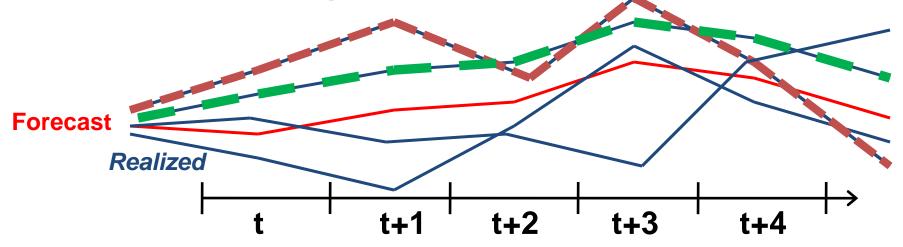
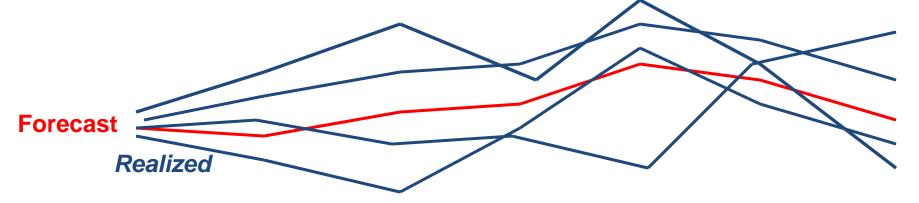

Flexiramp: Some Economic Principles

B.F. Hobbs
Chair, CAISO MSC
MSC Meeting, Sept. 30, 2011

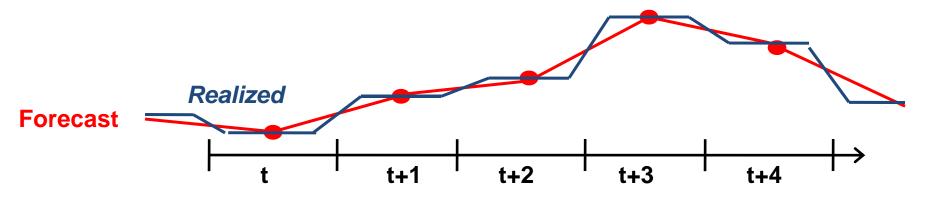
Needs for Ramp


- Forecasted net load ramp (interval-to-interval)
 - Priced correctly (usually) by market software
- Interval net load forecast <u>errors</u>
 - Surprisingly high or low load
 - Real interval loads more volatile
 - Ideal solution: stochastic programming
 - Practical: operating reserves, flexiramp
- Within-interval ramp needs
 - E.g., Import ramps at beginning/end of intervals,
 within-interval load & wind variability
 - Ideal solution: finer intervals
 - Practical: regulation, operating reserves

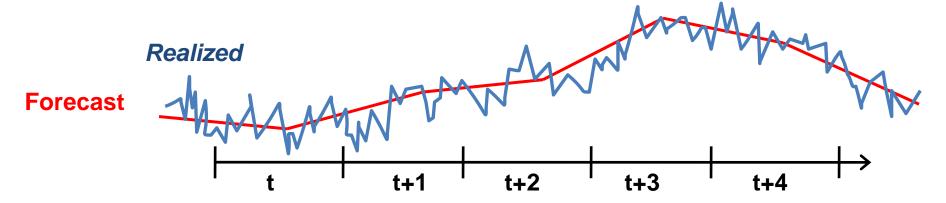
1. Dealing with Forecast Ramp


- If:
 - unit ramp constraints correctly represented, and
 - costs "convex" (no lumpy costs, prohibited regions)
- Then calculated market prices "support" the solution
 - No unit can increase profit by deviating from schedule
 - Includes up- and downward spikes
 - Upspikes compensate ramping generators for downspikes
- Rolling (RTD) solution & changed forecasts mean that compensating upspikes might not occur

2. Dealing with Forecast errors


- Actual loads
 - May be systematically higher or lower (3-5% RMS errors in day-ahead forecasts)
 - Higher volatility / steeper ramps
- Ideally: "Stochastic unit commitment"
 - Make commitments considering probabilities of multiple load scenarios (including contingencies)
 - Academic research / vendor development / SCE proposes for long-term vision

Characteristics of Optimal Stochastic Schedules



- Objective:
 - Minimize commitment + probability weighted dispatch costs
- Generators:
 - Operate in some scenarios, but not others
 - "Endogenous" reserves / flexiramp
- Disregarding lumpy commitment costs/constraints (assume convex costs) ⇒
 - Stochastic energy prices support solution
 - I.e., prospect of possible prices mean that commitment, operation is E(profit) maximizing
 - No separate reserve or flexiramp prices

2. Dealing with Within-Interval Variability

- E.g., start-/end-of-hour import ramps
 - Ramps steeper than forecast (average)

- E.g., Within-interval fluctuations
- Ideal: Smaller intervals, accurate ramp capability models

Reality: Deterministic, Wide Interval Scheduling

- Hueristic Scheduling (IFM, RTPD, RTD):
 - Simple rules (spin, operating reserve, flexiramp requirements)
 - Suboptimal (won't minimize E(cost))
 - Relationship of rules to cost behavior can be <u>counterintuitive</u>
- Some implications of above
 - 1. Schedule deviations, not overall ramp, is reason for flexiramp
 - Implications for cost-allocation / pricing
 - 2. Energy prices alone can support (interval-length) energy dispatch on average, if commitment optimal
 - Heuristic doesn't need separate capacity payments
 - If neither capped prices nor sub-interval scale variations
 - However, dispatch is not ex post profit maximizing in each scenario
 - E.g., hold back unit (incur opportunity cost) then high P doesn't actually occur later
 - Lack of within-interval P variation \Rightarrow need capacity payment

Implications, Cont.

- 3. Units undispatched for forecast load may have high chance of dispatch; their energy bids affect E(Cost)
 - Should weigh energy bids, P(dispatch) when scheduling reserves
 - Expected margin in energy market should be considered in capacity bids and "opportunity cost" calculations
- 4. Thoroughly test any heuristic against historic, future conditions