50  | 1 | San Jose     | Aug NQC                | Market     |
| LECEF_1_UNITS   | 35857 | LECEFGT4 | 13.8 | 46.50  | 1 | San Jose     | Aug NQC                | Market     |
| LECEF_1_UNITS   | 35858 | LECEFST1 | 13.8 | 107.88 | 1 | San Jose     |                        | Market     |
| LFC 51_2_UNIT 1 | 35310 | LFC FIN+ | 9.11 | 2.03   | 1 | None         | Aug NQC                | Wind       |
| LMBEPK_2_UNITA1 | 32173 | LAMBGT1  | 13.8 | 47.00  | 1 | Contra Costa | Aug NQC                | Market     |
| LMBEPK 2 UNITA2 | 32174 | GOOSEHGT | 13.8 | 46.00  | 2 | Contra Costa | Aug NQC                | Market     |
| LMBEPK_2_UNITA3 |       | CREEDGT1 | 13.8 | 47.00  | 3 | Contra Costa | Aug NQC                | Market     |
| LMEC_1_PL1X3    |       | LMECCT2  | 18   | 163.20 | 1 | Pittsburg    | Aug NQC                | Market     |
| LMEC_1_PL1X3    |       | LMECCT1  | 18   | 163.20 | 1 | Pittsburg    | Aug NQC                | Market     |
| LMEC_1_PL1X3    |       | LMECST1  | 18   | 229.60 | 1 | Pittsburg    | Aug NQC                | Market     |
| MARTIN_1_SUNSET | 00110 |          |      | 1.18   |   | None         | Not modeled Aug<br>NQC | QF/Selfgen |
| METCLF_1_QF     |       |          |      | 0.13   |   | None         | Not modeled Aug<br>NQC | QF/Selfgen |
| METEC_2_PL1X3   | 35881 | MEC CTG1 | 18   | 178.43 | 1 | None         | Aug NQC                | Market     |
| METEC_2_PL1X3   | 35882 | MEC CTG2 | 18   | 178.43 | 1 | None         | Aug NQC                | Market     |
| METEC_2_PL1X3   | 35883 | MEC STG1 | 18   | 213.14 | 1 | None         | Aug NQC                | Market     |
| MILBRA_1_QF     |       |          |      | 0.00   |   | None         | Not modeled            | QF/Selfgen |
| MISSIX_1_QF     |       |          |      | 0.31   |   | None         | Not modeled Aug<br>NQC | QF/Selfgen |
| MLPTAS_7_QFUNTS |       |          |      | 0.01   |   | San Jose     | Not modeled Aug<br>NQC | QF/Selfgen |
| MNTAGU_7_NEWBYI |       |          |      | 1.34   |   | None         | Not modeled Aug<br>NQC | QF/Selfgen |
| NEWARK_1_QF     |       |          |      | 0.02   |   | None         | Not modeled Aug<br>NQC | QF/Selfgen |
| OAK C_1_EBMUD   |       |          |      | 0.73   |   | Oakland      | Not modeled Aug<br>NQC | MUNI       |
| OAK C_7_UNIT 1  |       | OAKLND 1 | 13.8 | 55.00  | 1 | Oakland      |                        | Market     |
| OAK C_7_UNIT 2  |       | OAKLND 2 | 13.8 | 55.00  | 1 | Oakland      |                        | Market     |
| OAK C_7_UNIT 3  |       | OAKLND 3 | 13.8 | 55.00  | 1 | Oakland      |                        | Market     |
| OXMTN_6_LNDFIL  | 33469 | OX_MTN   | 4.16 | 1.45   | 1 | None         |                        | Market     |
| OXMTN_6_LNDFIL  | 33469 | OX_MTN   | 4.16 | 1.45   | 2 | None         |                        | Market     |
| OXMTN_6_LNDFIL  | 33469 | OX_MTN   | 4.16 | 1.45   | 3 | None         |                        | Market     |
| OXMTN_6_LNDFIL  | 33469 | OX_MTN   | 4.16 | 1.45   | 4 | None         |                        | Market     |
| OXMTN_6_LNDFIL  | 33469 | OX_MTN   | 4.16 | 1.45   | 5 | None         |                        | Market     |
| OXMTN_6_LNDFIL  | 33469 | OX_MTN   | 4.16 | 1.45   | 6 | None         |                        | Market     |
| OXMTN_6_LNDFIL  | 33469 | OX_MTN   | 4.16 | 1.45   | 7 | None         |                        | Market     |
| PALALT_7_COBUG  |       |          |      | 4.50   |   | None         | Not modeled            | MUNI       |
| PITTSP_7_UNIT 5 | 33105 | PTSB 5   | 18   | 312.00 | 1 | Pittsburg    |                        | Market     |
| PITTSP_7_UNIT 6 |       | PTSB 6   | 18   | 317.00 | 1 | Pittsburg    |                        | Market     |
| PITTSP_7_UNIT 7 |       | PTSB 7   | 20   | 682.00 | 1 | Pittsburg    |                        | Market     |
| / _ 0 . 411 /   | 55500 |          |      | 002.00 |   | oourg        |                        | market     |

| RICHMN_7_BAYENV |       |          |      | 2.00   |   | None                       | Not modeled Aug<br>NQC | QF/Selfgen |
|-----------------|-------|----------|------|--------|---|----------------------------|------------------------|------------|
| RUSCTY_2_UNITS  | 35304 | RUSELCT1 | 15   | 172.35 | 1 | None                       | No NQC - Pmax          | Market     |
| RUSCTY_2_UNITS  | 35305 | RUSELCT2 | 15   | 172.35 | 1 | None                       | No NQC - Pmax          | Market     |
| RUSCTY_2_UNITS  | 35306 | RUSELST1 | 15   | 241.00 | 1 | None                       | No NQC - Pmax          | Market     |
| RVRVEW_1_UNITA1 | 33178 | RVEC_GEN | 13.8 | 46.00  | 1 | Contra Costa               | Aug NQC                | Market     |
| SEAWST_6_LAPOS  | 35312 | SEAWESTF | 9.11 | 0.24   | 1 | Contra Costa               | Aug NQC                | Wind       |
| SRINTL_6_UNIT   | 33468 | SRI INTL | 9.11 | 1.23   | 1 | None                       | Aug NQC                | QF/Selfgen |
| STAUFF_1_UNIT   | 33139 | STAUFER  | 9.11 | 0.03   | 1 | None                       | Aug NQC                | QF/Selfgen |
| STOILS_1_UNITS  | 32921 | CHEVGEN1 | 13.8 | 0.86   | 1 | Pittsburg                  | Aug NQC                | QF/Selfgen |
| STOILS_1_UNITS  | 32922 | CHEVGEN2 | 13.8 | 0.86   | 1 | Pittsburg                  | Aug NQC                | QF/Selfgen |
| TIDWTR_2_UNITS  | 33151 | FOSTER W | 12.5 | 7.05   | 1 | Pittsburg                  | Aug NQC                | QF/Selfgen |
| TIDWTR_2_UNITS  | 33151 | FOSTER W | 12.5 | 7.05   | 2 | Pittsburg                  | Aug NQC                | QF/Selfgen |
| TIDWTR_2_UNITS  | 33151 | FOSTER W | 12.5 | 7.05   | 3 | Pittsburg                  | Aug NQC                | QF/Selfgen |
| UNCHEM_1_UNIT   | 32920 | UNION CH | 9.11 | 16.42  | 1 | Pittsburg                  | Aug NQC                | QF/Selfgen |
| UNOCAL_1_UNITS  | 32910 | UNOCAL   | 12   | 0.14   | 1 | Pittsburg                  | Aug NQC                | QF/Selfgen |
| UNOCAL_1_UNITS  | 32910 | UNOCAL   | 12   | 0.14   | 2 | Pittsburg                  | Aug NQC                | QF/Selfgen |
| UNOCAL_1_UNITS  | 32910 | UNOCAL   | 12   | 0.13   | 3 | Pittsburg                  | Aug NQC                | QF/Selfgen |
| USWNDR_2_SMUD   | 32169 | SOLANOWP | 21   | 21.05  | 1 | Contra Costa               | Aug NQC                | Wind       |
| USWNDR_2_SMUD2  | 32186 | SOLANO   | 34.5 | 20.92  | 1 | Contra Costa               | Aug NQC                | Wind       |
| USWNDR_2_UNITS  | 32168 | EXNCO    | 9.11 | 15.97  | 1 | Contra Costa               | Aug NQC                | Wind       |
| USWPFK_6_FRICK  | 35320 | USW FRIC | 12   | 0.60   | 1 | Contra Costa               | Aug NQC                | Wind       |
| USWPFK_6_FRICK  | 35320 | USW FRIC | 12   | 0.61   | 2 | Contra Costa               | Aug NQC                | Wind       |
| USWPJR_2_UNITS  | 39233 | GRNRDG   | 0.69 | 14.37  | 1 | Contra Costa               | Aug NQC                | Wind       |
| WNDMAS_2_UNIT 1 | 33170 | WINDMSTR | 9.11 | 3.28   | 1 | Contra Costa               | Aug NQC                | Wind       |
| ZOND_6_UNIT     | 35316 | ZOND SYS | 9.11 | 3.60   | 1 | Contra Costa               | Aug NQC                | Wind       |
| IBMCTL_1_UNIT 1 | 35637 | IBM-CTLE | 115  | 0.00   | 1 | San Jose                   | No NQC - hist. data    | Market     |
| IMHOFF_1_UNIT 1 | 33136 | CCCSD    | 12.5 | 4.40   | 1 | Pittsburg                  | No NQC - hist. data    | QF/Selfgen |
| MARKHM_1_CATLST | 35863 | CATALYST | 9.11 | 0.00   | 1 | San Jose                   |                        | QF/Selfgen |
| SHELRF_1_UNITS  | 33141 | SHELL 1  | 12.5 | 20.00  | 1 | Pittsburg                  | No NQC - hist. data    | QF/Selfgen |
| SHELRF_1_UNITS  | 33142 | SHELL 2  | 12.5 | 40.00  | 1 | Pittsburg                  | No NQC - hist. data    | QF/Selfgen |
| SHELRF_1_UNITS  | 33143 | SHELL 3  | 12.5 | 40.00  | 1 | Pittsburg                  | No NQC - hist. data    | QF/Selfgen |
| ZANKER_1_UNIT 1 | 35861 | SJ-SCL W | 9.11 | 5.00   | 1 | San Jose                   | No NQC - hist. data    | QF/Selfgen |
| New Unit        | 32188 | COLNSVLE | 34.5 | 9.80   | 1 | Contra Costa               | No NQC - est. data     | Wind       |
| COCOPP_7_UNIT 6 | 33116 | C.COS 6  | 18   | 0.00   | 1 | Contra Costa               | Retired                | Market     |
| COCOPP_7_UNIT 7 | 33117 | C.COS 7  | 18   | 0.00   | 1 | Contra Costa               | Retired                | Market     |
| GWFPW1_6_UNIT   | 33131 | GWF #1   | 9.11 | 0.00   | 1 | Pittsburg,<br>Contra Costa | Retired                | QF/Selfgen |
| GWFPW2_1_UNIT 1 | 33132 | GWF #2   | 13.8 | 0.00   | 1 | Pittsburg                  | Retired                | QF/Selfgen |
| GWFPW3_1_UNIT 1 |       | GWF #3   | 13.8 | 0.00   | 1 | Pittsburg,<br>Contra Costa | Retired                | QF/Selfgen |
| GWFPW4_6_UNIT 1 |       | GWF #4   | 13.8 | 0.00   | 1 | Pittsburg,<br>Contra Costa | Retired                | QF/Selfgen |
| GWFPW5_6_UNIT 1 | 33135 | GWF #5   | 13.8 | 0.00   | 1 | Pittsburg                  | Retired                | QF/Selfgen |
| UNTDQF_7_UNITS  | 33466 | UNTED CO | 9.11 | 0.00   | 1 | None                       | Retired                | QF/Selfgen |

# Major new projects modeled:

- 1. Russell City Energy Center
- 2. Marsh Landing Generating Station
- 3. Los Esteros Critical Energy Facility (LECEF) capacity increase

4. Contra Costa – Moraga 230 kV Line Reconductoring

## Critical Contingency Analysis Summary

#### Oakland Sub-area

The most critical contingency is an outage of the C-X #2 and #3 115 kV cables. The area limitation is thermal overloading of the Moraga – Clamant #1 or #2 230kV Line. This limiting contingency establishes a LCR of 25 MW in 2015 (includes 49 MW of MUNI generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

This Oakland requirement does not include the need for Pittsburg/Oakland sub-area.

#### **Effectiveness factors:**

All units within this area have the same effectiveness factor.

## Llagas Sub-area

The most critical contingency is an outage Metcalf D-Morgan Hill 115 kV Line with one of the Gilroy Peaker off-line. The area limitation is thermal overloading of the Morgan Hill-Llagas 115 kV line as well as voltage drop (5%) at the Morgan Hill substation. As documented within a CAISO Operating Procedure, this limitation is dependent on power flowing in the direction from Metcalf to Llagas/Morgan Hill. This limiting contingency establishes a LCR of 137 MW in 2015 (includes 0 MW of QF and MUNI generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

#### Effectiveness factors:

All units within this area have the same effectiveness factor.

#### San Jose Sub-area

The most critical contingency is an outage of Metcalf-El Patio #1 or #2 115 kV line followed by Metcalf-Evergreen #2 115 kV line. The area limitation is thermal overloading of the Metcalf-Evergreen #1 115 kV Line. This limiting contingency establishes a LCR of 692 MW in 2015 (includes 61 MW of QF and 202 MW of MUNI

generation as well as 136 MW of deficiency) as the minimum capacity necessary for reliable load serving capability within this sub-area.

The most critical single contingency is an outage of the Metcalf-Evergreen #2 115 kV line with Duane PP out of service. The sub-area area limitation is thermal overloading of the Metcalf-Evergreen #1 115 kV Line. This limiting contingency establishes a LCR of 265 MW in 2015 (including 61 MW of QF and 202 MW of Muni generation).

#### Effectiveness factors:

The following table has units within the Bay Area that are at least 5% effective to the above-mentioned most critical constraint.

| Gen Name | Gen ID                                                                                                 | Eff Fctr (%)                                                                                                                     |
|----------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| CATALYST | 1                                                                                                      | 20                                                                                                                               |
| CCCA100  | 1                                                                                                      | 6                                                                                                                                |
| Cogen    | 1                                                                                                      | 6                                                                                                                                |
| Cogen    | 2                                                                                                      | 6                                                                                                                                |
| DVRaGT1  | 1                                                                                                      | 6                                                                                                                                |
| DVRbGT2  | 1                                                                                                      | 6                                                                                                                                |
| DVRaST3  | 1                                                                                                      | 6                                                                                                                                |
| OLS-AGNE | 1                                                                                                      | 5                                                                                                                                |
| Gia100   | 1                                                                                                      | 5                                                                                                                                |
| Gia200   | 2                                                                                                      | 5                                                                                                                                |
| LECEFGT1 | 1                                                                                                      | 5                                                                                                                                |
| LECEFGT2 | 2                                                                                                      | 5                                                                                                                                |
| LECEFGT3 | 3                                                                                                      | 5                                                                                                                                |
| LECEFGT4 | 4                                                                                                      | 5                                                                                                                                |
|          | CATALYST CCCA100 Cogen Cogen DVRaGT1 DVRbGT2 DVRaST3 OLS-AGNE Gia100 Gia200 LECEFGT1 LECEFGT2 LECEFGT3 | CATALYST 1 CCCA100 1 Cogen 1 Cogen 2 DVRaGT1 1 DVRbGT2 1 DVRaST3 1 OLS-AGNE 1 Gia100 1 Gia200 2 LECEFGT1 1 LECEFGT2 2 LECEFGT3 3 |

## Pittsburg and Oakland Sub-area Combined

The most critical contingency is an outage of the Moraga #3 230/115 kV transformer combined with the loss of Delta Energy Center. The sub-area area limitation is thermal overloading of Moraga #1 230/115 kV transformer. This limiting contingency establishes a LCR of 2524 MW in 2015 (including 369 MW of QF and 49 MW of Muni generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

The most critical single contingency is an outage of the Moraga #3 230/115 kV

transformer. The sub-area area limitation is thermal overloading of the Moraga #1 230/115 kV transformer. This limiting contingency establishes a LCR of 1688 MW in 2015 (including 369 MW of QF and 49 MW of Muni generation).

#### **Effectiveness factors:**

Please see Bay Area overall.

#### Contra Costa Sub-area

The most critical contingency is an outage of Kelso-Tesla 230 kV with the Gateway off line. The area limitation is thermal overloading of the Delta Switching Yard-Tesla 230 kV line. This limiting contingency establishes a LCR of 1259 MW in 2015 (includes 256 MW of Wind generation and 264 MW of MUNI pumps) as the minimum capacity necessary for reliable load serving capability within this sub-area.

#### Effectiveness factors:

The following table has units within the Bay Area that are at least 10% effective to the above-mentioned constraint.

| Gen Bus | Gen Name | Gen ID | Eff Fctr (%) |
|---------|----------|--------|--------------|
| 33175   | ALTAMONT | 1      | 83           |
| 38760   | DELTA E  | 10     | 71           |
| 38760   | DELTA E  | 11     | 71           |
| 38765   | DELTA D  | 8      | 71           |
| 38765   | DELTA D  | 9      | 71           |
| 38770   | DELTA C  | 6      | 71           |
| 38770   | DELTA C  | 7      | 71           |
| 38815   | DELTA B  | 4      | 71           |
| 38815   | DELTA B  | 5      | 71           |
| 38820   | DELTA A  | 3      | 71           |
| 33170   | WINDMSTR | 1      | 68           |
| 33118   | GATEWAY1 | 1      | 23           |
| 33119   | GATEWAY2 | 1      | 23           |
| 33120   | GATEWAY3 | 1      | 23           |
| 33116   | C.COS 6  | 1      | 23           |
| 33117   | C.COS 7  | 1      | 23           |
| 33133   | GWF #3   | 1      | 23           |
| 33134   | GWF #4   | 1      | 23           |
| 33178   | RVEC_GEN | 1      | 23           |
| 33131   | GWF #1   | 1      | 22           |
| 32179   | T222     | 1      | 18           |

| 32188 | P0611G   | 1 | 18 |
|-------|----------|---|----|
| 32190 | Q039     | 1 | 18 |
| 32186 | P0609    | 1 | 18 |
| 32171 | HIGHWND3 | 1 | 18 |
| 32177 | Q0024    | 1 | 18 |
| 32168 | ENXCO    | 2 | 18 |
| 32169 | SOLANOWP | 1 | 18 |
| 32172 | HIGHWNDS | 1 | 18 |
| 32176 | SHILOH   | 1 | 18 |
| 33838 | USWP_#3  | 1 | 18 |
| 32173 | LAMBGT1  | 1 | 14 |
| 32174 | GOOSEHGT | 2 | 14 |
| 32175 | CREEDGT1 | 3 | 14 |
| 35312 | SEAWESTF | 1 | 11 |
| 35316 | ZOND SYS | 1 | 11 |
| 35320 | USW FRIC | 1 | 11 |
|       |          |   |    |

#### Bay Area overall

The most critical contingency is an overlapping outage of the Tesla-Metcalf 500 kV line and Tesla-Newark #1 230 kV line. The limitation is thermal overload on the Tesla-Newark #1 230 kV line or Lone Tree—Cayatano 230 kV line. This limiting contingency establishes a LCR of 4231 MW in 2015 (including 485 MW of QF, 519 MW of MUNI and 258 MW of wind generation) as the minimum capacity necessary for reliable load serving capability within this area.

The most critical single contingency is an outage of the Tesla-Metcalf 500 kV line with Delta Energy Center out of service. The sub-area area limitation is reactive margin within the Bay Area. This limiting contingency establishes a LCR of 3492 MW in 2015 (including 485 MW of QF, 519 MW of MUNI and 258 MW of wind generation).

#### **Effectiveness factors:**

For most helpful procurement information please read procedure T-133Z effectiveness factors (posted under M-2210Z) at: <a href="http://www.caiso.com/Documents/2210Z.pdf">http://www.caiso.com/Documents/2210Z.pdf</a>

## Changes compared to last year's results:

Overall the load forecast down by 190 MW and the LCR has decreased by 271 MW.

## Bay Area Overall Requirements:

| 2015                 | Wind<br>(MW) | QF/Selfgen<br>(MW) | Muni<br>(MW) | Market<br>(MW) | Max. Qualifying Capacity (MW) |
|----------------------|--------------|--------------------|--------------|----------------|-------------------------------|
| Available generation | 258          | 485                | 519          | 6243           | 7505                          |

| 2015                                | Existing Generation Capacity Needed (MW) | Deficiency<br>(MW) | Total MW<br>LCR Need |
|-------------------------------------|------------------------------------------|--------------------|----------------------|
| Category B (Single) <sup>17</sup>   | 3492                                     | 0                  | 3492                 |
| Category C (Multiple) <sup>18</sup> | 4231                                     | 136                | 4367                 |

#### 6. Greater Fresno Area

## Area Definition

The transmission facilities coming into the Greater Fresno area are:

- 1) Gates-Gregg 230 kV Line
- 2) Gates-McCall 230 kV Line
- 3) Gates #1 230/70 kV Transformer Bank
- 4) Los Banos #3 230/70 kV Transformer Bank
- 5) Los Banos #4 230/70 kV Transformer Bank
- 6) Panoche-Helm 230 kV Line
- 7) Panoche-Kearney 230 kV Line
- 8) Panoche #1 230/115 kV Transformer
- 9) Panoche #2 230/115 kV Transformer
- 10) Warnerville-Wilson 230 kV Line
- 11) Wilson-Melones 230 kV Line
- 12) Smyrna-Corcoran 115kV Line
- 13) Coalinga #1-San Miguel 70 kV Line

The substations that delineate the Greater Fresno area are:

- 1) Gates is out Henrietta is in
- 2) Gates is out Henrietta is in
- 3) Gates 230 kV is out Gates 70 kV is in
- 4) Los Banos 230 kV is out Los Banos 70 kV is in
- 5) Los Banos 230 kV is out Los Banos 70 kV is in
- 6) Panoche is out Helm is in

<sup>&</sup>lt;sup>17</sup> A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

<sup>&</sup>lt;sup>18</sup> Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

- 7) Panoche is out Mc Mullin is in
- 8) Panoche 115 kV is in Panoche 230 kV is out
- 9) Panoche 115 kV is in Panoche 230 kV is out
- 10) Warnerville is out Wilson is in
- 11) Wilson is in Melones is out
- 12) Quebec SP is out Corcoran is in
- 13) Coalinga is in San Miguel is out

2015 total busload within the defined area is 3126 MW with 90 MW of losses resulting in a total (load plus losses) of 3217 MW.

Total units and qualifying capacity available in this area:

| MKT/SCHED<br>RESOURCE ID | BUS#  | BUS NAME | kV   | NQC   |    | LCR SUB-AREA<br>NAME        | NQC Comments           | CAISO Tag  |
|--------------------------|-------|----------|------|-------|----|-----------------------------|------------------------|------------|
| AGRICO_6_PL3N5           | 34608 | AGRICO   | 13.8 | 20.00 | 3  | Wilson, Herndon             |                        | Market     |
| AGRICO_7_UNIT            | 34608 | AGRICO   | 13.8 | 43.05 | 2  | Wilson, Herndon             |                        | Market     |
| AGRICO_7_UNIT            | 34608 | AGRICO   | 13.8 | 7.45  | 4  | Wilson, Herndon             |                        | Market     |
| AVENAL_6_AVPARK          | 34265 | AVENAL P | 12   | 0.00  | 1  | Wilson                      | Energy Only            | Market     |
| AVENAL_6_SANDDG          | 34263 | SANDDRAG | 12   | 0.00  | 1  | Wilson                      | Energy Only            | Market     |
| AVENAL_6_SUNCTY          | 34257 | SUNCTY D | 12   | 0.00  | 1  | Wilson                      | Energy Only            | Market     |
| BALCHS_7_UNIT 1          | 34624 | BALCH    | 13.2 | 33.00 | 1  | Wilson, Herndon             | Aug NQC                | Market     |
| BALCHS_7_UNIT 2          | 34612 | BLCH     | 13.8 | 52.50 | 1  | Wilson, Herndon             | Aug NQC                | Market     |
| BALCHS_7_UNIT 3          | 34614 | BLCH     | 13.8 | 52.50 | 1  | Wilson, Herndon             | Aug NQC                | Market     |
| BORDEN_2_QF              | 34253 | BORDEN D | 12.5 | 1.13  | QF | Wilson                      | Aug NQC                | QF/Selfgen |
| BULLRD_7_SAGNES          | 34213 | BULLD 12 | 12.5 | 0.03  | 1  | Wilson                      | Aug NQC                | QF/Selfgen |
| CANTUA_1_SOLAR           |       |          |      | 0.00  |    | Wilson                      | Energy Only            | Market     |
| CAPMAD_1_UNIT 1          | 34179 | MADERA_G | 13.8 | 17.00 | 1  | Wilson                      |                        | Market     |
| CHEVCO_6_UNIT 1          | 34652 | CHV.COAL | 9.11 | 2.96  | 1  | Wilson                      | Aug NQC                | QF/Selfgen |
| CHEVCO_6_UNIT 2          | 34652 | CHV.COAL | 9.11 | 1.13  | 2  | Wilson                      | Aug NQC                | QF/Selfgen |
| CHWCHL_1_BIOMAS          | 34305 | CHWCHLA2 | 13.8 | 8.87  | 1  | Wilson, Herndon             | Aug NQC                | Market     |
| CHWCHL_1_UNIT            | 34301 | CHOWCOGN | 13.8 | 48.00 | 1  | Wilson, Herndon             |                        | Market     |
| COLGA1_6_SHELLW          | 34654 | COLNGAGN | 9.11 | 35.25 | 1  | Wilson                      | Aug NQC                | QF/Selfgen |
| CRESSY_1_PARKER          | 34140 | CRESSEY  | 115  | 1.60  |    | Wilson                      | Not modeled Aug<br>NQC | MUNI       |
| CRNEVL_6_CRNVA           | 34634 | CRANEVLY | 12   | 0.71  | 1  | Wilson                      | Aug NQC                | Market     |
| CRNEVL_6_SJQN 2          | 34631 | SJ2GEN   | 9.11 | 3.20  | 1  | Wilson                      | Aug NQC                | Market     |
| CRNEVL_6_SJQN 3          | 34633 | SJ3GEN   | 9.11 | 4.20  | 1  | Wilson                      | Aug NQC                | Market     |
| DINUBA_6_UNIT            | 34648 | DINUBA E | 13.8 | 9.87  | 1  | Wilson, Herndon,<br>Reedley |                        | Market     |
| ELNIDP_6_BIOMAS          | 34330 | ELNIDO   | 13.8 | 6.09  | 1  | Wilson                      | Aug NQC                | Market     |
| EXCHEC_7_UNIT 1          | 34306 | EXCHQUER | 13.8 | 61.77 | 1  | Wilson                      | Aug NQC                | MUNI       |
| FRIANT_6_UNITS           | 34636 | FRIANTDM | 6.6  | 11.66 | 2  | Wilson                      | Aug NQC                | QF/Selfgen |
| FRIANT_6_UNITS           | 34636 | FRIANTDM | 6.6  | 6.23  | 3  | Wilson                      | Aug NQC                | QF/Selfgen |
| FRIANT_6_UNITS           | 34636 | FRIANTDM | 6.6  | 1.65  | 4  | Wilson                      | Aug NQC                | QF/Selfgen |
| GATES_6_PL1X2            | 34553 | WHD_GAT2 | 13.8 | 0.00  | 1  | Wilson                      |                        | Market     |
| GUERNS_6_SOLAR           |       |          |      | 16.28 |    | Wilson                      | Aug NQC                | Market     |
| GWFPWR_1_UNITS           | 34431 | GWF_HEP1 | 13.8 | 42.20 | 1  | Wilson, Herndon,<br>Hanford |                        | Market     |
| GWFPWR_1_UNITS           | 34433 | GWF_HEP2 | 13.8 | 42.20 | 1  | Wilson, Herndon,<br>Hanford |                        | Market     |
| HAASPH_7_PL1X2           | 34610 | HAAS     | 13.8 | 68.15 | 1  | Wilson, Herndon             | Aug NQC                | Market     |

| HAASPH_7_PL1X2  | 34610 | HAAS     | 13.8 | 68.15  | 2  | Wilson, Herndon             | Aug NQC             | Market     |
|-----------------|-------|----------|------|--------|----|-----------------------------|---------------------|------------|
| HELMPG_7_UNIT 1 | 34600 | HELMS    | 18   | 404.00 | 1  | Wilson                      | Aug NQC             | Market     |
| HELMPG_7_UNIT 2 | 34602 | HELMS    | 18   | 404.00 | 2  | Wilson                      | Aug NQC             | Market     |
| HELMPG_7_UNIT 3 | 34604 | HELMS    | 18   | 404.00 | 3  | Wilson                      | Aug NQC             | Market     |
| HENRTA_6_UNITA1 | 34539 | GWF_GT1  | 13.8 | 45.33  | 1  | Wilson                      |                     | Market     |
| HENRTA_6_UNITA2 | 34541 | GWF_GT2  | 13.8 | 45.23  | 1  | Wilson                      |                     | Market     |
| HURON_6_SOLAR   |       |          |      | 0.00   |    | Wilson                      | Energy Only         | Market     |
| INTTRB_6_UNIT   | 34342 | INT.TURB | 9.11 | 3.20   | 1  | Wilson                      | Aug NQC             | QF/Selfgen |
| KERKH1_7_UNIT 1 | 34344 | KERCKHOF | 6.6  | 13.00  | 1  | Wilson, Herndon             | Aug NQC             | Market     |
| KERKH1_7_UNIT 3 | 34344 | KERCKHOF | 6.6  | 12.80  | 3  | Wilson, Herndon             | Aug NQC             | Market     |
| KERKH2_7_UNIT 1 | 34308 | KERCKHOF | 13.8 | 153.90 | 1  | Wilson, Herndon             | Aug NQC             | Market     |
| KINGCO_1_KINGBR | 34642 | KINGSBUR | 9.11 | 28.35  | 1  | Wilson, Herndon,<br>Hanford | Aug NQC             | QF/Selfgen |
| KINGRV_7_UNIT 1 | 34616 | KINGSRIV | 13.8 | 51.20  | 1  | Wilson, Herndon             | Aug NQC             | Market     |
| MALAGA_1_PL1X2  | 34671 | KRCDPCT1 | 13.8 | 48.00  | 1  | Wilson, Herndon             |                     | Market     |
| MALAGA_1_PL1X2  | 34672 | KRCDPCT2 | 13.8 | 48.00  | 1  | Wilson, Herndon             |                     | Market     |
| MCCALL_1_QF     | 34219 | MCCALL 4 | 12.5 | 0.52   | QF | Wilson, Herndon             | Aug NQC             | QF/Selfgen |
| MCSWAN_6_UNITS  | 34320 | MCSWAIN  | 9.11 | 6.72   | 1  | Wilson                      | Aug NQC             | MUNI       |
| MENBIO_6_RENEW1 | 34339 | CALRENEW | 12.5 | 0.00   | 1  | Wilson                      | Energy Only         | Market     |
| MENBIO_6_UNIT   | 34334 | BIO PWR  | 9.11 | 20.24  | 1  | Wilson                      | Aug NQC             | QF/Selfgen |
| MERCFL_6_UNIT   | 34322 | MERCEDFL | 9.11 | 2.82   | 1  | Wilson                      | Aug NQC             | Market     |
| PINFLT_7_UNITS  | 38720 | PINEFLAT | 13.8 | 21.75  | 1  | Wilson, Herndon             | Aug NQC             | MUNI       |
| PINFLT_7_UNITS  | 38720 | PINEFLAT | 13.8 | 21.75  | 2  | Wilson, Herndon             | Aug NQC             | MUNI       |
| PINFLT_7_UNITS  |       | PINEFLAT | 13.8 | 21.75  | 3  | Wilson, Herndon             | Aug NQC             | MUNI       |
| PNCHPP_1_PL1X2  | 34328 | STARGT1  | 13.8 | 55.58  | 1  | Wilson                      | 0                   | Market     |
| PNCHPP_1_PL1X2  |       | STARGT2  | 13.8 | 55.58  |    | Wilson                      |                     | Market     |
| PNOCHE_1_PL1X2  |       | WHD_PAN2 | 13.8 | 49.97  | 1  | Wilson, Herndon             |                     | Market     |
| PNOCHE_1_UNITA1 |       | DG_PAN1  | 13.8 | 48.00  | 1  | Wilson                      |                     | Market     |
| SCHNDR_1_FIVPTS |       | SCHINDLR | 115  | 0.00   |    | Wilson                      | Energy Only         | Market     |
|                 |       | SCHINDLR | 115  | 0.00   |    | Wilson                      | Energy Only         | Market     |
| SGREGY_6_SANGER | 34646 | SANGERCO | 9.11 | 28.13  | 1  | Wilson                      | Aug NQC             | QF/Selfgen |
| STOREY_7_MDRCHW | 34209 | STOREY D | 12.5 | 0.91   | 1  | Wilson                      | Aug NQC             | QF/Selfgen |
| STROUD_6_SOLAR  | 34564 | STROUD   | 70   | 0.00   |    | Wilson                      | Energy Only         | Market     |
| ULTPFR_1_UNIT 1 | 34640 | ULTR.PWR | 9.11 | 21.79  | 1  | Wilson, Herndon             | Aug NQC             | QF/Selfgen |
| WAUKNA_1_SOLAR  |       |          |      | 0.00   |    | Wilson, Herndon,<br>Hanford | Energy Only         | Market     |
| WFRESN_1_SOLAR  |       |          |      | 0.00   |    | Wilson                      | Energy Only         | Market     |
| WISHON_6_UNITS  | 34658 | WISHON   | 2.3  | 4.51   | 1  | Wilson                      | Aug NQC             | Market     |
| WISHON_6_UNITS  | 34658 | WISHON   | 2.3  | 4.51   | 2  | Wilson                      | Aug NQC             | Market     |
| WISHON_6_UNITS  | 34658 | WISHON   | 2.3  | 4.51   | 3  | Wilson                      | Aug NQC             | Market     |
| WISHON_6_UNITS  | 34658 | WISHON   | 2.3  | 4.51   | 4  | Wilson                      | Aug NQC             | Market     |
| WISHON_6_UNITS  | 34658 | WISHON   | 2.3  | 0.36   | 5  | Wilson                      | Aug NQC             | Market     |
| WRGHTP_7_AMENGY | 24207 | WRIGHT D | 12.5 | 0.46   | QF | Wilson                      | Aug NQC             | QF/Selfgen |
| JRWOOD_1_UNIT 1 | 34332 | JRWCOGEN | 9.11 | 7.80   | 1  | Wilson                      |                     | QF/Selfgen |
| KERKH1_7_UNIT 2 | 34344 | KERCKHOF | 6.6  | 8.50   | 2  | Wilson, Herndon             | Aug NQC             | Market     |
| NA              | 34485 | FRESNOWW | 12.5 | 4.00   | 1  | Wilson                      | No NQC - hist. data | QF/Selfgen |
| NA              | 34485 | FRESNOWW | 12.5 | 4.00   | 2  | Wilson                      | No NQC - hist. data | QF/Selfgen |
| NA              | 34485 | FRESNOWW | 12.5 | 1.00   | 3  | Wilson                      | No NQC - hist. data | QF/Selfgen |
| ONLLPP_6_UNIT 1 | 34316 | ONEILPMP | 9.11 | 0.50   | 1  | Wilson                      | No NQC - hist. data | MUNI       |
| New Unit        | 34603 | JGBSWLT  | 12.5 | 0.00   | ST | Wilson                      | Energy Only         | Market     |
| New Unit        |       | RPSP1005 | 0.48 | 20.00  | 1  | Wilson                      | No NQC - Pmax       | Market     |
| New Unit        | 34674 | RPSP1006 | 0.48 | 20.00  | 1  | Wilson                      | No NQC - Pmax       | Market     |
| New Unit        |       | RPSP1007 | 0.48 | 20.00  | 1  | Wilson                      | No NQC - Pmax       | Market     |
| New Unit        |       | 2C558    | 20   | 19.75  | F  | Wilson, Herndon,<br>Hanford | No NQC - Pmax       | Market     |
| -               |       | •        | •    |        |    |                             |                     |            |

| New Unit | 34696 | RPSP1004 | 21   | 20.00 | 1   | Wilson, Herndon             | No NQC - Pmax | Market |
|----------|-------|----------|------|-------|-----|-----------------------------|---------------|--------|
| New Unit | 39171 | S653E    | 0.48 | 20.00 | ⊢ I | Wilson, Herndon,<br>Hanford | No NQC - Pmax | Market |

## Major new projects modeled:

1. A few new small resources were added.

## Critical Contingency Analysis Summary

#### Hanford Sub-area

The most critical contingency for the Hanford sub-area is the common mode loss of the McCall-Kingsburg #1 & #2 115 kV lines, which would thermally overload the Henrietta-GWF 115 kV line. This limiting contingency establishes a local capacity need of 128 MW (including 28 MW of QF generation) in 2015 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

The single worst contingency is the loss of the McCall-Kingsburg #2 115 kV line with GWF Hanford #1 out of service. This contingency establishes a local capacity need of 64 MW (including 28 MW of QF generation) in 2015.

#### **Effectiveness factors:**

All units within this sub-area are needed therefore no effectiveness factor is required.

## Reedley Sub-area

The most critical contingency for the Reedley sub-area is the loss of the McCall-Reedley (McCall-Wahtoke) 115 kV followed by the Sanger-Reedley 115 kV line, which could thermally overload the Kings River-Sanger-Reedley 115 kV line. This limiting contingency establishes a local capacity need of 56 MW (including 46 MW of deficiency) in 2015 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

There is no single critical contingency in this sub-area.

#### **Effectiveness factors:**

All units within this sub-area are needed for the most limiting contingencies therefore no effectiveness factor is required.

#### Herndon Sub-area

The most critical contingency is the loss of Herndon-Barton 115 kV with Kerckhoff 2 PH unit out of service. This contingency could thermally overload the Herndon-Manchester 115 kV line. This limiting contingency established an LCR of 439 MW (includes 51 MW of QF and 65 MW of Muni generation) in 2015 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

#### **Effectiveness factors:**

The following table has units within Fresno area that are relatively effective to the above-mentioned constraint.

| Gen Bus | Gen Name | Gen ID | Eff Fctr (%) |
|---------|----------|--------|--------------|
| 34648   | DINUBA E | 1      | 32%          |
| 34616   | KINGSRIV | 1      | 31%          |
| 34671   | KRCDPCT1 | 1      | 31%          |
| 34672   | KRCDPCT2 | 1      | 31%          |
| 34624   | BALCH 1  | 1      | 31%          |
| 34640   | ULTR.PWR | 1      | 30%          |
| 34646   | SANGERCO | 1      | 30%          |
| 34618   | MCCALL1T | 1      | 30%          |
| 34610   | HAAS     | 1      | 30%          |
| 34614   | BLCH 2-3 | 1      | 30%          |
| 34612   | BLCH 2-2 | 1      | 29%          |
| 38720   | PINE FLT | 3      | 29%          |
| 38720   | PINE FLT | 2      | 29%          |
| 38720   | PINE FLT | 1      | 29%          |
| 34696   | Q478     | 1      | 29%          |
| 34642   | KINGSBUR | 1      | 28%          |
| 34344   | KERCKHOF | 3      | 20%          |
| 34344   | KERCKHOF | 2      | 20%          |
| 34344   | KERCKHOF | 1      | 20%          |
| 34308   | KERCKHOF | 1      | 19%          |
| 34433   | GWF_HEP2 | 1      | 15%          |
| 34431   | GWF_HEP1 | 1      | 15%          |

#### Wilson Sub-area

The most critical contingency is the loss of the Melones - Wilson 230 kV line overlapped with one of the Helms units out of service. This contingency would thermally overload

the Warnerville - Wilson 230 kV line (most stringent). This limiting contingency establishes a LCR of 2393 MW in 2015 (includes 180 MW of QF and 136 MW of Munigeneration).

The second most critical contingency is the common mode loss of Gregg-Helms #1 & #2 230 kV lines. This contingency would thermally overload the Warnerville – Wilson 230 kV line. This limiting contingency establishes an LCR of 1615 MW in 2015 (includes 180 MW of QF and 136 MW of Muni generation).

#### Effectiveness factors:

The following table has units within Fresno that are at least 5% effective to the constraint on the Warnerville – Wilson 230 kV line.

| <b>Bus No</b> | Gen Name | ID | DFAX |
|---------------|----------|----|------|
| 34330         | ELNIDO   | 1  | 31%  |
| 34209         | STOREY D | 1  | 29%  |
| 34322         | MERCEDFL | 1  | 29%  |
| 34320         | MCSWAIN  | 1  | 29%  |
| 34306         | EXCHQUER | 1  | 27%  |
| 34305         | CHWCHLA2 | 1  | 27%  |
| 34301         | CHOWCOGN | 1  | 25%  |
| 34253         | BORDEN D | QF | 23%  |
| 34636         | FRIANTDM | 2  | 22%  |
| 34636         | FRIANTDM | 3  | 22%  |
| 34636         | FRIANTDM | 4  | 22%  |
| 34658         | WISHON   | 1  | 21%  |
| 34658         | WISHON   | 2  | 21%  |
| 34658         | WISHON   | 3  | 21%  |
| 34658         | WISHON   | 4  | 21%  |
| 34658         | WISHON   | SJ | 21%  |
| 34631         | SJ2GEN   | 1  | 21%  |
| 34633         | SJ3GEN   | 1  | 21%  |
| 34634         | CRANEVLY | 1  | 21%  |
| 34485         | FRESNOWW | 1  | 19%  |
| 34485         | FRESNOWW | 2  | 19%  |
| 34485         | FRESNOWW | 3  | 19%  |
| 34344         | KERCKHOF | 1  | 18%  |
| 34344         | KERCKHOF | 2  | 18%  |
| 34344         | KERCKHOF | 3  | 18%  |

| 34308 | KERCKHOF       | 1  | 18% |
|-------|----------------|----|-----|
| 34646 | SANGERCO       | 1  | 15% |
| 34648 | DINUBA E       | 1  | 15% |
| 34624 | BALCH 1        | 1  | 14% |
| 34671 | KRCDPCT1       | 1  | 14% |
| 34672 | KRCDPCT2       | 1  | 14% |
| 34640 | ULTR.PWR       | 1  | 14% |
| 34603 | JGBSWLT        | ST | 14% |
| 34616 | KINGSRIV       | 1  | 14% |
| 34696 | RPSP1004       | 1  | 14% |
| 34219 | MCCALL 4       | QF | 14% |
| 34642 | KINGSBUR       | 1  | 13% |
| 38720 | PINE FLT       | 1  | 12% |
| 38720 | PINE FLT       | 2  | 12% |
| 38720 | PINE FLT       | 3  | 12% |
| 34612 | BLCH 2-2       | 1  | 12% |
| 34610 | HAAS           | 1  | 12% |
| 34610 | HAAS           | 2  | 12% |
| 34614 | BLCH 2-3       | 1  | 12% |
| 34431 | GWF_HEP1       | 1  | 12% |
| 34433 | GWF_HEP2       | 1  | 12% |
| 34675 | RPSP1007       | 1  | 10% |
| 34674 | RPSP1006       | 1  | 10% |
| 34673 | RPSP1005       | 1  | 10% |
| 34539 | GWF_GT1        | 1  | 10% |
| 34541 | GWF_GT2        | 1  | 10% |
| 39171 | S653E          | FT | 9%  |
| 34608 | AGRICO         | 2  | 9%  |
| 34608 | AGRICO         | 3  | 9%  |
| 34608 | AGRICO         | 4  | 9%  |
| 34334 | <b>BIO PWR</b> | 1  | 8%  |
| 34339 | CALRENEW       | 1  | 8%  |
| 34328 | STAR_GT1       | 1  | 8%  |
| 34329 | STAR_GT2       | 2  | 8%  |
| 34186 | DG_PAN1        | 1  | 8%  |
| 34142 | WHD_PAN2       | 1  | 8%  |
| 34652 | CHV.COAL       | 1  | 7%  |
| 34652 | CHV.COAL       | 2  | 7%  |
| 34263 | SANDDRAG       | 1  | 6%  |
| 34257 | SUNCTY D       | 1  | 6%  |
| 34265 | AVENAL P       | 1  | 6%  |
| 34553 | WHD_GAT2       | 1  | 6%  |
| 34654 | COLNGAGN       | 1  | 6%  |

| 34207 | WRIGHT D | QF | 6% |
|-------|----------|----|----|
| 34342 | INT.TURB | 1  | 5% |

## Changes compared to last year's results:

From 2013 the load forecast has decreased by 29 MW and the LCR has increased by 581 MW of which 46 MW is deficiency due to new sub-area requirements and effectiveness factors of resources required for the second most stringent contingency.

## Fresno Area Overall Requirements:

| 2015                 | 2015 QF/Selfgen (MW) |     | Market<br>(MW) | Max. Qualifying Capacity (MW) |
|----------------------|----------------------|-----|----------------|-------------------------------|
| Available generation | 180                  | 136 | 2532           | 2848                          |

| 2015                     | Existing Generation  | Deficiency | Total MW LCR |
|--------------------------|----------------------|------------|--------------|
|                          | Capacity Needed (MW) | (MW)       | Need         |
| Category B (Single) 19   | 2393                 | 0          | 2393         |
| Category C (Multiple) 20 | 2393                 | 46         | 2439         |

#### 7. Kern Area

## **Area Definition**

The transmission facilities coming into the Kern PP sub-area are:

- 1) Wheeler Ridge-Lamont 115 kV line
- 2) Kern PP 230/115 kV Bank # 3
- 3) Kern PP 230/115 kV Bank # 4
- 4) Kern PP 230/115 kV Bank # 5
- 5) Famoso-Charca 115kV (Normal Open)

The substations that delineate the Kern-PP sub-area are:

- 1) Wheeler Ridge is out Lamont is in
- 2) Kern PP 230 kV is out Kern PP 115 kV is in

<sup>19</sup> A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

operations standards.

Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

- 3) Kern PP 230 kV is out Kern PP 115 kV is in
- 4) Kern PP 230 kV is out Kern PP 115 kV is in
- 5) Charca 115kV is out Famoso 115kV is in

2015 total busload within the defined area: 723 MW with 7 MW of losses resulting in a total (load plus losses) of 731 MW.

Total units and qualifying capacity available in this Kern area:

| MKT/SCHED<br>RESOURCE ID | BUS#  | BUS NAME | kV   | NQC   |     | LCR SUB-AREA<br>NAME        | NQC Comments  | CAISO Tag  |
|--------------------------|-------|----------|------|-------|-----|-----------------------------|---------------|------------|
| BDGRCK_1_UNITS           | 35029 | BADGERCK | 9.11 | 42.27 | 1   | South Kern PP               | Aug NQC       | QF/Selfgen |
| BEARMT_1_UNIT            | 35066 | PSE-BEAR | 9.11 | 45.24 | 1 1 | South Kern PP,<br>West Park | Aug NQC       | QF/Selfgen |
| DEXZEL_1_UNIT            | 35024 | DEXEL +  | 9.11 | 27.89 | 1   | South Kern PP               | Aug NQC       | QF/Selfgen |
| DISCOV_1_CHEVRN          | 35062 | DISCOVRY | 9.11 | 3.01  | 1   | South Kern PP               | Aug NQC       | QF/Selfgen |
| DOUBLC_1_UNITS           | 35023 | DOUBLE C | 9.11 | 47.00 | 1   | South Kern PP               | Aug NQC       | QF/Selfgen |
| KERNFT_1_UNITS           | 35026 | KERNFRNT | 9.11 | 47.00 | 1   | South Kern PP               | Aug NQC       | QF/Selfgen |
| LIVOAK_1_UNIT 1          | 35058 | PSE-LVOK | 9.11 | 44.18 | 1   | South Kern PP               | Aug NQC       | QF/Selfgen |
| MTNPOS_1_UNIT            | 35036 | MT POSO  | 9.11 | 18.61 | 1   | South Kern PP               | Aug NQC       | QF/Selfgen |
| OILDAL_1_UNIT 1          | 35028 | OILDALE  | 9.11 | 38.34 | 1   | South Kern PP               | Aug NQC       | QF/Selfgen |
| SIERRA_1_UNITS           | 35027 | HISIERRA | 9.11 | 47.00 | 1   | South Kern PP               | Aug NQC       | QF/Selfgen |
| ULTOGL_1_POSO            | 35035 | ULTR PWR | 9.11 | 33.37 | 1   | South Kern PP               | Aug NQC       | QF/Selfgen |
| VEDDER_1_SEKERN          | 35046 | SEKR     | 9.11 | 13.86 | 1   | South Kern PP               | Aug NQC       | QF/Selfgen |
| New Unit                 | 35019 | 2C559    | 0.48 | 67.50 | F   | South Kern PP               | No NQC - Pmax | Market     |
| New Unit                 | 35021 | S622B    | 34.5 | 20.00 | F   | South Kern PP               | No NQC - Pmax | Market     |

## Major new projects modeled:

- 1. Fixed incorrect rating on Kern PP #4 230/115kV transformer
- 2. New Normal Open point at Famoso-Charca 115 kV

## **Critical Contingency Analysis Summary**

#### West Park Sub-area

The most critical contingency is the loss of Kern - West Park # 1 or #2 115 kV lines with PSE-Bear generation out of service, resulting in potential overload of the remaining Kern – West Park 115 kV line. This limitation establishes a LCR of 71 MW (includes 44 MW of QF generation and 26 MW of deficiency) in 2015 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

#### **Effectiveness factors:**

All units within this sub-area are needed therefore no effectiveness factor is required.

#### South Kern PP Sub-area

The most critical contingency is the outage of Kern-Kern Front 115 kV line overlapping with Kern PP #5 230/115 kV transformer, which could thermally overload the Kern PP #4 230/115kV transformer. This limiting contingency establishes a LCR of 411 MW in 2015 (includes 408 MW of effective QF generation) as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

The single most critical contingency is the loss of Kern-Magunden-Witco 115 kV line with Mt Poso generation out of service. This limiting contingency establishes a local capacity requirement of 108 MW in 2015 (includes 408 MW of QF generation).

#### **Effectiveness factors:**

All units within this sub-area have the same effectiveness factor.

## Changes compared to last year's results:

Overall the load went down by 550 MW and the maximum qualifying capacity went down by 182 MW due to area redefinition. The LCR requirement has gone down by 24 MW mostly due to a new normal open at Famoso-Charca 115 kV line.

## Kern Area Overall Requirements:

| 2015                 | QF/Selfgen<br>(MW) | Market<br>(MW) | Max. Qualifying Capacity (MW) |
|----------------------|--------------------|----------------|-------------------------------|
| Available generation | 408                | 87             | 495                           |

| 2015                     | Existing Generation Capacity Needed (MW) | Deficiency<br>(MW) | Total MW<br>LCR Need |
|--------------------------|------------------------------------------|--------------------|----------------------|
| Category B (Single) 21   | 108                                      | 26                 | 134                  |
| Category C (Multiple) 22 | 411                                      | 26                 | 437                  |

-

<sup>&</sup>lt;sup>21</sup> A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

operations standards.

22 Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

#### 8. LA Basin Area

## **Area Definition**

The transmission tie lines into the LA Basin Area are:

- 1) San Onofre San Luis Rey #1, #2, & #3 230 kV Lines
- 2) Songsmesa Talega #1 & #2 230 kV Lines
- 3) Lugo Mira Loma #2 & #3 500 kV Lines
- 4) Lugo Rancho Vista #1 500 kV line
- 5) Sylmar Eagle Rock 230 kV Line
- 6) Sylmar Gould 230 kV Line
- 7) Vincent Mesa Cal 230 kV Line
- 8) Vincent Rio Hondo #1 & #2 230 kV Lines
- 9) Eagle Rock Pardee 230 kV Line
- 10) Devers RedBluff #1 and #2 500 kV Lines
- 11) Mirage Coachely 230 kV Line
- 12) Mirage Ramon 230 kV Line
- 13) Mirage Julian Hinds 230 kV Line

These sub-stations form the boundary surrounding the LA Basin area:

- 1) San Onofre is in San Luis Rey is out
- 2) Songsmesa is in TALEGA is out
- 3) Mira Loma is in Lugo is out
- 4) Rancho Vista is in Lugo is out
- 5) Eagle Rock is in Sylmar is out
- 6) Gould is in Sylmar is out
- 7) Mesa Cal is in Vincent is out
- 8) Rio Hondo is in Vincent is out
- 9) Eagle Rock is in Pardee is out
- 10) Devers is in RedBluff is out
- 11) Mirage is in Coachely is out
- 12) Mirage is in Ramon is out
- 13) Mirage is in Julian Hinds is out

Total 2015 busload within the defined area is 19,819 MW with 121 MW of losses and 30 MW pumps resulting in total load + losses + pumps of 19,970 MW.

Total units and qualifying capacity available in the LA Basin area:

| MKT/SCHED<br>RESOURCE ID | BUS#  | BUS NAME   | kV   | NQC    |    | LCR SUB-AREA<br>NAME       | NQC Comments               | CAISO Tag  |
|--------------------------|-------|------------|------|--------|----|----------------------------|----------------------------|------------|
| ALAMIT_7_UNIT 1          | 24001 | ALAMT1 G   | 18   | 174.56 | 1  | Western                    |                            | Market     |
| ALAMIT_7_UNIT 2          | 24002 | ALAMT2 G   | 18   | 175.00 | 2  | Western                    |                            | Market     |
| ALAMIT_7_UNIT 3          | 24003 | ALAMT3 G   | 18   | 332.18 | 3  | Western                    |                            | Market     |
| ALAMIT_7_UNIT 4          | 24004 | ALAMT4 G   | 18   | 335.67 |    | Western                    |                            | Market     |
| ALAMIT_7_UNIT 5          | 24005 | ALAMT5 G   | 20   | 497.97 |    | Western                    |                            | Market     |
| ALAMIT_7_UNIT 6          |       | ALAMT6 G   | 20   | 495.00 |    | Western                    |                            | Market     |
| ANAHM_2_CANYN1           |       | CanyonGT 1 | 13.8 | 49.40  |    | Western                    |                            | MUNI       |
| ANAHM_2_CANYN2           | 25212 | CanyonGT 2 | 13.8 | 48.00  | 2  | Western                    |                            | MUNI       |
| ANAHM_2_CANYN3           | 25213 | CanyonGT 3 | 13.8 | 48.00  | 3  | Western                    |                            | MUNI       |
| ANAHM_2_CANYN4           | 25214 | CanyonGT 4 | 13.8 | 49.40  | 4  | Western                    |                            | MUNI       |
| ANAHM_7_CT               | 25208 | DowlingCTG | 13.8 | 40.64  | 1  | Western                    | Aug NQC                    | MUNI       |
| ARCOGN_2_UNITS           | 24011 | ARCO 1G    | 13.8 | 54.98  | 1  | Western                    | Aug NQC                    | QF/Selfgen |
| ARCOGN_2_UNITS           | 24012 | ARCO 2G    | 13.8 | 54.98  | 2  | Western                    | Aug NQC                    | QF/Selfgen |
| ARCOGN_2_UNITS           | 24013 | ARCO 3G    | 13.8 | 54.98  | 3  | Western                    | Aug NQC                    | QF/Selfgen |
| ARCOGN_2_UNITS           | 24014 | ARCO 4G    | 13.8 | 54.98  | 4  | Western                    | Aug NQC                    | QF/Selfgen |
| ARCOGN_2_UNITS           |       | ARCO 5G    | 13.8 | 27.49  |    | Western                    | Aug NQC                    | QF/Selfgen |
| ARCOGN_2_UNITS           |       | ARCO 6G    | 13.8 | 27.50  |    | Western                    | Aug NQC                    | QF/Selfgen |
| BARRE_2_QF               |       | BARRE      | 230  | 0.00   |    | Western                    | Not modeled                | QF/Selfgen |
| BARRE_6_PEAKER           |       | BARPKGEN   | 13.8 | 47.00  |    | Western                    |                            | Market     |
| BLAST_1_WIND             |       | BLAST      | 115  | 8.55   |    | Eastern                    | Aug NQC                    | Wind       |
| BRDWAY_7_UNIT 3          |       | BRODWYSC   | 13.8 | 65.00  |    | Western                    | 7.09 1100                  | MUNI       |
| BUCKWD_1_NPALM1          |       | BUCKWIND   | 115  | 1.95   |    | Eastern, Valley-<br>Devers | Not modeled Aug<br>NQC     | Wind       |
| BUCKWD_1_QF              | 25634 | BUCKWIND   | 115  | 2.53   | QF | Eastern, Valley-<br>Devers | Aug NQC                    | QF/Selfgen |
| BUCKWD_7_WINTCV          | 25634 | BUCKWIND   | 115  | 0.15   | W5 | Eastern, Valley-<br>Devers | Aug NQC                    | Wind       |
| CABZON_1_WINDA1          | 29290 | CABAZON    | 33   | 11.34  | 1  | Eastern, Valley-<br>Devers | Aug NQC                    | Wind       |
| CENTER_2_QF              |       | CENTER S   | 66   | 18.97  |    | Western                    | Not modeled Aug<br>NQC     | QF/Selfgen |
| CENTER_2_RHONDO          | 24203 | CENTER S   | 66   | 1.91   |    | Western                    | Not modeled                | QF/Selfgen |
| CENTER_6_PEAKER          |       | CTRPKGEN   | 13.8 | 47.00  | 1  | Western                    |                            | Market     |
| CENTRY_6_PL1X4           | 25302 | CLTNCTRY   | 13.8 | 36.00  | 1  | Eastern                    | Aug NQC                    | MUNI       |
| CHEVMN_2_UNITS           | 24022 | CHEVGEN1   | 13.8 | 0.00   | 1  | Western, El Nido           | Aug NQC                    | QF/Selfgen |
| CHEVMN_2_UNITS           | 24023 | CHEVGEN2   | 13.8 | 0.00   | 2  | Western, El Nido           | Aug NQC                    | QF/Selfgen |
| CHINO_2_QF               | 24024 | CHINO      | 66   | 5.99   |    | None                       | Not modeled Aug<br>NQC     | QF/Selfgen |
| CHINO_2_SOLAR            | 24024 | CHINO      | 66   | 0.00   |    | None                       | Not modeled<br>Energy Only | Market     |
| CHINO_6_CIMGEN           |       | CIMGEN     | 13.8 | 26.10  | D1 | None                       | Aug NQC                    | QF/Selfgen |
| CHINO_6_SMPPAP           | 24140 | SIMPSON    | 13.8 | 29.34  | D1 | None                       | Aug NQC                    | QF/Selfgen |
| CHINO_7_MILIKN           | 24024 | CHINO      | 66   | 1.41   |    | None                       | Not modeled Aug<br>NQC     | Market     |
| COLTON_6_AGUAM1          | 25303 | CLTNAGUA   | 13.8 | 43.00  | 1  | Eastern                    | Aug NQC                    | MUNI       |
| CORONS_2_SOLAR           |       |            |      | 0.00   |    | Eastern                    | Not modeled<br>Energy Only | Market     |
| CORONS_6_CLRWTR          | 24210 | MIRALOMA   | 66   | 14.00  |    | Eastern                    | Not modeled                | MUNI       |
| CORONS_6_CLRWTR          |       |            | 66   | 14.00  |    | Eastern                    | Not modeled                | MUNI       |
| DELAMO_2_SOLRC1          |       |            |      | 0.00   |    | Western                    | Not modeled<br>Energy Only | Market     |
| DELAMO_2_SOLRD           |       |            |      | 0.00   | _  | Western                    | Not modeled<br>Energy Only | Market     |

| DEVERS_1_QF     | 24815 | GARNET   | 115  | 2.08   | QF | Eastern, Valley-<br>Devers | Aug NQC                    | QF/Selfgen |
|-----------------|-------|----------|------|--------|----|----------------------------|----------------------------|------------|
| DEVERS_1_QF     | 25632 | TERAWND  | 115  | 4.05   | QF | Eastern, Valley-<br>Devers | Aug NQC                    | QF/Selfgen |
| DEVERS_1_QF     | 25633 | CAPWIND  | 115  | 0.77   | QF | Eastern, Valley-<br>Devers | Aug NQC                    | QF/Selfgen |
| DEVERS_1_QF     | 25635 | ALTWIND  | 115  | 1.86   | Q1 | Eastern, Valley-<br>Devers | Aug NQC                    | QF/Selfgen |
| DEVERS_1_QF     | 25635 | ALTWIND  | 115  | 3.45   | Q2 | Eastern, Valley-<br>Devers | Aug NQC                    | QF/Selfgen |
| DEVERS_1_QF     | 25636 | RENWIND  | 115  | 0.81   | Q1 | Eastern, Valley-<br>Devers | Aug NQC                    | QF/Selfgen |
| DEVERS_1_QF     | 25636 | RENWIND  | 115  | 0.37   | W1 | Eastern, Valley-<br>Devers | Aug NQC                    | QF/Selfgen |
| DEVERS_1_QF     | 25637 | TRANWIND | 115  | 9.19   | QF | Eastern, Valley-<br>Devers | Aug NQC                    | QF/Selfgen |
| DEVERS_1_QF     | 25639 | SEAWIND  | 115  | 2.77   | QF | Eastern, Valley-<br>Devers | Aug NQC                    | QF/Selfgen |
| DEVERS_1_QF     | 25645 | VENWIND  | 115  | 2.11   | EU | Eastern, Valley-<br>Devers | Aug NQC                    | QF/Selfgen |
| DEVERS_1_QF     | 25645 | VENWIND  | 115  | 4.93   | Q1 | Eastern, Valley-<br>Devers | Aug NQC                    | QF/Selfgen |
| DEVERS_1_QF     | 25645 | VENWIND  | 115  | 3.32   | Q2 | Eastern, Valley-<br>Devers | Aug NQC                    | QF/Selfgen |
| DEVERS_1_QF     | 25646 | SANWIND  | 115  | 1.11   | Q1 | Eastern, Valley-<br>Devers | Aug NQC                    | QF/Selfgen |
| DEVERS_1_SEPV05 |       |          |      | 0.00   |    | Eastern, Valley-<br>Devers | Energy Only                | Market     |
| DMDVLY_1_UNITS  |       | ESRP P2  | 6.9  | 7.25   |    | Eastern                    | Not modeled Aug<br>NQC     | QF/Selfgen |
| DREWS_6_PL1X4   | 25301 | CLTNDREW | 13.8 | 36.00  | 1  | Eastern                    | Aug NQC                    | MUNI       |
| DVLCYN_1_UNITS  |       | DVLCYN3G | 13.8 | 67.15  | 3  | Eastern                    | Aug NQC                    | MUNI       |
| DVLCYN_1_UNITS  |       | DVLCYN4G | 13.8 | 67.14  | 4  | Eastern                    | Aug NQC                    | MUNI       |
| DVLCYN_1_UNITS  |       | DVLCYN1G | 13.8 | 50.34  | 1  | Eastern                    | Aug NQC                    | MUNI       |
| DVLCYN_1_UNITS  | 25649 | DVLCYN2G | 13.8 | 50.34  | 2  | Eastern                    | Aug NQC                    | MUNI       |
| ELLIS_2_QF      | 24197 | ELLIS    | 66   | 0.00   |    | Western                    | Not modeled Aug<br>NQC     | QF/Selfgen |
| ELSEGN_2_UN1011 |       | ELSEG6ST | 18   | 68     |    | Western, El Nido           | Aug NQC                    | Market     |
| ELSEGN_2_UN1011 |       | ELSEG5ST | 18   | 195    |    | Western, El Nido           | Aug NQC                    | Market     |
| ELSEGN_2_UN2021 |       | ELSEG8ST | 18   | 68.68  |    | Western, El Nido           | Aug NQC                    | Market     |
| ELSEGN_2_UN2021 |       | ELSEG7GT | 18   | 195    | 7  | Western, El Nido           | Aug NQC                    | Market     |
| ELSEGN_7_UNIT 4 | 24048 | ELSEG4 G | 18   | 335.00 | 4  | Western, El Nido           |                            | Market     |
| ETIWND_2_FONTNA | 24055 | ETIWANDA | 66   | 1.03   |    | Eastern                    | Not modeled Aug<br>NQC     | QF/Selfgen |
| ETIWND_2_QF     | 24055 | ETIWANDA | 66   | 15.24  |    | Eastern                    | Not modeled Aug<br>NQC     | QF/Selfgen |
| ETIWND_6_GRPLND | 29305 | ETWPKGEN | 13.8 | 46.00  | 1  | Eastern                    |                            | Market     |
| ETIWND_6_MWDETI | 25422 | ETI MWDG | 13.8 | 9.13   | 1  | Eastern                    | Aug NQC                    | Market     |
| ETIWND_7_MIDVLY |       | ETIWANDA | 66   | 1.55   |    | Eastern                    | Not modeled Aug<br>NQC     | QF/Selfgen |
| ETIWND_7_UNIT 3 | 24052 | MTNVIST3 | 18   | 320.00 | 3  | Eastern                    |                            | Market     |
| ETIWND_7_UNIT 4 |       | MTNVIST4 | 18   | 320.00 | 4  | Eastern                    |                            | Market     |
| GARNET_1_SOLAR  |       | GARNET   | 115  | 0.00   |    | Eastern, Valley-<br>Devers | Not modeled<br>Energy Only | Market     |

| GARNET_1_UNITS  | 24815 | GARNET   | 115  | 1.29   | G1 | Eastern, Valley-<br>Devers        | Aug NQC                    | QF/Selfgen |
|-----------------|-------|----------|------|--------|----|-----------------------------------|----------------------------|------------|
| GARNET_1_UNITS  | 24815 | GARNET   | 115  | 0.45   | G2 | Eastern, Valley-<br>Devers        | Aug NQC                    | QF/Selfgen |
| GARNET_1_UNITS  | 24815 | GARNET   | 115  | 0.93   | G3 | Eastern, Valley-<br>Devers        | Aug NQC                    | QF/Selfgen |
| GARNET_1_WIND   | 24815 | GARNET   | 115  | 0.38   | PC | Eastern, Valley-<br>Devers        | Aug NQC                    | Wind       |
| GARNET_1_WINDS  | 24815 | GARNET   | 115  | 1.80   | W2 | Eastern, Valley-<br>Devers        | Aug NQC                    | Wind       |
| GARNET_1_WINDS  | 24815 | GARNET   | 115  | 1.80   | W3 | Eastern, Valley-<br>Devers        | Aug NQC                    | Wind       |
| GARNET_1_WT3WND | 24815 | GARNET   | 115  | 0.00   |    | Eastern, Valley-<br>Devers        | Not modeled<br>Energy Only | Market     |
| GLNARM_7_UNIT 1 | 29005 | PASADNA1 | 13.8 | 22.07  | 1  | Western                           |                            | MUNI       |
| GLNARM_7_UNIT 2 | 29006 | PASADNA2 | 13.8 | 22.30  | 1  | Western                           |                            | MUNI       |
| GLNARM_7_UNIT 3 | 29005 | PASADNA1 | 13.8 | 44.83  |    | Western                           | Not modeled                | MUNI       |
| GLNARM_7_UNIT 4 | 29006 | PASADNA2 | 13.8 | 42.42  |    | Western                           | Not modeled                | MUNI       |
| HARBGN_7_UNITS  | 24062 | HARBOR G | 13.8 | 76.28  | 1  | Western                           |                            | Market     |
| HARBGN_7_UNITS  | 24062 | HARBOR G | 13.8 | 11.86  |    | Western                           |                            | Market     |
| HARBGN_7_UNITS  | 25510 | HARBORG4 | 4.16 | 11.86  | LP | Western                           |                            | Market     |
| HINSON_6_CARBGN |       | CARBOGEN | 13.8 | 29.00  |    | Western                           | Aug NQC                    | Market     |
| HINSON_6_LBECH1 |       | LBEACH12 | 13.8 | 65.00  |    | Western                           | 19                         | Market     |
| HINSON_6_LBECH2 |       | LBEACH12 | 13.8 | 65.00  |    | Western                           |                            | Market     |
| HINSON_6_LBECH3 |       | LBEACH34 | 13.8 | 65.00  |    | Western                           |                            | Market     |
| HINSON_6_LBECH4 |       | LBEACH34 | 13.8 | 65.00  |    | Western                           |                            | Market     |
| HINSON_6_SERRGN |       | SERRFGEN | 13.8 | 28.26  |    | Western                           | Aug NQC                    | QF/Selfgen |
| HNTGBH_7_UNIT 1 |       | HUNT1 G  | 13.8 |        |    | Western                           | 7.09.10                    | Market     |
| HNTGBH_7_UNIT 2 |       | HUNT2 G  | 13.8 |        |    | Western                           |                            | Market     |
| INDIGO_1_UNIT 1 |       | WINTECX2 | 13.8 | 42.00  | 1  | Eastern, Valley-<br>Devers        |                            | Market     |
| INDIGO_1_UNIT 2 | 29191 | WINTECX1 | 13.8 | 42.00  | 1  | Eastern, Valley-<br>Devers        |                            | Market     |
| INDIGO_1_UNIT 3 | 29180 | WINTEC8  | 13.8 | 42.00  | 1  | Eastern, Valley-<br>Devers        |                            | Market     |
| INLDEM_5_UNIT 1 | 29041 | IEEC-G1  | 19.5 | 335.00 | 1  | Eastern, Valley,<br>Valley-Devers | Aug NQC                    | Market     |
| INLDEM_5_UNIT 2 | 29042 | IEEC-G2  | 19.5 | 335.00 |    | Eastern, Valley,<br>Valley-Devers | Aug NQC                    | Market     |
| JOHANN_6_QFA1   | 24072 | JOHANNA  | 230  | 0.01   |    | Western                           | Not modeled Aug<br>NQC     | QF/Selfgen |
| LACIEN_2_VENICE | 24337 | VENICE   | 13.8 | 4.54   | 1  | Western, El Nido                  | Aug NQC                    | MUNI       |
| LAFRES_6_QF     | 24073 | LA FRESA | 66   | 1.44   |    | Western, El Nido                  | Not modeled Aug<br>NQC     | QF/Selfgen |
| LAGBEL_6_QF     | 24075 | LAGUBELL | 66   | 9.82   |    | Western                           | Not modeled Aug<br>NQC     | QF/Selfgen |
| LGHTHP_6_ICEGEN | 24070 | ICEGEN   | 13.8 | 47.61  | 1  | Western                           | Aug NQC                    | QF/Selfgen |
| LGHTHP_6_QF     |       | LITEHIPE | 66   | 0.78   |    | Western                           | Not modeled Aug<br>NQC     | QF/Selfgen |
| MESAS_2_QF      | 24209 | MESA CAL | 66   | 0.70   |    | Western                           | Not modeled Aug<br>NQC     | QF/Selfgen |
| MIRLOM_2_CORONA |       |          |      | 2.49   |    | Eastern                           | Not modeled Aug<br>NQC     | QF/Selfgen |
| MIRLOM_2_ONTARO |       |          |      | 0.00   |    | Eastern                           | Energy Only                | Market     |

| MIRLOM_2_TEMESC |       |          |      | 2.60   |    | Eastern                    | Not modeled Aug<br>NQC | QF/Selfgen |
|-----------------|-------|----------|------|--------|----|----------------------------|------------------------|------------|
| MIRLOM_6_DELGEN | 24030 | DELGEN   | 13.8 | 30.83  | 1  | Eastern                    | Aug NQC                | QF/Selfgen |
| MIRLOM_6_PEAKER | 29307 | MRLPKGEN | 13.8 | 46.00  | 1  | Eastern                    |                        | Market     |
| MIRLOM_7_MWDLKM | 24210 | MIRALOMA | 66   | 5.00   |    | Eastern                    | Not modeled Aug<br>NQC | MUNI       |
| MOJAVE_1_SIPHON | 25657 | MJVSPHN1 | 13.8 | 4.66   | 1  | Eastern                    | Aug NQC                | Market     |
| MOJAVE_1_SIPHON | 25657 | MJVSPHN1 | 13.8 | 4.67   | 2  | Eastern                    | Aug NQC                | Market     |
| MOJAVE_1_SIPHON | 25657 | MJVSPHN1 | 13.8 | 4.67   | 3  | Eastern                    | Aug NQC                | Market     |
| MTWIND_1_UNIT 1 | 29060 | MOUNTWND | 115  | 8.29   | S1 | Eastern, Valley-<br>Devers | Aug NQC                | Wind       |
| MTWIND_1_UNIT 2 | 29060 | MOUNTWND | 115  | 3.10   | S2 | Eastern, Valley-<br>Devers | Aug NQC                | Wind       |
| MTWIND_1_UNIT 3 | 29060 | MOUNTWND | 115  | 4.23   | S3 | Eastern, Valley-<br>Devers | Aug NQC                | Wind       |
| OLINDA_2_COYCRK | 24211 | OLINDA   | 66   | 3.13   |    | Western                    | Not modeled            | QF/Selfgen |
| OLINDA_2_LNDFL2 |       | OLINDA   | 66   | 27.19  |    | Western                    | Not modeled            | Market     |
| OLINDA_2_QF     | 24211 | OLINDA   | 66   | 0.16   | 1  | Western                    | Aug NQC                | QF/Selfgen |
| OLINDA_7_LNDFIL | 24211 | OLINDA   | 66   | 4.09   |    | Western                    | Not modeled Aug<br>NQC | QF/Selfgen |
| PADUA_2_ONTARO  | 24111 | PADUA    | 66   | 0.89   |    | Eastern                    | Not modeled Aug<br>NQC | QF/Selfgen |
| PADUA_6_MWDSDM  | 24111 | PADUA    | 66   | 4.13   |    | Eastern                    | Not modeled Aug<br>NQC | MUNI       |
| PADUA_6_QF      | 24111 | PADUA    | 66   | 0.68   |    | Eastern                    | Not modeled Aug<br>NQC | QF/Selfgen |
| PADUA_7_SDIMAS  | 24111 | PADUA    | 66   | 1.05   |    | Eastern                    | Not modeled Aug<br>NQC | QF/Selfgen |
| PANSEA_1_PANARO | 25640 | PANAERO  | 115  | 4.21   | QF | Eastern, Valley-<br>Devers | Aug NQC                | Wind       |
| PWEST_1_UNIT    |       |          |      | 0.06   |    | Western                    | Not modeled Aug<br>NQC | Market     |
| REDOND_7_UNIT 5 | 24121 | REDON5 G | 18   | 178.87 | 5  | Western                    |                        | Market     |
| REDOND_7_UNIT 6 | 24122 | REDON6 G | 18   | 175.00 | 6  | Western                    |                        | Market     |
| REDOND_7_UNIT 7 | 24123 | REDON7 G | 20   | 505.96 | 7  | Western                    |                        | Market     |
| REDOND_7_UNIT 8 | 24124 | REDON8 G | 20   | 495.90 | 8  | Western                    |                        | Market     |
| RENWD_1_QF      | 25636 | RENWIND  | 115  | 1.74   |    | Eastern, Valley-<br>Devers | Aug NQC                | QF/Selfgen |
| RHONDO_2_QF     | 24213 | RIOHONDO | 66   | 2.51   |    | Western                    | Not modeled Aug<br>NQC | QF/Selfgen |
| RHONDO_6_PUENTE | 24213 | RIOHONDO | 66   | 0.00   |    | Western                    | Not modeled Aug<br>NQC | Market     |
| RVSIDE_2_RERCU3 | 24299 | RERC2G3  | 13.8 | 48.50  | 1  | Eastern                    |                        | MUNI       |
| RVSIDE_2_RERCU4 | 24300 | RERC2G4  | 13.8 | 48.50  | 1  | Eastern                    |                        | MUNI       |
| RVSIDE_6_RERCU1 | 24242 | RERC1G   | 13.8 | 48.35  | 1  | Eastern                    |                        | MUNI       |
| RVSIDE_6_RERCU2 | 24243 | RERC2G   | 13.8 | 48.50  | 1  | Eastern                    |                        | MUNI       |
| RVSIDE_6_SPRING | 24244 | SPRINGEN | 13.8 | 36.00  | 1  | Eastern                    |                        | Market     |
| SANTGO_6_COYOTE | 24133 | SANTIAGO | 66   | 6.26   | 1  | Western                    | Aug NQC                | Market     |
| SANWD_1_QF      | 25646 | SANWIND  | 115  | 4.48   | Q2 | Eastern, Valley-<br>Devers | Aug NQC                | Wind       |
| SBERDO_2_PSP3   | 24921 | MNTV-CT1 | 18   | 129.71 | 1  | Eastern, West of<br>Devers |                        | Market     |
| SBERDO_2_PSP3   | 24922 | MNTV-CT2 | 18   | 129.71 | 1  | Eastern, West of<br>Devers |                        | Market     |

| SBERDO_2_PSP3   | 24923 | MNTV-ST1 | 18   | 225.08 | 1  | Eastern, West of<br>Devers        |                        | Market     |
|-----------------|-------|----------|------|--------|----|-----------------------------------|------------------------|------------|
| SBERDO_2_PSP4   | 24924 | MNTV-CT3 | 18   | 129.71 | 1  | Eastern, West of<br>Devers        |                        | Market     |
| SBERDO_2_PSP4   | 24925 | MNTV-CT4 | 18   | 129.71 | 1  | Eastern, West of<br>Devers        |                        | Market     |
| SBERDO_2_PSP4   | 24926 | MNTV-ST2 | 18   | 225.08 | 1  | Eastern, West of<br>Devers        |                        | Market     |
| SBERDO_2_QF     | 24214 | SANBRDNO | 66   | 0.09   |    | Eastern, West of<br>Devers        | Not modeled Aug<br>NQC | QF/Selfgen |
| SBERDO_2_REDLND | 24214 | SANBRDNO | 66   | 0.00   |    | Eastern, West of<br>Devers        | Energy Only            | Market     |
| SBERDO_2_SNTANA | 24214 | SANBRDNO | 66   | 0.61   |    | Eastern, West of<br>Devers        | Not modeled Aug<br>NQC | QF/Selfgen |
| SBERDO_6_MILLCK | 24214 | SANBRDNO | 66   | 2.27   |    | Eastern, West of<br>Devers        | Not modeled Aug<br>NQC | QF/Selfgen |
| SENTNL_2_CTG1   | 29101 | TOT032G1 | 13.8 | 91     | 1  | Eastern, Valley-<br>Devers        |                        | Market     |
| SENTNL_2_CTG2   | 29102 | TOT032G2 | 13.8 | 91     | 1  | Eastern, Valley-<br>Devers        |                        | Market     |
| SENTNL_2_CTG3   | 29103 | TOT032G3 | 13.8 | 91     | 1  | Eastern, Valley-<br>Devers        |                        | Market     |
| SENTNL_2_CTG4   | 29104 | TOT032G4 | 13.8 | 91     | 1  | Eastern, Valley-<br>Devers        |                        | Market     |
| SENTNL_2_CTG5   | 29105 | TOT032G5 | 13.8 | 91     | 1  | Eastern, Valley-<br>Devers        |                        | Market     |
| SENTNL_2_CTG6   | 29106 | TOT032G6 | 13.8 | 91     | 1  | Eastern, Valley-<br>Devers        |                        | Market     |
| SENTNL_2_CTG7   | 29107 | TOT032G7 | 13.8 | 91     | 1  | Eastern, Valley-<br>Devers        |                        | Market     |
| SENTNL_2_CTG8   | 29108 | TOT032G8 | 13.8 | 91     | 1  | Eastern, Valley-<br>Devers        |                        | Market     |
| TIFFNY_1_DILLON |       |          |      | 8.48   |    | Western                           | Not modeled Aug<br>NQC | Wind       |
| VALLEY_5_PERRIS | 24160 | VALLEYSC | 115  | 7.94   |    | Eastern, Valley,<br>Valley-Devers | Not modeled Aug<br>NQC | QF/Selfgen |
| VALLEY_5_REDMTN | 24160 | VALLEYSC | 115  | 3.22   |    | Eastern, Valley,<br>Valley-Devers | Not modeled Aug<br>NQC | QF/Selfgen |
| VALLEY_7_BADLND | 24160 | VALLEYSC | 115  | 0.76   |    | Eastern, Valley,<br>Valley-Devers | Not modeled Aug<br>NQC | Market     |
| VALLEY_7_UNITA1 | 24160 | VALLEYSC | 115  | 1.45   |    | Eastern, Valley,<br>Valley-Devers | Not modeled Aug<br>NQC | Market     |
| VERNON_6_GONZL1 |       |          |      | 5.75   |    | Western                           | Not modeled            | MUNI       |
| VERNON_6_GONZL2 |       |          |      | 5.75   |    | Western                           | Not modeled            | MUNI       |
| VERNON_6_MALBRG |       |          | 13.8 |        |    | Western                           |                        | MUNI       |
| VERNON_6_MALBRG |       |          | 13.8 |        |    | Western                           |                        | MUNI       |
| VERNON_6_MALBRG | 24241 | MALBRG3G | 13.8 | 49.26  | S3 | Western                           |                        | MUNI       |
| VILLPK_2_VALLYV | 24216 | VILLA PK | 66   | 4.10   |    | Western                           | Not modeled Aug<br>NQC | QF/Selfgen |
| VILLPK_6_MWDYOR | 24216 | VILLA PK | 66   | 0.00   |    | Western                           | Not modeled Aug<br>NQC | MUNI       |
| VISTA_2_RIALTO  | 24901 | VSTA     | 230  | 0.00   |    | Eastern                           | Energy Only            | Market     |
| VISTA_6_QF      | 24902 |          | 66   | 0.18   | 1  | Eastern                           | Aug NQC                | QF/Selfgen |
| WALCRK 2 CTG1   |       | EME WCG1 | 13.8 | 96     | 1  | Western                           |                        | Market     |
| WALCRK_2_CTG2   |       | EME WCG2 | 13.8 |        | 1  | Western                           |                        | Market     |

| WALCRK_2_CTG3    | 29203 | EME WCG3 | 13.8 | 96    | 1  | Western                    |                        | Market     |
|------------------|-------|----------|------|-------|----|----------------------------|------------------------|------------|
| WALCRK_2_CTG4    | 29204 | EME WCG4 | 13.8 | 96    | 1  | Western                    |                        | Market     |
| WALCRK_2_CTG5    |       | EME WCG5 | 13.8 | 96    | 1  | Western                    |                        | Market     |
| WALNUT_6_HILLGEN | 24063 | HILLGEN  | 13.8 | 48.03 | 1  | Western                    | Aug NQC                | QF/Selfgen |
| WALNUT_7_WCOVCT  | 24157 | WALNUT   | 66   | 2.16  |    | Western                    | Not modeled Aug<br>NQC | Market     |
| WALNUT_7_WCOVST  | 24157 | WALNUT   | 66   | 4.42  |    | Western                    | Not modeled Aug<br>NQC | Market     |
| WHTWTR_1_WINDA1  | 29061 | WHITEWTR | 33   | 9.83  | 1  | Eastern, Valley-<br>Devers | Aug NQC                | Wind       |
| ARCOGN_2_UNITS   | 24018 | BRIGEN   | 13.8 | 0.00  | 1  | Western                    | No NQC - hist.<br>data | Market     |
| HINSON_6_QF      | 24064 | HINSON   | 66   | 0.00  | 1  | Western                    | No NQC - hist.<br>data | QF/Selfgen |
| INLAND_6_UNIT    | 24071 | INLAND   | 13.8 | 30.30 | 1  | Eastern                    | No NQC - hist.<br>data | QF/Selfgen |
| MOBGEN_6_UNIT 1  | 24094 | MOBGEN   | 13.8 | 20.20 | 1  | Western, El Nido           | No NQC - hist.<br>data | QF/Selfgen |
| NA               | 24063 | HILLGEN  | 13.8 | 0.00  | D1 | Western                    | No NQC - hist.<br>data | QF/Selfgen |
| NA               | 24324 | SANIGEN  | 13.8 | 6.80  | D1 | Eastern                    | No NQC - hist.<br>data | QF/Selfgen |
| NA               | 24325 | ORCOGEN  | 13.8 | 0.00  | 1  | Western                    | No NQC - hist.<br>data | QF/Selfgen |
| NA               | 24327 | THUMSGEN | 13.8 | 40.00 | 1  | Western                    | No NQC - hist.<br>data | QF/Selfgen |
| NA               | 24328 | CARBGEN2 | 13.8 | 15.2  | 1  | Western                    | No NQC - hist.<br>data | Market     |
| NA               | 24329 | MOBGEN2  | 13.8 | 20.2  | 1  | Western, El Nido           | No NQC - hist.<br>data | QF/Selfgen |
| NA               | 24330 | OUTFALL1 | 13.8 | 0.00  | 1  | Western, El Nido           | No NQC - hist.<br>data | QF/Selfgen |
| NA               | 24331 | OUTFALL2 | 13.8 | 0.00  | 1  | Western, El Nido           | No NQC - hist.<br>data | QF/Selfgen |
| NA               | 24332 | PALOGEN  | 13.8 | 3.60  | D1 | Western, El Nido           | No NQC - hist.<br>data | QF/Selfgen |
| NA               | 24341 | COYGEN   | 13.8 | 0.00  | 1  | Western                    | No NQC - hist.<br>data | QF/Selfgen |
| NA               | 24342 | FEDGEN   | 13.8 | 0.00  | 1  | Western                    | No NQC - hist.<br>data | QF/Selfgen |
| NA               | 29021 | WINTEC6  | 115  | 45.00 | 1  | Eastern, Valley-<br>Devers | No NQC - hist.<br>data | Wind       |
| NA               | 29023 | WINTEC4  | 12   | 16.50 | 1  | Eastern, Valley-<br>Devers | No NQC - hist.<br>data | Wind       |
| NA               | 29060 | SEAWEST  | 115  | 44.40 | S1 | Eastern                    | No NQC - hist.<br>data | Wind       |
| NA               | 29060 | SEAWEST  | 115  | 22.20 | S2 | Eastern                    | No NQC - hist.<br>data | Wind       |
| NA               | 29060 | SEAWEST  | 115  | 22.40 | S3 | Eastern                    | No NQC - hist.<br>data | Wind       |
| NA               | 29260 | ALTAMSA4 | 115  | 40.00 | 1  | Eastern, Valley-<br>Devers | No NQC - hist.<br>data | Wind       |
| NA               | 29338 | CLRWTRCT | 13.8 | 0.00  | G1 | Eastern                    | No NQC - hist.<br>data | QF/Selfgen |
| NA               | 29339 | DELGEN   | 13.8 | 0.00  | 1  | Eastern                    | No NQC - hist.<br>data | QF/Selfgen |
| NA               | 29340 | CLRWTRST | 13.8 | 0.00  | S1 | Eastern                    | No NQC - hist.<br>data | QF/Selfgen |
| NA               | 29951 | REFUSE   | 13.8 | 9.90  | D1 | Western                    | No NQC - Pmax          | QF/Selfgen |

| NA              | 29953 | SIGGEN   | 13.8 | 24.90 | D1 | Western | No NQC - Pmax | QF/Selfgen |
|-----------------|-------|----------|------|-------|----|---------|---------------|------------|
| HNTGBH_7_UNIT 3 | 24167 | HUNT3 G  | 13.8 | 0.00  | 3  | Western | Retired       | Market     |
| HNTGBH_7_UNIT 4 | 24168 | HUNT4 G  | 13.8 | 0.00  | 4  | Western | Retired       | Market     |
| SONGS_7_UNIT 2  | 24129 | S.ONOFR2 | 22   | 0.00  | 2  | None    | Retired       | Nuclear    |
| SONGS_7_UNIT 3  | 24130 | S.ONOFR3 | 22   | 0.00  | 3  | None    | Retired       | Nuclear    |

## Major new projects modeled:

1. Talega SVC

## Critical Contingency Analysis Summary

### El Nido sub-area

The most critical contingency for the El Nido sub-area is the loss of the La Fresa – Hinson 230 kV line followed by the loss of the La Fresa – Redondo #1 and #2 230 kV lines, which would cause voltage collapse. This limiting contingency establishes a LCR of 515 MW in 2015 (includes 45 MW of QF and 5 MW of MUNI generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

### Western Sub-Area:

The most critical contingency for the Western sub-area is the loss of Serrano-Villa Park #2 230 kV line followed by the loss of the Serrano-Lewis 230 kV line or vice versa, which would result in thermal overload of the remaining Serrano-Villa Park 230 kV line. This limiting contingency establishes a LCR of 4583 MW (includes 565 MW of QF, 8 MW of Wind and 582 MW of Muni generation) in 2015 as the generation capacity necessary for reliable load serving capability within this sub-area.

### Effectiveness factors:

The following table has units that have at least 5% effectiveness to the abovementioned constraint:

| Gen Bus | Gen Name   | Gen ID | MW Eff Fctr (%) |
|---------|------------|--------|-----------------|
| 29309   | BARPKGEN   | 1      | 31              |
| 25203   | ANAHEIMG   | 1      | 30              |
| 25211   | CanyonGT 1 | 1      | 29              |
| 25212   | CanyonGT 2 | 2      | 29              |
| 25213   | CanyonGT 3 | 3      | 29              |
| 25214   | CanyonGT 4 | 4      | 29              |

| 24005 | ALAMT5 G | 5  | 23 |
|-------|----------|----|----|
| 24161 | ALAMT6 G | 6  | 23 |
| 24001 | ALAMT1 G | 1  | 22 |
| 24002 | ALAMT2 G | 2  | 22 |
| 24003 | ALAMT3 G | 3  | 22 |
| 24004 | ALAMT4 G | 4  | 22 |
| 24162 | ALAMT7 G | R7 | 22 |
| 24066 | HUNT1 G  | 1  | 22 |
| 24067 | HUNT2 G  | 2  | 22 |
| 24167 | HUNT3 G  | 3  | 22 |
| 24168 | HUNT4 G  | 4  | 22 |
| 24325 | ORCOGEN  | 1  | 21 |
| 24133 | SANTIAGO | 1  | 16 |
| 24341 | COYGEN   | 1  | 16 |
| 24011 | ARCO 1G  | 1  | 15 |
| 24012 | ARCO 2G  | 2  | 15 |
| 24013 | ARCO 3G  | 3  | 15 |
| 24014 | ARCO 4G  | 4  | 15 |
| 24018 | BRIGEN   | 1  | 15 |
| 24020 | CARBGEN1 | 1  | 15 |
| 24064 | HINSON   | 1  | 15 |
| 24070 | ICEGEN   | D1 | 15 |
| 24170 | LBEACH12 | 2  | 15 |
| 24171 | LBEACH34 | 3  | 15 |
| 24062 | HARBOR G | 1  | 15 |
| 25510 | HARBORG4 | LP | 15 |
| 24062 | HARBOR G | HP | 15 |
| 24139 | SERRFGEN | D1 | 15 |
| 24170 | LBEACH12 | 1  | 15 |
| 24171 | LBEACH34 | 4  | 15 |
| 24173 | LBEACH5G | R5 | 15 |
| 24174 | LBEACH6G | R6 | 15 |
| 24327 | THUMSGEN | 1  | 15 |
| 24328 | CARBGEN2 | 1  | 15 |
| 24079 | LBEACH7G | R7 | 15 |
| 24080 | LBEACH8G | R8 | 15 |
| 24081 | LBEACH9G | R9 | 15 |
| 24163 | ARCO 5G  | 5  | 14 |
| 24164 | ARCO 6G  | 6  | 14 |
| 24022 | CHEVGEN1 | 1  | 14 |
| 24023 | CHEVGEN2 | 2  | 14 |
| 24048 | ELSEG4 G | 4  | 14 |
| 24094 | MOBGEN1  | 1  | 14 |
|       |          |    |    |

| 29308 | CTRPKGEN | 1  | 14 |
|-------|----------|----|----|
| 24329 | MOBGEN2  | 1  | 14 |
| 24330 | OUTFALL1 | 1  | 14 |
| 24331 | OUTFALL2 | 1  | 14 |
| 24332 | PALOGEN  | D1 | 14 |
| 24333 | REDON1 G | R1 | 14 |
| 24334 | REDON2 G | R2 | 14 |
| 24335 | REDON3 G | R3 | 14 |
| 24336 | REDON4 G | R4 | 14 |
| 24337 | VENICE   | 1  | 14 |
| 29953 | SIGGEN   | D1 | 14 |
| 29901 | NRG ELG5 | 5  | 14 |
| 29903 | NRG ELG6 | 6  | 14 |
| 29902 | NRG ELS7 | 7  | 14 |
| 24047 | ELSEG3 G | 3  | 13 |
| 24121 | REDON5 G | 5  | 13 |
| 24122 | REDON6 G | 6  | 13 |
| 24123 | REDON7 G | 7  | 13 |
| 24124 | REDON8 G | 8  | 13 |
| 29951 | REFUSE   | D1 | 12 |
| 24342 | FEDGEN   | 1  | 12 |
| 24241 | MALBRG3G | S3 | 11 |
| 24240 | MALBRG2G | C2 | 11 |
| 24239 | MALBRG1G | C1 | 11 |
| 29005 | PASADNA1 | 1  | 9  |
| 29006 | PASADNA2 | 1  | 9  |
| 29007 | BRODWYSC | 1  | 9  |
| 24063 | HILLGEN  | D1 | 6  |
| 29201 | EME WCG1 | 1  | 5  |
| 29203 | EME WCG3 | 1  | 5  |
| 29204 | EME WCG4 | 1  | 5  |
| 29205 | EME WCG5 | 1  | 5  |
| 29202 | EME WCG2 | 1  | 5  |
|       |          |    |    |

There are numerous other combinations of contingencies in the area that could overload a significant number of 230 kV lines in this sub-area and have less LCR need. As such, anyone of them (combination of contingencies) could become binding for any given set of procured resources. As a result, effectiveness factors may not be the best indicator towards informed procurement.

### West of Devers Sub-area:

The most critical contingency could be the loss of San Bernardino – Etiwanda 230 kV and San Bernardino – Vista 230 kV lines, which would result in voltage collapse. This limiting contingency establishes a local capacity need of 485 MW (includes 3 MW of QF generation) in 2015 as the minimum capacity necessary for reliable load serving capability within this sub-area.

## Valley-Devers Sub-Area:

The most critical contingency for the Valley-Devers sub-area is the loss of Palo Verde – Devers 500 kV line and Alberhill – Serrano 500 kV line or vice versa, which would result in overload on Camino – Iron Mountain 230 kV line. This limiting contingency establishes a LCR of 1453 MW (includes 55 MW of QF and 153 MW of wind generation) in 2015 as the generation capacity necessary for reliable load serving capability within this sub-area.

### **Effectiveness factors:**

The generators inside the sub-area have the same effectiveness factors.

## Valley Sub-area:

Resources needed to meet the Valley-Devers sub-area are enough to meet this sub-area requirement as well.

## Eastern LA Basin Sub-area:

Resources needed to meet the West of Devers and Valley-Devers sub-areas are enough to meet this sub-area requirement as well.

### LA Basin Overall:

The most limiting contingency for San Diego sub-area is the loss of Ocotillo -Suncrest 500 kV line followed by the loss of ECO-Miguel 500 kV line. The limiting constraint is reactive margin. This contingency establishes a LCR of 9097 MW in 2015 (includes 786 MW of QF, 259 MW of wind, 1163 MW of MUNI and 0 MW of Nuclear generation) as

the minimum generation capacity necessary for reliable load serving capability within this sub-area.

The most critical single contingency for LA Basin is the loss of Redondo #7 unit followed by Palo Verde-Devers 500 kV line, which could exceed the approved 6400 MW rating for the South of Lugo path. This limiting contingency establishes a LCR of 8620 MW in 2015 (includes 786 MW of QF, 259 MW of wind, 1163 MW of MUNI and 0 MW of Nuclear generation).

### **Effectiveness factors:**

The following table has units that have at least 5% effectiveness to the abovementioned South of Lugo constraint within the LA Basin area:

| Gen Bus | Gen Name | Gen ID | MW Eff Fctr (%) |
|---------|----------|--------|-----------------|
| 24052   | MTNVIST3 | 3      | 34              |
| 24053   | MTNVIST4 | 4      | 34              |
| 24071   | INLAND   | 1      | 32              |
| 25422   | ETI MWDG | 1      | 32              |
| 29305   | ETWPKGEN | 1      | 32              |
| 24921   | MNTV-CT1 | 1      | 28              |
| 24922   | MNTV-CT2 | 1      | 28              |
| 24923   | MNTV-ST1 | 1      | 28              |
| 24924   | MNTV-CT3 | 1      | 28              |
| 24925   | MNTV-CT4 | 1      | 28              |
| 24926   | MNTV-ST2 | 1      | 28              |
| 29041   | IEEC-G1  | 1      | 28              |
| 29042   | IEEC-G2  | 2      | 28              |
| 24905   | RVCANAL1 | R1     | 27              |
| 24906   | RVCANAL2 | R2     | 27              |
| 24907   | RVCANAL3 | R3     | 27              |
| 24908   | RVCANAL4 | R4     | 27              |
| 29190   | WINTECX2 | 1      | 27              |
| 29191   | WINTECX1 | 1      | 27              |
| 29180   | WINTEC8  | 1      | 27              |
| 24815   | GARNET   | QF     | 27              |
| 24815   | GARNET   | W3     | 27              |
| 29023   | WINTEC4  | 1      | 27              |
| 29021   | WINTEC6  | 1      | 27              |
| 24242   | RERC1G   | 1      | 27              |
|         |          |        |                 |

| 24243 | RERC2G     | 1  | 27 |
|-------|------------|----|----|
| 24244 | SPRINGEN   | 1  | 27 |
| 25301 | CLTNDREW   | 1  | 27 |
| 25302 | CLTNCTRY   | 1  | 27 |
| 25303 | CLTNAGUA   | 1  | 27 |
| 24299 | RERC2G3    | 1  | 27 |
| 24300 | RERC2G4    | 1  | 27 |
| 24839 | BLAST      | 1  | 27 |
| 25648 | DVLCYN1G   | 1  | 26 |
| 25649 | DVLCYN2G   | 2  | 26 |
| 25603 | DVLCYN3G   | 3  | 26 |
| 25604 | DVLCYN4G   | 4  | 26 |
| 25632 | TERAWND    | QF | 26 |
| 25634 | BUCKWND    | QF | 26 |
| 25635 | ALTWIND    | Q1 | 26 |
| 25635 | ALTWIND    | Q2 | 26 |
| 25637 | TRANWND    | QF | 26 |
| 25639 | SEAWIND    | QF | 26 |
| 25640 | PANAERO    | QF | 26 |
| 25645 | VENWIND    | EU | 26 |
| 25645 | VENWIND    | Q2 | 26 |
| 25645 | VENWIND    | Q1 | 26 |
| 25646 | SANWIND    | Q2 | 26 |
| 29060 | MOUNTWND   | S1 | 26 |
| 29060 | MOUNTWND   | S3 | 26 |
| 29060 | MOUNTWND   | S2 | 26 |
| 29061 | WHITEWTR   | 1  | 26 |
| 29260 | ALTAMSA4   | 1  | 26 |
| 29290 | CABAZON    | 1  | 26 |
| 25633 | CAPWIND    | QF | 25 |
| 25657 | MJVSPHN1   | 1  | 25 |
| 25658 | MJVSPHN2   | 2  | 25 |
| 25659 | MJVSPHN3   | 3  | 25 |
| 25203 | ANAHEIMG   | 1  | 23 |
| 25211 | CanyonGT 1 | 1  | 22 |
| 25212 | CanyonGT 2 | 2  | 22 |
| 25213 | CanyonGT 3 | 3  | 22 |
| 25214 | CanyonGT 4 | 4  | 22 |
| 24030 | DELGEN     | 1  | 21 |
| 29309 | BARPKGEN   | 1  | 21 |
| 24026 | CIMGEN     | D1 | 21 |
| 24140 | SIMPSON    | D1 | 21 |
| 29307 | MRLPKGEN   | 1  | 20 |

| 29338 | CLEARGEN | 1  | 20 |
|-------|----------|----|----|
| 29339 | DELGEN   | 1  | 20 |
| 24005 | ALAMT5 G | 5  | 19 |
| 24066 | HUNT1 G  | 1  | 19 |
| 24067 | HUNT2 G  | 2  | 19 |
| 24167 | HUNT3 G  | 3  | 19 |
| 24168 | HUNT4 G  | 4  | 19 |
| 24129 | S.ONOFR2 | 2  | 19 |
| 24130 | S.ONOFR3 | 3  | 19 |
| 24133 | SANTIAGO | 1  | 19 |
| 24325 | ORCOGEN  | 1  | 19 |
| 24341 | COYGEN   | 1  | 19 |
| 24001 | ALAMT1 G | 1  | 18 |
| 24002 | ALAMT2 G | 2  | 18 |
| 24003 | ALAMT3 G | 3  | 18 |
| 24004 | ALAMT4 G | 4  | 18 |
| 24161 | ALAMT6 G | 6  | 18 |
| 24162 | ALAMT7 G | R7 | 17 |
| 24063 | HILLGEN  | D1 | 17 |
| 29201 | EME WCG1 | 1  | 17 |
| 29203 | EME WCG3 | 1  | 17 |
| 29204 | EME WCG4 | 1  | 17 |
| 29205 | EME WCG5 | 1  | 17 |
| 29202 | EME WCG2 | 1  | 17 |
| 24018 | BRIGEN   | 1  | 16 |
| 29308 | CTRPKGEN | 1  | 16 |
| 29953 | SIGGEN   | D1 | 16 |
| 24011 | ARCO 1G  | 1  | 15 |
| 24012 | ARCO 2G  | 2  | 15 |
| 24013 | ARCO 3G  | 3  | 15 |
| 24014 | ARCO 4G  | 4  | 15 |
| 24163 | ARCO 5G  | 5  | 15 |
| 24164 | ARCO 6G  | 6  | 15 |
| 24020 | CARBGEN1 | 1  | 15 |
| 24022 | CHEVGEN1 | 1  | 15 |
| 24023 | CHEVGEN2 | 2  | 15 |
| 24064 | HINSON   | 1  | 15 |
| 24070 | ICEGEN   | D1 | 15 |
| 24170 | LBEACH12 | 2  | 15 |
| 24171 | LBEACH34 | 3  | 15 |
| 24094 | MOBGEN1  | 1  | 15 |
| 24062 | HARBOR G | 1  | 15 |
| 25510 | HARBORG4 | LP | 15 |

| 24062 | HARBOR G | HP | 15  |
|-------|----------|----|-----|
| 24139 | SERRFGEN | D1 | 15  |
| 24170 | LBEACH12 | 1  | 15  |
| 24171 | LBEACH34 | 4  | 15  |
| 24173 | LBEACH5G | R5 | 15  |
| 24174 | LBEACH6G | R6 | 15  |
| 24327 | THUMSGEN | 1  | 15  |
| 24328 | CARBGEN2 | 1  | 15  |
| 24330 | OUTFALL1 | 1  | 15  |
| 24331 | OUTFALL2 | 1  | 15  |
| 24332 | PALOGEN  | D1 | 15  |
| 24333 | REDON1 G | R1 | 15  |
| 24334 | REDON2 G | R2 | 15  |
| 24335 | REDON3 G | R3 | 15  |
| 24336 | REDON4 G | R4 | 15  |
| 24337 | VENICE   | 1  | 15  |
| 24079 | LBEACH7G | R7 | 15  |
| 24080 | LBEACH8G | R8 | 15  |
| 24081 | LBEACH9G | R9 | 15  |
| 24047 | ELSEG3 G | 3  | 14  |
| 24048 | ELSEG4 G | 4  | 14  |
| 24121 | REDON5 G | 5  | 14  |
| 24122 | REDON6 G | 6  | 14  |
| 24123 | REDON7 G | 7  | 14  |
| 24124 | REDON8 G | 8  | 14  |
| 24329 | MOBGEN2  | 1  | 14  |
| 29901 | NRG ELG5 | 5  | 14  |
| 29903 | NRG ELG6 | 6  | 14  |
| 29902 | NRG ELS7 | 7  | 14  |
| 29951 | REFUSE   | D1 | 13  |
| 29209 | BLY1ST1  | 1  | 13  |
| 29207 | BLY1CT1  | 1  | 13  |
| 29208 | BLY1CT2  | 1  | 13  |
| 24342 | FEDGEN   | 1  | 13  |
| 24241 | MALBRG3G | S3 | 12  |
| 24240 | MALBRG2G | C2 | 12  |
| 24239 | MALBRG1G | C1 | 12  |
| 29005 | PASADNA1 | 1  | 10  |
| 29006 | PASADNA2 | 1  | 10  |
| 29007 | BRODWYSC | 1  | 10  |
|       |          |    | . 3 |

# Changes compared to last year's results:

Compared with 2014 the load forecast went up by 276 MW. The LCR need decrease by 1333 MW mainly because of new reactive power support added at Talega.

At this time the ISO considers that the most likely scenario for 2014 is no SONGS scenario therefore overall LCR needs in the main tables reflects this outcome. The ISO will continue to monitor the situation and may change this assumption before the 2014 LCR allocations are released to LSEs (Load Serving Entities).

## LA Basin Overall Requirements:

| 2015                 | QF<br>(MW) | Wind<br>(MW) | Muni<br>(MW) | Nuclear<br>(MW) | Market<br>(MW) | Max. Qualifying Capacity (MW) |
|----------------------|------------|--------------|--------------|-----------------|----------------|-------------------------------|
| Available generation | 786        | 259          | 1163         | 0               | 8985           | 11193                         |

| 2015                                | Existing Generation Capacity Needed (MW) | Deficiency<br>(MW) | Total MW LCR<br>Need |
|-------------------------------------|------------------------------------------|--------------------|----------------------|
| Category B (Single) <sup>23</sup>   | 8620                                     | 0                  | 8620                 |
| Category C (Multiple) <sup>24</sup> | 9097                                     | 0                  | 9097                 |

## 9. Big Creek/Ventura Area

## Area Definition

The transmission tie lines into the Big Creek/Ventura Area are:

- 1) Antelope #1 and #2 500/230 kV Transformers
- 2) Sylmar-Pardee #1 230 kV Line
- 3) Sylmar-Pardee #2 230 kV Line
- 4) Eagle Rock-Pardee #1 230 kV Line
- 5) Vincent-Pardee 230 kV Line
- 6) Vincent-Santa Clara 230 kV Line

These sub-stations form the boundary surrounding the Big Creek/Ventura area:

<sup>23</sup> A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission apprentions standards.

operations standards.

24 Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

- 1) Antelope 500 kV is out Antelope 230 KV is in
- 2) Sylmar is out Pardee is in
- 3) Sylmar is out Pardee is in
- 4) Eagle Rock is out Pardee is in
- 5) Vincent is out Pardee is in
- 6) Vincent is out Santa Clara is in

Total 2014 busload within the defined area is 4372 MW with 72 MW of losses and 363 MW of pumps resulting in total load + losses + pumps of 4807 MW.

Total units and qualifying capacity available in the Big Creek/Ventura area:

| MKT/SCHED<br>RESOURCE ID | BUS#  | BUS NAME | kV   | NQC   |    | LCR SUB-AREA<br>NAME         | NQC Comments | CAISO Tag |
|--------------------------|-------|----------|------|-------|----|------------------------------|--------------|-----------|
| ALAMO_6_UNIT             | 25653 | ALAMO SC | 13.8 | 14.58 | 1  | Big Creek                    | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24306 | B CRK1-1 | 7.2  | 19.38 | 1  | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24306 | B CRK1-1 | 7.2  | 21.03 | 2  | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24307 | B CRK1-2 | 13.8 | 21.03 | 3  | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24307 | B CRK1-2 | 13.8 | 30.39 | 4  | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24308 | B CRK2-1 | 13.8 | 49.48 | 1  | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24308 | B CRK2-1 | 13.8 | 50.64 | 2  | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24309 | B CRK2-2 | 7.2  | 18.22 | 3  | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24309 | B CRK2-2 | 7.2  | 19.19 | 4  | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24310 | B CRK2-3 | 7.2  | 16.55 | 5  | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24310 | B CRK2-3 | 7.2  | 18.02 | 6  | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24311 | B CRK3-1 | 13.8 | 34.09 | 1  | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24311 | B CRK3-1 | 13.8 | 34.09 | 2  | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24312 | B CRK3-2 | 13.8 | 34.09 | 3  | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24312 | B CRK3-2 | 13.8 | 39.93 | 4  | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24313 | B CRK3-3 | 13.8 | 37.99 | 5  | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24314 | B CRK 4  | 11.5 | 49.09 | 41 | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24314 | B CRK 4  | 11.5 | 49.28 | 42 | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24315 | B CRK 8  | 13.8 | 23.76 | 81 | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24315 | B CRK 8  | 13.8 | 42.85 | 82 | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |

| BIGCRK_2_EXESWD | 24317 | MAMOTH1G | 13.8 | 91.07  | 1  | Big Creek,<br>Rector, Vestal  | Aug NQC                    | Market     |
|-----------------|-------|----------|------|--------|----|-------------------------------|----------------------------|------------|
| BIGCRK_2_EXESWD | 24318 | MAMOTH2G | 13.8 | 91.07  | 2  | Big Creek,<br>Rector, Vestal  | Aug NQC                    | Market     |
| BIGCRK_2_EXESWD | 24323 | PORTAL   | 4.8  | 9.35   | 1  | Big Creek,<br>Rector, Vestal  | Aug NQC                    | Market     |
| EASTWD_7_UNIT   | 24319 | EASTWOOD | 13.8 | 199.00 | 1  | Big Creek,<br>Rector, Vestal  |                            | Market     |
| EDMONS_2_NSPIN  | 25605 | EDMON1AP | 14.4 | 25.00  | 1  | Big Creek                     | Pumps                      | MUNI       |
| EDMONS_2_NSPIN  | 25606 | EDMON2AP | 14.4 | 25.00  | 2  | Big Creek                     | Pumps                      | MUNI       |
| EDMONS_2_NSPIN  | 25607 | EDMON3AP | 14.4 | 25.00  | 3  | Big Creek                     | Pumps                      | MUNI       |
| EDMONS_2_NSPIN  | 25607 | EDMON3AP | 14.4 | 25.00  | 4  | Big Creek                     | Pumps                      | MUNI       |
| EDMONS_2_NSPIN  | 25608 | EDMON4AP | 14.4 | 25.00  | 5  | Big Creek                     | Pumps                      | MUNI       |
| EDMONS_2_NSPIN  | 25608 | EDMON4AP | 14.4 | 25.00  | 6  | Big Creek                     | Pumps                      | MUNI       |
| EDMONS_2_NSPIN  | 25609 | EDMON5AP | 14.4 | 25.00  | 7  | Big Creek                     | Pumps                      | MUNI       |
| EDMONS_2_NSPIN  | 25609 | EDMON5AP | 14.4 | 25.00  | 8  | Big Creek                     | Pumps                      | MUNI       |
| EDMONS_2_NSPIN  |       | EDMON6AP | 14.4 | 25.00  | 9  | Big Creek                     | Pumps                      | MUNI       |
| EDMONS 2 NSPIN  |       | EDMON6AP | 14.4 | 25.00  | 10 | Big Creek                     | Pumps                      | MUNI       |
| EDMONS_2_NSPIN  |       | EDMON7AP | 14.4 | 25.00  | 11 | Big Creek                     | Pumps                      | MUNI       |
| EDMONS_2_NSPIN  | 25611 | EDMON7AP | 14.4 | 25.00  |    | Big Creek                     | Pumps                      | MUNI       |
| EDMONS_2_NSPIN  |       | EDMON8AP | 14.4 | 25.00  |    | Big Creek                     | Pumps                      | MUNI       |
| EDMONS_2_NSPIN  |       | EDMON8AP | 14.4 | 25.00  |    | Big Creek                     | Pumps                      | MUNI       |
| GLOW_6_SOLAR    |       |          |      | 0.00   |    | Big Creek                     | Not modeled<br>Energy Only | Market     |
| GOLETA_2_QF     | 24057 | GOLETA   | 66   | 0.09   |    | Ventura, S.Clara,<br>Moorpark | Not modeled Aug<br>NQC     | QF/Selfgen |
| GOLETA_6_ELLWOD | 28004 | ELLWOOD  | 13.8 | 54.00  | 1  | Ventura, S.Clara,<br>Moorpark |                            | Market     |
| GOLETA_6_EXGEN  | 24057 | GOLETA   | 66   | 1.37   |    | Ventura, S.Clara,<br>Moorpark | Not modeled Aug<br>NQC     | QF/Selfgen |
| GOLETA_6_GAVOTA | 24057 | GOLETA   | 66   | 0.82   |    | Ventura, S.Clara,<br>Moorpark | Not modeled Aug<br>NQC     | QF/Selfgen |
| GOLETA_6_TAJIGS | 24057 | GOLETA   | 66   | 2.89   |    | Ventura, S.Clara,<br>Moorpark | Not modeled Aug<br>NQC     | Market     |
| KERRGN_1_UNIT 1 | 24437 | KERNRVR  | 66   | 19.53  | 1  | Big Creek                     | Aug NQC                    | Market     |
| LEBECS_2_UNITS  | 28051 | PSTRIAG1 | 18   | 157.90 | G1 | Big Creek                     | Aug NQC                    | Market     |
| LEBECS_2_UNITS  | 28052 | PSTRIAG2 | 18   | 157.90 | G2 | Big Creek                     | Aug NQC                    | Market     |
| LEBECS_2_UNITS  | 28053 | PSTRIAS1 | 18   | 162.40 | S1 | Big Creek                     | Aug NQC                    | Market     |
| LEBECS_2_UNITS  | 28054 | PSTRIAG3 | 18   |        |    | Big Creek                     | Aug NQC                    | Market     |
| LEBECS_2_UNITS  | 28055 | PSTRIAS2 | 18   | 78.90  | S2 | Big Creek                     | Aug NQC                    | Market     |
| LITLRK_6_SEPV01 |       |          |      | 0.00   |    | Big Creek                     | Not modeled<br>Energy Only | Market     |
| MNDALY_6_MCGRTH | 29306 | MCGPKGEN | 13.8 | 47.20  | 1  | Ventura, S.Clara,<br>Moorpark |                            | Market     |
| MNDALY_7_UNIT 1 | 24089 | MANDLY1G | 13.8 | 215.00 | 1  | Ventura,<br>Moorpark          |                            | Market     |
| MNDALY_7_UNIT 2 | 24090 | MANDLY2G | 13.8 | 215.29 | 2  | Ventura,<br>Moorpark          |                            | Market     |
| MNDALY_7_UNIT 3 | 24222 | MANDLY3G | 16   | 130.00 | 3  | Ventura, S.Clara,<br>Moorpark |                            | Market     |
| MOORPK_2_CALABS | 24099 | MOORPARK | 230  | 6.96   |    | Ventura,<br>Moorpark          | Not modeled                | Market     |
| MOORPK_6_QF     | 24098 | MOORPARK | 66   | 26.56  |    | Ventura,<br>Moorpark          | Not modeled Aug<br>NQC     | QF/Selfgen |
| MOORPK_7_UNITA1 | 24098 | MOORPARK | 66   | 2.03   |    | Ventura,<br>Moorpark          | Not modeled Aug<br>NQC     | QF/Selfgen |
| NEENCH_6_SOLAR  | 24420 | NEENACH  | 66   | 53.75  |    | Big Creek                     | Not modeled Aug<br>NQC     | Market     |

| OMAR_2_UNIT 1   | 24102 | OMAR 1G  | 13.8 | 77.25  | 1 | Big Creek                     |                            | QF/Selfgen |
|-----------------|-------|----------|------|--------|---|-------------------------------|----------------------------|------------|
| OMAR_2_UNIT 2   | 24103 | OMAR 2G  | 13.8 | 77.25  | 2 | Big Creek                     |                            | QF/Selfgen |
| OMAR_2_UNIT 3   | 24104 | OMAR 3G  | 13.8 | 77.25  | 3 | Big Creek                     |                            | QF/Selfgen |
| OMAR_2_UNIT 4   | 24105 | OMAR 4G  | 13.8 | 77.25  | 4 | Big Creek                     |                            | QF/Selfgen |
| ORMOND_7_UNIT 1 | 24107 | ORMOND1G | 26   | 741.27 | 1 | Ventura,<br>Moorpark          |                            | Market     |
| ORMOND_7_UNIT 2 | 24108 | ORMOND2G | 26   | 775.00 | 2 | Ventura,<br>Moorpark          |                            | Market     |
| OSO_6_NSPIN     | 25614 | OSO A P  | 13.2 | 2.38   | 1 | Big Creek                     | Pumps                      | MUNI       |
| OSO_6_NSPIN     | 25614 | OSO A P  | 13.2 | 2.38   | 2 | Big Creek                     | Pumps                      | MUNI       |
| OSO_6_NSPIN     | 25614 | OSO A P  | 13.2 | 2.38   | 3 | Big Creek                     | Pumps                      | MUNI       |
| OSO_6_NSPIN     | 25614 | OSO A P  | 13.2 | 2.38   | 4 | Big Creek                     | Pumps                      | MUNI       |
| OSO_6_NSPIN     | 25615 | OSO B P  | 13.2 | 2.38   | 5 | Big Creek                     | Pumps                      | MUNI       |
| OSO_6_NSPIN     | 25615 | OSO B P  | 13.2 | 2.38   | 6 | Big Creek                     | Pumps                      | MUNI       |
| OSO_6_NSPIN     | 25615 | OSO B P  | 13.2 | 2.38   | 7 | Big Creek                     | Pumps                      | MUNI       |
| OSO_6_NSPIN     | 25615 | OSO B P  | 13.2 | 2.38   | 8 | Big Creek                     | Pumps                      | MUNI       |
| PANDOL_6_UNIT   |       | PANDOL   | 13.8 | 25.70  | 1 | Big Creek, Vestal             | Aug NQC                    | QF/Selfgen |
| PANDOL_6_UNIT   |       | PANDOL   | 13.8 | 20.94  | 2 | Big Creek, Vestal             | Aug NQC                    | QF/Selfgen |
| RECTOR_2_KAWEAH |       |          | 66   | 2.76   |   | Big Creek,<br>Rector, Vestal  | Not modeled Aug<br>NQC     | Market     |
| RECTOR_2_KAWH 1 | 24212 | RECTOR   | 66   | 1.29   |   | Big Creek,<br>Rector, Vestal  | Not modeled Aug<br>NQC     | Market     |
| RECTOR_2_QF     | 24212 | RECTOR   | 66   | 9.48   |   | Big Creek,<br>Rector, Vestal  | Not modeled Aug<br>NQC     | QF/Selfgen |
| RECTOR_7_TULARE | 24212 | RECTOR   | 66   | 0.17   |   | Big Creek,<br>Rector, Vestal  | Not modeled                | QF/Selfgen |
| SAUGUS_2_TOLAND | 24135 | SAUGUS   | 66   | 0.00   |   | Big Creek                     | Not modeled<br>Energy Only | Market     |
| SAUGUS_6_MWDFTH | 24135 | SAUGUS   | 66   | 4.08   |   | Big Creek                     | Not modeled Aug<br>NQC     | MUNI       |
| SAUGUS_6_PTCHGN | 24118 | PITCHGEN | 13.8 | 18.95  | 1 | Big Creek                     | Aug NQC                    | MUNI       |
| SAUGUS_6_QF     | 24135 | SAUGUS   | 66   | 0.92   |   | Big Creek                     | Not modeled Aug<br>NQC     | QF/Selfgen |
| SAUGUS_7_CHIQCN | 24135 | SAUGUS   | 66   | 2.02   |   | Big Creek                     | Not modeled Aug<br>NQC     | Market     |
| SAUGUS_7_LOPEZ  | 24135 | SAUGUS   | 66   | 5.42   |   | Big Creek                     | Not modeled Aug<br>NQC     | QF/Selfgen |
| SNCLRA_6_OXGEN  | 24110 | OXGEN    | 13.8 | 35.70  | 1 | Ventura, S.Clara,<br>Moorpark | Aug NQC                    | QF/Selfgen |
| SNCLRA_6_PROCGN | 24119 | PROCGEN  | 13.8 | 46.26  | 1 | Ventura, S.Clara,<br>Moorpark | Aug NQC                    | Market     |
| SNCLRA_6_QF     | 24127 | S.CLARA  | 66   | 0.00   | 1 | Ventura, S.Clara,<br>Moorpark | Aug NQC                    | QF/Selfgen |
| SNCLRA_6_WILLMT | 24159 | WILLAMET | 13.8 | 13.94  | 1 | Ventura, S.Clara,<br>Moorpark | Aug NQC                    | QF/Selfgen |
| SPRGVL_2_QF     | 24215 | SPRINGVL | 66   | 0.23   |   | Big Creek,<br>Rector, Vestal  | Not modeled Aug<br>NQC     | QF/Selfgen |
| SPRGVL_2_TULE   | 24215 | SPRINGVL | 66   | 0.59   |   | Big Creek,<br>Rector, Vestal  | Not modeled Aug<br>NQC     | Market     |
| SPRGVL_2_TULESC | 24215 | SPRINGVL | 66   | 0.41   |   | Big Creek,<br>Rector, Vestal  | Not modeled Aug<br>NQC     | Market     |
| SYCAMR_2_UNITS  | 24143 | SYCCYN1G | 13.8 | 56.53  | 1 | Big Creek                     | Aug NQC                    | QF/Selfgen |
| SYCAMR_2_UNITS  | 24144 | SYCCYN2G | 13.8 | 56.54  | 2 | Big Creek                     | Aug NQC                    | QF/Selfgen |
| SYCAMR_2_UNITS  | 24145 | SYCCYN3G | 13.8 | 56.53  | 3 | Big Creek                     | Aug NQC                    | QF/Selfgen |
| SYCAMR_2_UNITS  | 24146 | SYCCYN4G | 13.8 | 56.53  | 4 | Big Creek                     | Aug NQC                    | QF/Selfgen |
| TENGEN_2_PL1X2  | 24148 | TENNGEN1 | 13.8 | 17.49  | 1 | Big Creek                     | Aug NQC                    | Market     |
| TENGEN_2_PL1X2  | 24149 | TENNGEN2 | 13.8 | 17.50  | 2 | Big Creek                     | Aug NQC                    | Market     |

| VESTAL_2_KERN   | 24152 | VESTAL   | 66   | 26.68 | 1  | Big Creek, Vestal             | Aug NQC                | QF/Selfgen |
|-----------------|-------|----------|------|-------|----|-------------------------------|------------------------|------------|
| VESTAL_2_WELLHD | 24152 | VESTAL   | 66   | 49.00 |    | Big Creek, Vestal             | Not modeled            | Market     |
| VESTAL_6_QF     | 24152 | VESTAL   | 66   | 6.91  |    | Big Creek, Vestal             | Not modeled Aug<br>NQC | QF/Selfgen |
| VESTAL_6_ULTRGN | 24150 | ULTRAGEN | 13.8 | 34.13 | 1  | Big Creek, Vestal             | Aug NQC                | QF/Selfgen |
| VESTAL_6_WDFIRE | 28008 | LAKEGEN  | 13.8 | 6.60  | 1  | Big Creek, Vestal             | Aug NQC                | QF/Selfgen |
| WARNE_2_UNIT    | 25651 | WARNE1   | 13.8 | 38.00 | 1  | Big Creek                     | Aug NQC                | Market     |
| WARNE_2_UNIT    | 25652 | WARNE2   | 13.8 | 38.00 | 1  | Big Creek                     | Aug NQC                | Market     |
| APPGEN_6_UNIT 1 | 24009 | APPGEN1G | 13.8 | 0.00  | 1  | Big Creek                     | No NQC - hist. data    | Market     |
| APPGEN_6_UNIT 1 | 24010 | APPGEN2G | 13.8 | 0.00  | 2  | DIG OLECK                     | No NQC - hist. data    | IVIAINGL   |
| NA              | 24326 | Exgen1   | 13.8 | 0.00  | S1 |                               | No NQC - hist. data    |            |
| NA              | 24340 | CHARMIN  | 13.8 | 15.20 | 1  |                               | No NQC - hist. data    |            |
| NA              | 24362 | Exgen2   | 13.8 | 0.00  | G1 | Ventura, S.Clara,<br>Moorpark | No NQC - hist. data    | QF/Selfgen |
| NA              | 24370 | Kawgen   | 13.8 | 0.00  | 1  | Big Creek,<br>Rector, Vestal  | No NQC - hist. data    | Market     |
| NA              | 24372 | KR 3-1   | 13.8 | 0.00  | 1  | Big Creek, Vestal             | No NQC - hist. data    | QF/Selfgen |
| NA              | 24373 | KR 3-2   | 13.8 | 0.00  | 1  | Big Creek, Vestal             | No NQC - hist. data    | QF/Selfgen |
| NA              | 24422 | PALMDALE | 66   | 0.00  | 1  | Big Creek                     | No NQC - hist. data    | Market     |

Major new projects modeled: None

## Critical Contingency Analysis Summary

### Rector Sub-area

The most critical contingency for the Rector sub-area is the loss of one of the Rector-Vestal 230 kV lines with the Eastwood unit out of service, which would thermally overload the remaining Rector-Vestal 230 kV line. This limiting contingency establishes a LCR of 479 MW (includes 10 MW of QF generation) in 2015 as the minimum capacity necessary for reliable load serving capability within this sub-area.

## **Effectiveness factors:**

The following table has units that have at least 5% effectiveness to the abovementioned constraint within Rector sub-area:

| Gen Bus | Gen Name | Gen ID | Eff Fctr (%) |
|---------|----------|--------|--------------|
| 24370   | KAWGEN   | 1      | 45           |
| 24319   | EASTWOOD | 1      | 41           |
| 24306   | B CRK1-1 | 1      | 41           |
| 24306   | B CRK1-1 | 2      | 41           |
| 24307   | B CRK1-2 | 3      | 41           |
| 24307   | B CRK1-2 | 4      | 41           |
| 24323   | PORTAL   | 1      | 41           |

| 24308 | B CRK2-1 | 1  | 40 |
|-------|----------|----|----|
| 24308 | B CRK2-1 | 2  | 40 |
| 24309 | B CRK2-2 | 3  | 40 |
| 24309 | B CRK2-2 | 4  | 40 |
| 24315 | B CRK 8  | 81 | 40 |
| 24315 | B CRK 8  | 82 | 40 |
| 24310 | B CRK2-3 | 5  | 39 |
| 24310 | B CRK2-3 | 6  | 39 |
| 24311 | B CRK3-1 | 1  | 39 |
| 24311 | B CRK3-1 | 2  | 39 |
| 24312 | B CRK3-2 | 3  | 39 |
| 24312 | B CRK3-2 | 4  | 39 |
| 24313 | B CRK3-3 | 5  | 39 |
| 24317 | MAMOTH1G | 1  | 39 |
| 24318 | MAMOTH2G | 2  | 39 |
| 24314 | B CRK 4  | 41 | 38 |
| 24314 | B CRK 4  | 42 | 38 |
|       |          |    |    |

## Vestal Sub-area

The most critical contingency for the Vestal sub-area is the loss of one of the Magunden-Vestal 230 kV lines with the Eastwood unit out of service, which would thermally overload the remaining Magunden-Vestal 230 kV line. This limiting contingency establishes a LCR of 762 MW in 2015 (includes 131 MW of QF generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

## **Effectiveness factors:**

The following table has units that have at least 5% effectiveness to the abovementioned constraint within Vestal sub-area:

| Gen Bus | Gen Name | Gen ID | Eff Fctr (%) |
|---------|----------|--------|--------------|
| 28008   | LAKEGEN  | 1      | 46           |
| 24113   | PANDOL   | 1      | 45           |
| 24113   | PANDOL   | 2      | 45           |
| 24150   | ULTRAGEN | 1      | 45           |
| 24372   | KR 3-1   | 1      | 45           |
| 24373   | KR 3-2   | 2      | 45           |
| 24152   | VESTAL   | 1      | 45           |
| 24370   | KAWGEN   | 1      | 45           |
| 24319   | EASTWOOD | 1      | 24           |
| 24306   | B CRK1-1 | 1      | 24           |
| 24306   | B CRK1-1 | 2      | 24           |
| 24307   | B CRK1-2 | 3      | 24           |
| 24307   | B CRK1-2 | 4      | 24           |
|         |          |        |              |

| 24308 | B CRK2-1 | 1  | 24 |
|-------|----------|----|----|
| 24308 | B CRK2-1 | 2  | 24 |
| 24309 | B CRK2-2 | 3  | 24 |
| 24309 | B CRK2-2 | 4  | 24 |
| 24310 | B CRK2-3 | 5  | 24 |
| 24310 | B CRK2-3 | 6  | 24 |
| 24315 | B CRK 8  | 81 | 24 |
| 24315 | B CRK 8  | 82 | 24 |
| 24323 | PORTAL   | 1  | 24 |
| 24311 | B CRK3-1 | 1  | 23 |
| 24311 | B CRK3-1 | 2  | 23 |
| 24312 | B CRK3-2 | 3  | 23 |
| 24312 | B CRK3-2 | 4  | 23 |
| 24313 | B CRK3-3 | 5  | 23 |
| 24317 | MAMOTH1G | 1  | 23 |
| 24318 | MAMOTH2G | 2  | 23 |
| 24314 | B CRK 4  | 41 | 22 |
| 24314 | B CRK 4  | 42 | 22 |
|       |          |    |    |

### S. Clara sub-areas

The most critical contingency for the S.Clara sub-area is the loss of the Pardee to S.Clara 230 kV line followed by the loss of the Moorpark to S.Clara #1 and #2 230 kV lines, which would cause voltage collapse. This limiting contingency establishes a LCR of 264 MW in 2015 (which includes 67 MW of QF generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

### **Effectiveness factors:**

The generators inside the sub-area have the same effectiveness factors.

## Moorpark sub-areas

The most critical contingency for the Moorpark sub-area is the loss of one of the Pardee to Moorpark 230 kV lines followed by the loss of the remaining two Moorpark to Pardee 230 kV lines, which would cause voltage collapse. This limiting contingency establishes a LCR of 479 MW in 2015 (which includes 96 MW of QF generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

### Effectiveness factors:

The generators inside the sub-area have the same effectiveness factors.

## Big Creek/Ventura overall:

The most critical contingency is the loss of the Lugo-Victorville 500 kV followed by Sylmar-Pardee #1 or #2 230 kV line, which could thermally overload the remaining Sylmar-Pardee 230 kV line. This limiting contingency establishes a LCR of 2270 MW in 2015 (includes 768 MW of QF and 392 MW of MUNI generation) as the minimum generation capacity necessary for reliable load serving capability within this area.

The most critical single contingency is the loss of Sylmar-Pardee #1 (or # 2) line followed by Ormond Beach Unit #2, which could thermally overload the remaining Sylmar-Pardee 230 kV line. This limiting contingency establishes a LCR of 2095 MW in 2015 (includes 768 MW of QF and 392 MW of MUNI generation).

### **Effectiveness factors:**

The following table has units that have at least 5% effectiveness to any one of the Sylmar-Pardee 230 kV lines after the loss of the Lugo-Victorville 500 kV followed by one of the other Sylmar-Pardee 230 kV line in this area:

| <b>Gen Bus</b> 24118 | Gen Name<br>PITCHGEN | Gen ID<br>D1 | MW Eff Fctr<br>35 |
|----------------------|----------------------|--------------|-------------------|
|                      | TENNGEN1             | D1           |                   |
|                      |                      |              | 35                |
| 24149                | TENNGEN2             | D2           | 35                |
| 24009                | APPGEN1G             | 1            | 34                |
| 24010                | APPGEN2G             | 2            | 34                |
| 24107                | ORMOND1G             | 1            | 34                |
| 24108                | ORMOND2G             | 2            | 34                |
| 24361                | APPGEN3G             | 3            | 34                |
| 25651                | WARNE1               | 1            | 33                |
| 25652                | WARNE2               | 1            | 33                |
| 24090                | MANDLY2G             | 2            | 32                |
| 29306                | MCGPKGEN             | 1            | 32                |
| 24089                | MANDLY1G             | 1            | 31                |
| 29004                | ELLWOOD              | 1            | 31                |
| 29952                | CAMGEN               | D1           | 31                |
| 24326                | EXGEN1               | S1           | 31                |
| 24362                | EXGEN2               | G1           | 31                |
| 29055                | PSTRIAS2             | S2           | 30                |
|                      |                      |              |                   |

| 29054 | PSTRIAG3 | G3 | 30 |
|-------|----------|----|----|
| 29053 | PSTRIAS1 | S1 | 30 |
| 29052 | PSTRIAG2 | G2 | 30 |
| 29051 | PSTRIAG1 | G1 | 30 |
| 25605 | EDMON1AP | 1  | 30 |
| 25606 | EDMON2AP | 2  | 30 |
| 25607 | EDMON3AP | 3  | 30 |
| 25607 | EDMON3AP | 4  | 30 |
| 25608 | EDMON4AP | 5  | 30 |
| 25608 | EDMON4AP | 6  | 30 |
| 25609 | EDMON5AP | 7  | 30 |
| 25609 | EDMON5AP | 8  | 30 |
| 25610 | EDMON6AP | 9  | 30 |
| 25610 | EDMON6AP | 10 | 30 |
| 25612 | EDMON8AP | 13 | 30 |
| 25612 | EDMON8AP | 14 | 30 |
| 24127 | S.CLARA  | 1  | 30 |
| 24110 | OXGEN    | D1 | 30 |
| 24119 | PROCGEN  | D1 | 30 |
| 24159 | WILLAMET | D1 | 30 |
| 24340 | CHARMIN  | 1  | 30 |
| 25611 | EDMON7AP | 11 | 29 |
| 25611 | EDMON7AP | 12 | 29 |
| 24222 | MANDLY3G | 3  | 29 |
| 25614 | OSO A P  | 1  | 29 |
| 25614 | OSO A P  | 2  | 29 |
| 25615 | OSO B P  | 7  | 29 |
| 25615 | OSO B P  | 8  | 29 |
| 25653 | ALAMO SC | 1  | 29 |
| 24370 | KAWGEN   | 1  | 28 |
| 24113 | PANDOL   | 1  | 27 |
| 24113 | PANDOL   | 2  | 27 |
| 29008 | LAKEGEN  | 1  | 27 |
| 24150 | ULTRAGEN | 1  | 27 |
| 24152 | VESTAL   | 1  | 27 |
| 24372 | KR 3-1   | 1  | 27 |
| 24373 | KR 3-2   | 2  | 27 |
| 24102 | OMAR 1G  | 1  | 26 |
| 24103 | OMAR 2G  | 2  | 26 |
| 24104 | OMAR 3G  | 3  | 26 |

| 24105 | OMAR 4G  | 4  | 26 |
|-------|----------|----|----|
| 24143 | SYCCYN1G | 1  | 26 |
| 24144 | SYCCYN2G | 2  | 26 |
| 24145 | SYCCYN3G | 3  | 26 |
| 24146 | SYCCYN4G | 4  | 26 |
| 24319 | EASTWOOD | 1  | 25 |
| 24306 | B CRK1-1 | 1  | 25 |
| 24306 | B CRK1-1 | 2  | 25 |
| 24307 | B CRK1-2 | 3  | 25 |
| 24307 | B CRK1-2 | 4  | 25 |
| 24308 | B CRK2-1 | 1  | 25 |
| 24308 | B CRK2-1 | 2  | 25 |
| 24309 | B CRK2-2 | 3  | 25 |
| 24309 | B CRK2-2 | 4  | 25 |
| 24310 | B CRK2-3 | 5  | 25 |
| 24310 | B CRK2-3 | 6  | 25 |
| 24311 | B CRK3-1 | 1  | 25 |
| 24311 | B CRK3-1 | 2  | 25 |
| 24312 | B CRK3-2 | 3  | 25 |
| 24312 | B CRK3-2 | 4  | 25 |
| 24313 | B CRK3-3 | 5  | 25 |
| 24314 | B CRK 4  | 41 | 25 |
| 24314 | B CRK 4  | 42 | 25 |
| 24315 | B CRK 8  | 81 | 25 |
| 24315 | B CRK 8  | 82 | 25 |
| 24317 | MAMOTH1G | 1  | 25 |
| 24318 | MAMOTH2G | 2  | 25 |
| 24437 | KERNRVR  | 1  | 22 |
| 24457 | ARBWIND  | 1  | 17 |
| 24465 | MORWIND  | 1  | 17 |
| 24481 | MIDWIND  | 1  | 17 |
| 24483 | NORTHWND | 1  | 17 |
| 24484 | ZONDWND1 | 1  | 17 |
| 24485 | ZONDWND2 | 1  | 17 |
| 24458 | ENCANWND | 1  | 16 |
| 24459 | FLOWIND  | 1  | 16 |
| 24460 | DUTCHWND | 1  | 16 |
| 24436 | GOLDTOWN | 1  | 16 |
| 24456 | BOREL    | 1  | 15 |

## Changes compared to last year's results:

Overall the load forecast went up by 227 MW and the LCR has increased by 20 MW.

## Big Creek Overall Requirements:

| 2015                 | QF   | MUNI | Market | Max. Qualifying |
|----------------------|------|------|--------|-----------------|
|                      | (MW) | (MW) | (MW)   | Capacity (MW)   |
| Available generation | 768  | 392  | 4203   | 5363            |

| 2015                                | Existing Generation<br>Capacity Needed (MW) | Deficiency<br>(MW) | Total MW<br>LCR Need |
|-------------------------------------|---------------------------------------------|--------------------|----------------------|
| Category B (Single) <sup>25</sup>   | 2095                                        | 0                  | 2095                 |
| Category C (Multiple) <sup>26</sup> | 2270                                        | 0                  | 2270                 |

## 10. San Diego-Imperial Valley Area

## Area Definition

The transmission tie lines forming a boundary around the Greater San Diego-Imperial Valley area include:

- 1) Imperial Valley North Gila 500 kV Line
- 2) Otay Mesa Tijuana 230 kV Line
- 3) San Onofre San Luis Rey #1 230 kV Line
- 4) San Onofre San Luis Rey #2 230 kV Line
- 5) San Onofre San Luis Rey #3 230 kV Line
- 6) San Onofre Talega #1 230 kV Line
- 7) San Onofre Talega #2 230 kV Line
- 8) Imperial Valley El Centro 230 kV Line
- 9) Imperial Valley La Rosita 230 kV Line

The substations that delineate the Greater San Diego-Imperial Valley area are:

- 1) Imperial Valley is in North Gila is out
- 2) Otay Mesa is in Tijuana is out
- 3) San Onofre is out San Luis Rev is in
- 4) San Onofre is out San Luis Rey is in

<sup>25</sup> A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

operations standards.

<sup>26</sup> Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

- 5) San Onofre is out San Luis Rey is in
- 6) San Onofre is out Talega is in
- 7) San Onofre is out Talega is in
- 8) Imperial Valley is in El Centro is out
- 9) Imperial Valley is in La Rosita is out

Total 2015 busload within the defined area: 5244 MW with 163 MW of losses resulting in total load + losses of 5407 MW.

Total units and qualifying capacity available in this area:

| MKT/SCHED<br>RESOURCE ID | BUS#  | BUS NAME   | kV   | NQC    |    | LCR SUB-AREA<br>NAME          | NQC<br>Comments | CAISO Tag  |
|--------------------------|-------|------------|------|--------|----|-------------------------------|-----------------|------------|
| BORDER_6_UNITA1          | 22149 | CALPK_BD   | 13.8 | 48.00  | 1  | San Diego, Border             |                 | Market     |
| BREGGO_6_SOLAR           | 22082 | BR GEN1    | 0.21 | 21.17  | 1  | San Diego                     | Aug NQC         | Market     |
| CBRLLO_6_PLSTP1          | 22092 | CABRILLO   | 69   | 3.05   | 1  | San Diego                     | Aug NQC         | QF/Selfgen |
| CCRITA_7_RPPCHF          | 22124 | CHCARITA   | 138  | 3.66   | 1  | San Diego                     | Aug NQC         | QF/Selfgen |
| CHILLS_1_SYCENG          | 22120 | CARLTNHS   | 138  | 0.34   | 1  | San Diego                     | Aug NQC         | QF/Selfgen |
| CHILLS_7_UNITA1          | 22120 | CARLTNHS   | 138  | 1.59   | 2  | San Diego                     | Aug NQC         | QF/Selfgen |
| CNTNLA_2_SOLAR1          | 23463 | DW GEN3&4  | 0.33 | 41.92  | 1  | None                          | Aug NQC         | Market     |
| CPSTNO_7_PRMADS          | 22112 | CAPSTRNO   | 138  | 5.26   | 1  | San Diego                     | Aug NQC         | QF/Selfgen |
| CPVERD_2_SOLAR           | 23301 | IV GEN3 G2 | 0.32 | 56.61  | G2 | None                          | Aug NQC         | Market     |
| CPVERD_2_SOLAR           | 23309 | IV GEN3 G1 | 0.32 | 56.60  | G1 | None                          | Aug NQC         | Market     |
| CRSTWD_6_KUMYAY          | 22915 | KUMEYAAY   | 34.5 | 8.72   | 1  | San Diego                     | Aug NQC         | Wind       |
| CSLR4S_2_SOLAR           | 23298 | DW GEN1 G1 | 0.32 | 52.94  | G1 | None                          | Aug NQC         | Market     |
| CSLR4S_2_SOLAR           | 23299 | DW GEN1 G2 | 0.32 | 52.94  | G2 | None                          | Aug NQC         | Market     |
| DIVSON_6_NSQF            | 22172 | DIVISION   | 69   | 41.73  | 1  | San Diego                     | Aug NQC         | QF/Selfgen |
| EGATE_7_NOCITY           | 22204 | EASTGATE   | 69   | 0.26   | 1  | San Diego                     | Aug NQC         | QF/Selfgen |
| ELCAJN_6_LM6K            | 23320 | EC GEN2    | 13.8 | 48.10  | 1  | San Diego, El Cajon           |                 | Market     |
| ELCAJN_6_UNITA1          | 22150 | EC GEN1    | 13.8 | 45.42  | 1  | San Diego, El Cajon           |                 | Market     |
| ELCAJN_7_GT1             | 22212 | ELCAJNGT   | 12.5 | 16.00  | 1  | San Diego, El Cajon           |                 | Market     |
| ENCINA_7_EA1             | 22233 | ENCINA 1   | 14.4 | 106.00 | 1  | San Diego, Encina             |                 | Market     |
| ENCINA_7_EA2             | 22234 | ENCINA 2   | 14.4 | 104.00 | 1  | San Diego, Encina             |                 | Market     |
| ENCINA_7_EA3             | 22236 | ENCINA 3   | 14.4 | 110.00 | 1  | San Diego, Encina             |                 | Market     |
| ENCINA_7_EA4             | 22240 | ENCINA 4   | 22   | 300.00 | 1  | San Diego, Encina             |                 | Market     |
| ENCINA_7_EA5             | 22244 | ENCINA 5   | 24   | 330.00 | 1  | San Diego, Encina             |                 | Market     |
| ENCINA_7_GT1             | 22248 | ENCINAGT   | 12.5 | 14.50  | 1  | San Diego, Encina             |                 | Market     |
| ESCNDO_6_PL1X2           | 22257 | ESGEN      | 13.8 | 35.50  | 1  | San Diego,<br>Escondido       |                 | Market     |
| ESCNDO_6_UNITB1          | 22153 | CALPK_ES   | 13.8 | 48.00  | 1  | San Diego,<br>Escondido       |                 | Market     |
| ESCO_6_GLMQF             |       | GOALLINE   | 69   | 38.37  | 1  | San Diego, Esco,<br>Escondido | Aug NQC         | QF/Selfgen |
| IVSLRP_2_SOLAR1          |       | DW GEN2 G1 | 0.36 | 18.77  | 1  | None                          | Aug NQC         | Market     |
| IVSLRP_2_SOLAR1          |       | DW GEN2 G2 | 0.36 | 18.78  | 1  | None                          | Aug NQC         | Market     |
| IVSLRP_2_SOLAR1          |       | DW GEN2 G3 | 0.36 | 18.78  | 1  | None                          | Aug NQC         | Market     |
| KEARNY_7_KY1             |       | KEARNGT1   | 12.5 | 16.00  | 1  | San Diego, Mission            | Retired         | Market     |
| KEARNY_7_KY2             |       | KEARN2AB   | 12.5 | 15.02  | 1  | San Diego, Mission            | Retired         | Market     |
| KEARNY_7_KY2             |       | KEARN2AB   | 12.5 | 15.02  | 2  | San Diego, Mission            | Retired         | Market     |
| KEARNY_7_KY2             |       | KEARN2CD   | 12.5 | 15.02  | 1  | San Diego, Mission            | Retired         | Market     |
| KEARNY_7_KY2             |       | KEARN2CD   | 12.5 | 13.95  | 2  | San Diego, Mission            | Retired         | Market     |
| KEARNY_7_KY3             | 22375 | KEARN3AB   | 12.5 | 14.98  | 1  | San Diego, Mission            | Retired         | Market     |

| KEARNY_7_KY3    | 22375 | KEARN3AB   | 12.5 | 16.05  | 2  | San Diego, Mission                | Retired                | Market     |
|-----------------|-------|------------|------|--------|----|-----------------------------------|------------------------|------------|
| KEARNY_7_KY3    | 22376 | KEARN3CD   | 12.5 | 14.98  | 1  | San Diego, Mission                | Retired                | Market     |
| KEARNY_7_KY3    | 22376 | KEARN3CD   | 12.5 | 14.98  | 2  | San Diego, Mission                | Retired                | Market     |
| LAKHDG_6_UNIT 1 | 22625 | LKHODG1    | 13.8 | 20.00  | 1  | San Diego,<br>Bernardo, Encinitas |                        | Market     |
| LAKHDG_6_UNIT 2 | 22626 | LKHODG2    | 13.8 | 20.00  | 2  | San Diego,<br>Bernardo, Encinitas |                        | Market     |
| LARKSP_6_UNIT 1 |       | LRKSPBD1   | 13.8 | 46.00  | 1  | San Diego, Border                 |                        | Market     |
| LARKSP_6_UNIT 2 |       | LRKSPBD2   | 13.8 | 46.00  | 1  | San Diego, Border                 |                        | Market     |
| LAROA1_2_UNITA1 | 20187 | LRP-U1     | 16   | 165    | 1  | None                              |                        | Market     |
| LAROA2_2_UNITA1 | 22996 | INTBST     | 18   | 157    | 1  | None                              |                        | Market     |
| LAROA2_2_UNITA1 | 22997 | INTBCT     | 16   | 165    | 1  | None                              |                        | Market     |
| MRGT_6_MEF2     | 22487 | MEF_MR2    | 13.8 | 47.90  | 1  | San Diego, Mission,<br>Miramar    |                        | Market     |
| MRGT_6_MMAREF   | 22486 | MEF_MR1    | 13.8 | 48.00  | 1  | San Diego, Mission,<br>Miramar    |                        | Market     |
| MRGT_7_UNITS    | 22488 | MIRAMRGT   | 12.5 | 18.55  | 1  | San Diego, Mission,<br>Miramar    | Retired                | Market     |
| MRGT_7_UNITS    |       | MIRAMRGT   | 12.5 | 17.45  | 2  | San Diego, Mission,<br>Miramar    | Retired                | Market     |
| MSHGTS_6_MMARLF |       | MESAHGTS   | 69   | 3.64   | 1  | San Diego, Mission                | Aug NQC                | QF/Selfgen |
| MSSION_2_QF     |       | MISSION    | 69   | 0.70   | 1  | San Diego                         | Aug NQC                | QF/Selfgen |
| NIMTG_6_NIQF    |       | NOISLMTR   | 69   | 36.43  | 1  | San Diego                         | Aug NQC                | QF/Selfgen |
| OCTILO_5_WIND   |       | OCO GEN G1 | 0.69 | 23.13  | G1 | None                              | Aug NQC                | Wind       |
| OCTILO_5_WIND   | 23318 | OCO GEN G2 | 0.69 | 23.13  | G2 | None                              | Aug NQC                | Wind       |
| OGROVE_6_PL1X2  |       | PA99MWQ1   | 13.8 | 49.95  | 1  | San Diego, Pala                   |                        | Market     |
| OGROVE_6_PL1X2  | 22629 | PA99MWQ2   | 13.8 | 49.95  | 2  | San Diego, Pala                   |                        | Market     |
| OTAY_6_PL1X2    | 22617 | OYGEN      | 13.8 | 35.50  | 1  | San Diego, Border                 |                        | Market     |
| OTAY_6_UNITB1   | 22604 | OTAY       | 69   | 2.83   | 1  | San Diego, Border                 | Aug NQC                | QF/Selfgen |
| OTAY_7_UNITC1   | 22604 | OTAY       | 69   | 2.57   | 3  | San Diego, Border                 | Aug NQC                | QF/Selfgen |
| OTMESA_2_PL1X3  | 22605 | OTAYMGT1   | 18   | 185.06 | 1  | San Diego                         |                        | Market     |
| OTMESA_2_PL1X3  | 22606 | OTAYMGT2   | 18   | 185.06 | 1  | San Diego                         |                        | Market     |
| OTMESA_2_PL1X3  | 22607 | OTAYMST1   | 16   | 233.48 | 1  | San Diego                         |                        | Market     |
| PALOMR_2_PL1X3  | 22262 | PEN_CT1    | 18   | 162.39 | 1  | San Diego                         |                        | Market     |
| PALOMR_2_PL1X3  | 22263 | PEN_CT2    | 18   | 162.39 | 1  | San Diego                         |                        | Market     |
| PALOMR_2_PL1X3  | 22265 | PEN_ST     | 18   | 240.83 | 1  | San Diego                         |                        | Market     |
| PTLOMA_6_NTCCGN | 22660 | POINTLMA   | 69   | 1.98   | 2  | San Diego                         | Aug NQC                | QF/Selfgen |
| PTLOMA_6_NTCQF  | 22660 | POINTLMA   | 69   | 19.44  | 1  | San Diego                         | Aug NQC                | QF/Selfgen |
| SAMPSN_6_KELCO1 |       | SAMPSON    | 12.5 | 1.00   | 1  | San Diego                         | Aug NQC                | QF/Selfgen |
| SMRCOS_6_UNIT 1 | 22724 | SANMRCOS   | 69   | 0.65   | 1  | San Diego                         | Aug NQC                | QF/Selfgen |
| TERMEX_2_PL1X3  |       | TDM STG    | 18   | 281    | 1  | None                              |                        | Market     |
| TERMEX_2_PL1X3  |       | TDM CTG2   | 18   | 156    | 1  | None                              |                        | Market     |
| TERMEX_2_PL1X3  | 22983 | TDM CTG3   | 18   | 156    | 1  | None                              |                        | Market     |
| NA              | 22916 | PFC-AVC    | 0.6  | 0.00   | 1  | San Diego                         | No NQC - hist.<br>data | QF/Selfgen |

## Major new projects modeled:

- 1. SONGS Retirement
- 2. East County 500kV Substation (ECO)
- 3. Talega Synchronous Condenser (2x225 Mvar)
- 4. Reconductor of El Cajon Los Coches 69 kV line

- Reconductor of Mission Clairmont 69 kV line
- 6. Reconductor of Mission Kearny 69 kV line
- 7. Reconductor of Mission Mesa Heights 69 kV line

## Critical Contingency Analysis Summary

## El Cajon Sub-area:

The most critical contingency for the El Cajon sub-area is the loss of the El Cajon-Jamacha 69 kV line (TL624) followed by the loss of Miguel-Granite-Los Coches 69 kV line (TL632), which could thermally overload the Garfield – Murray 69 kV line (TL620). This limiting contingency establishes a LCR of 50 MW (including 0 MW of QF generation) in 2015 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

It is recommended to maintain a LCR of 85 MW in 20153 as the minimum generation capacity necessary for reliable load serving capability within this sub-area until the previous limiting component, El Cajon – Los Coches 69 kV line (TL631), is reconductored, which is an upgrade project approved in 2010-2011 ISO Transmission Plan.

### **Effectiveness factors:**

All units within this sub-area (El Cajon CalPeak, El Cajon GT and El Cajon Energy Center) have the same effectiveness factor.

## Mission Sub-area

The most critical contingency for the Mission sub-area is the loss of Mission - Kearny 69 kV line (TL663) followed by the loss of Mission – Mesa Heights 69kV line (TL676), which could thermally overload the Kearny - Clairmont 69kV line (TL600). This limiting contingency establishes a local capacity need of 43 MW (including 4 MW of QF generation) in 2015 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

It is recommended to retain the Kearny peakers, generating facilities until the limiting component, Mission - Clairmont 69kV line (TL670), is reconductored, which has been approved in 2010-2011 ISO Transmission Plan.

### **Effectiveness factors:**

All Kearny peakers have the same effectiveness factor.

### Bernardo Sub-area:

The most critical contingency for the Bernardo sub-area is the loss of Artesian - Sycamore 69 kV line (TL6920) followed by the loss of Poway-Rancho Carmel 69 kV line (TL648), which could thermally overload the Felicita Tap-Bernardo 69 kV line (TL689). This limiting contingency establishes a LCR of 160 MW (including 0 MW of QF generation and 120 MW of deficiency) in 2015 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

### Effectiveness factors:

All units within this sub-area (Lake Hodges) are needed so there is no effectiveness factor required.

### Esco Sub-area

The most critical contingency for the Esco sub-area is the loss of Poway-Pomerado 69 kV line (TL6913) followed by the loss of Esco - Escondido 69kV line (TL6908) which could thermally overload the Bernardo – Rancho Carmel 69 kV line (TL633). This limiting contingency establishes a LCR of 120 MW (including 38 MW of QF generation and 82 MW of deficiency) in 2015 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

### **Effectiveness factors:**

Only unit within this sub-area (Goal line) is needed so no effectiveness factor is required.

### Pala Sub-area

The most critical contingency for the Pala sub-area is the loss of Pendleton – San Luis Rey 69 kV line (TL6912) followed by the loss of Lilac - Pala 69kV line (TL6932) which could thermally overload the Melrose – Morro Hill Tap 69 kV line (TL694). This limiting contingency establishes a LCR of 38 MW (including 0 MW of QF generation) in 2015 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

### **Effectiveness factors:**

All units within this sub-area (Pala) have the same effectiveness factor.

### Border Sub-area

The most critical contingency for the Border sub-area is the loss of Bay Boulevard – Otay 69kV line #1 (TL645) followed by Bay Boulevard - Otay 69kV line #2 (TL646), which could overload the Imperial Beach – Bay Boulevard 69 kV line (TL647). This limiting contingency establishes a local capacity need of 65 MW in 2015 (includes 5 MW of QF generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

### **Effectiveness factors:**

All units within this area have the same effectiveness factor.

### Miramar Sub-area

The most critical contingency for the Miramar sub-area is the loss of Otay Mesa – Miguel Tap – South Bay 230kV line (TL23042) followed by the loss of Sycamore – Palomar 230 kV line (TL23051), which could thermally overload the Sycamore - Scripps 69 kV line (TL6916). This limiting contingency establishes a LCR of 131 MW (including 0 MW of QF generation) in 2015 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

The most critical single contingency for this sub-area is the loss of Otay Mesa – Miguel Tap – South Bay 230kV line (TL23042) with Miramar Energy Facility #1 or #2 out of service, which could thermally overload the Sycamore - Scripps 69 kV line (TL6916). This limiting contingency establishes a LCR of 95 MW (including 0 MW of QF generation) in 2015.

It is recommended to retain the Miramar GTs (Cabrillo Power II) until the most limiting contingency is mitigated.

### **Effectiveness factors:**

All units within this sub-area (Miramar Energy Facility and Miramar GTs) have the same effectiveness factor.

## San Diego Sub-area:

The most limiting contingency is the L-1-1 outage of Ocotillo-Suncrest 500 kV line followed by the loss of ECO-Miguel 500 kV line, which could potentially lead to post-transient voltage instability concern in the San Diego sub-area and SEC's LA Basin sub-areas. Since the generating facilities in the local SDGE area are more effective to mitigate the voltage instability concern than the generating resources in the LA Basin sub-area, all the generating facilities in the San Diego sub-area shall be acquired as LCR need in order to minimize over whole LCR need in the two sub-areas. In this approach this contingency establishes a LCR of 3103 MW in 2015 (includes 164 MW of QF generation and 9 MW of Wind) as the minimum generation capacity necessary for reliable load serving capability within this sub-area, which equals to the total of all available Net Qualified Capacities in the San Diego sub-area.

The most limiting single contingency in the San Diego sub-area is a (G-1/N-1) contingency described by the outage of ECO-Miguel 500 kV line with Otay Mesa Combined-Cycle Power Plant (603 MW) already out of service, which could trigger the SPS to cross trip either the Otay Mesa-Tijuana 230 tie (TL23040) or Imperial Valley-La Rosita 230 kV tie (TL23050) with CFE, and consequentially thermally overload the

Suncrest-Sycamore-230 kV lines (TL23054 and TL23055) with latest emergency rating. This contingency establishes a LCR of 2810 MW in 2015 (includes 164 MW of QF generation and 9 MW of Wind).

It is recommended to retain the Kearny peakers, Miramar GTs and El Cajon CT, generating facilities until the most limiting contingency is mitigated.

### **Effectiveness factors:**

All units within this area have the same effectiveness factor.

## San Diego-Imperial Valley Area Overall:

The most limiting contingency in the San Diego-Imperial Valley area is described by the outage of 500 kV Southwest Power Link (SWPL) between Imperial Valley and N. Gila Substations over-lapping with an outage of the TDM Power plant (593 MW), which could thermally overload the 230 kV tie with IID (S-Line) due to delay of the IID's new Imperial Valley-Dixieland 230 kV line project. This limiting constraint establishes a local capacity need of 3910 MW in 2015 (includes 164 MW of QF and 55 MW of Wind generation) as the minimum capacity necessary for reliable load serving capability within this area, assuming that the net export from IID is adjusted from about 380 MW to 0 MW after the first outage.

The second most limiting contingency is the outage of 500 kV Southwest Power Link (SWPL) between Imperial Valley and N. Gila Substations followed by an outage of Otay Mesa Combined-Cycle Power plant (603 MW). This limiting constraint is reactive margin and establishes a local capacity need of 3910 MW in 2015 (includes 164 MW of QF and 55 MW of Wind generation).

It is worth mentioning that the LCR needs for the San Diego-Imperial Valley area will decrease when the Imperial Valley – Dixieland 230kV tie project is in service. The estimated completion date of the Imperial Valley – Dixieland 230kV tie project line is December 2015.

### **Effectiveness factors:**

All units within this area have the same effectiveness factor.

## Changes compared to last year's results:

The load forecast went up by 207 MW and overall local resource capacity needed for the San Diego-Imperial Valley increased by only 49 MW. The reduced increase in due to Talega synchronous condensers and the new approach to take advantage of all generating facilities in the San Diego sub-area in order to minimize over whole LCR need in the SDG&E and SCE LA Basin sub-areas. The new approach is based on the fact that the generating facilities in the local SDGE area are more effective to mitigate the voltage instability concern than the generating resources in the LA Basin sub-area,

It is recommended to retain the Kearny peakers, Miramar GTs and El Cajon CT, generating facilities until the most limiting contingencies are mitigated in the Mission, Miramar and San Diego sub-areas.

## San Diego-Imperial Valley Area Overall Requirements:

| 2015                 | QF<br>(MW) | Wind<br>(MW) | Market<br>(MW) | Max. Qualifying Capacity (MW) |
|----------------------|------------|--------------|----------------|-------------------------------|
| Available generation | 164        | 55           | 4328           | 4547                          |

| 2015                                | Existing Generation<br>Capacity Needed (MW) | Deficiency<br>(MW) | Total MW<br>LCR Need |
|-------------------------------------|---------------------------------------------|--------------------|----------------------|
| Category B (Single) <sup>27</sup>   | 3910                                        | 0                  | 3910                 |
| Category C (Multiple) <sup>28</sup> | 3910                                        | 202                | 4112                 |

\_

<sup>&</sup>lt;sup>27</sup> A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

operations standards.

<sup>28</sup> Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

## 11. Valley Electric Area

## **Area Definition**

The transmission tie lines into the area include:

- 1) Amargosa-Sandy 138 kV line
- 2) Jackass Flats-Mercury Switch 138 kV line
- 3) Mercury Switch Mercury 138kV line
- 4) Mead-Bob Switchyard 230 kV line
- 5) Northwest-Desert View 230 kV line
- 6) Innovation-Mercury 138 kV line
- 7) Bob Switchyard-SCE Eldorado 230 kV line

The substations that delineate the area are:

- 1) Amargosa is out Sandy is in
- Jackass Flats is a shared bus between CAISO and NVE
- 3) Mercury Switch is a shared bus between CAISO and NVE
- 4) Mead is out Bob Switchyard is in
- 5) Northwest is out Desert View is in
- 6) Mercury is out Innovation is in
- 7) SCE Eldorado is out Bob Switchyard is in

Total 2015 busload within the defined area was: 150 MW along with 3 MW of transmission losses resulting in total load + losses of 153 MW.

There is no generation and qualifying capacity available in this area.

## Major new transmission projects modeled:

- 1. New Charleston Vista 138kV line
- 2. Bob Tap 230 kV Switchyard
- 3. Innovation-Mercury 138 kV line
- 4. Innovation 230 kV Switchyard

## Critical Contingency Analysis Summary

Valley Electric Association LCR area has been eliminated on the basis of the following results:

No generation exists in this area

- No category B issues were observed in this area
- Category C and beyond
  - No common-mode N-2 issues were observed
  - No issues were observed for category B outage followed by a commonmode N-2 outage
  - All the N-1-1 issues that were observed can either be mitigated by the existing UVLS or by an operating procedure

## Changes compared to last year's results:

This area is eliminated due to the reasons cited above. New Charleston – Vista 138kV line was modeled. DOE load at Jackass Flat is now reflected at part of total VEA load. VEA UVLS model was incorporated in the contingency analysis. CAISO operating procedure 7910 is now in effect and addresses some category C issues.