

July 30, 2020

The Honorable Kimberly D. Bose Secretary Federal Energy Regulatory Commission 888 First Street, NE Washington, DC 20426

Re: California Independent System Operator Corporation

Docket: ER15-2565-__

Energy Imbalance Market Special Report – Transition Period –

May 2020 for Salt River Project.

Dear Secretary Bose:

The Department of Market Monitoring (DMM) hereby submits its Energy Imbalance Market (EIM) special report on the transition period of Salt River Project during its first six months of participation in the EIM for May 2020. Salt River Project joined the energy imbalance market on April 1, 2020.

Please contact the undersigned directly with any questions or concerns regarding the foregoing.

Respectfully submitted,

By: <u>/s/ Eric Hildebrandt</u>

Eric Hildebrandt
Director of Market Monitoring
California Independent System
Operator Corporation
250 Outcropping Way
Folsom, CA 95630

Tel: (916) 608-7123
Fax: (916) 608-7222
ehildebrandt@caiso.com

California ISO

Report on energy imbalance market issues and performance: Salt River Project for May 2020

July 30, 2020

Prepared by: Department of Market Monitoring

Executive summary

Pursuant to the Commission's October 29, 2015 Order on the ISO's energy imbalance market (EIM), the ISO filed a report on July 14, 2020 covering the period from May 1 through May 31, 2020 (May report) for Salt River Project (SRP) in the energy imbalance market. SRP joined the energy imbalance market on April 1, 2020.

This report provides a review by the Department of Market Monitoring (DMM) of energy imbalance market performance for the SRP balancing authority area during the period covered in the ISO's May report. This is the second report for the transition period for the SRP balancing authority area. Key findings in this report include the following:

- Prices in the SRP area were not identical to prices within the ISO. In the SRP area during the month, prices averaged \$19.41/MWh in the 15-minute market and \$21.17/MWh 5-minute market.
- The SRP balancing authority area failed the upward sufficiency test in 4 intervals and the downward sufficiency tests in 37 intervals during May.
- Valid under-supply infeasibilities occurred in 2 intervals in the 15-minute market and 37 intervals in the 5-minute market in May. Valid over-supply infeasibilities were more frequent. These occurred during 11 intervals in the 15-minute market and 37 intervals in the 5-minute market for the SRP area during May.
- For the month, transition period pricing decreased average 15-minute and 5-minute prices by \$0.46/MWh and \$18.03/MWh, respectively.

Section 1 of this report provides a description of prices and power balance constraint relaxations and section 2 discusses the flexible ramping sufficiency test.

Report on Energy Imbalance Market Issues and Performance

The ISO's May 2020 Report was filed at FERC and posted on the ISO website on July 14, 2020: http://www.caiso.com/Documents/Jul-14-2020-EIM-TransitionPeriodReport-SaltRiverProject-May2020-ER15-2565.pdf

1 Energy imbalance market prices

Figure 1.1 and Figure 1.2 show hourly average 15-minute and 5-minute prices during May for SRP compared with prices in the ISO at the Southern California Edison (SCE) default load aggregation point.

Average prices in the SRP area tracked similarly to prices at the Southern California Edison (SCE) default load aggregation point within the ISO. Price separation between these two areas occurred frequently in both the 15-minute and 5-minute markets, but were close, on average, during evening ramping periods. In the SRP area during the month, prices averaged \$19.41/MWh in the 15-minute market and \$21.17/MWh in the 5-minute market.

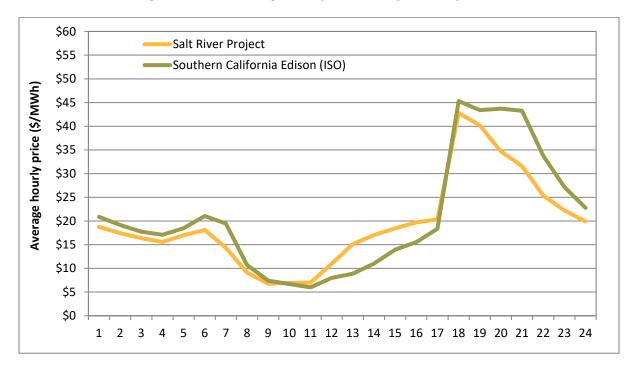


Figure 1.1 Average hourly 15-minute price (May 2020)

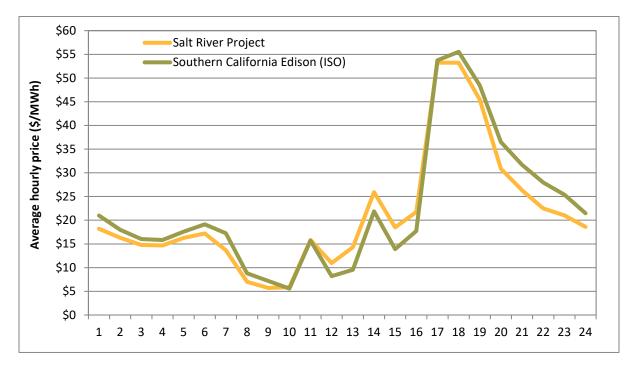


Figure 1.2 Average hourly 5-minute price (May 2020)

All power balance constraint relaxations that occurred in May were subject to the six-month transition period pricing that expires on October 1, 2020. The transition period pricing mechanism sets prices at the highest cost supply bid dispatched to meet demand rather than at the \$1,000/MWh penalty parameter while relaxing the constraint for shortages, or the -\$155/MWh penalty parameter while relaxing the constraint for excess energy.² Power balance constraint relaxations can be grouped in the following categories:

- Valid under-supply infeasibility (power balance constraint shortage). These occurred when the power balance constraint was relaxed because load exceeded available generation. The ISO validated that ISO software was working appropriately during these instances.
- Valid over-supply infeasibility (power balance constraint excess). These occurred when the power balance constraint was relaxed because generation exceeded load. The ISO validated that ISO software was working appropriately during these instances.
- Load conformance limiter would have resolved infeasibility. The load conformance limiter automatically reduces the size of an operator load adjustment and sets prices at the last economic signal when the conditions for the limiter are met.³ During the transition period, the limiter does not

² When transition period pricing provisions are triggered by relaxation of the power balance constraint, any shadow price associated with the flexible ramping product is set to \$0/MWh to allow the market software to use the last economic bid dispatched.

³ The ISO implemented an enhancement to the load conformance limiter, effective February 27, 2019. With the enhancement, the load conformance limiter triggers by a measure based on the change in load adjustment from one interval to the next, rather than the total level of load adjustment.

change price outcomes because transition period pricing is applied during these intervals instead. However, in these cases, the load conformance limiter would have resolved the infeasibility had transition period pricing not been in effect.

• **Correctable infeasibility.** These occurred when the ISO software relaxed the power balance constraint concurrent with a software error or data error that resulted in a price correction or would have triggered a price correction if transition period pricing were not active.⁴

Figure 1.3 and Figure 1.4 show the weekly frequency of under-supply and over-supply infeasibilities, respectively, in the 5-minute market and 15-minute market. As shown in Figure 1.3, valid under-supply infeasibilities occurred in 2 intervals in the 15-minute market and 37 intervals in the 5-minute market in May.

As shown in Figure 1.4, valid over-supply infeasibilities were more frequent. These occurred during 11 intervals in the 15-minute market and 37 intervals in the 5-minute market for the SRP area during May.

There were 4 intervals during May when the load conformance limiter would have triggered in the 5-minute market for the SRP balancing authority area had transition period pricing not been in effect.

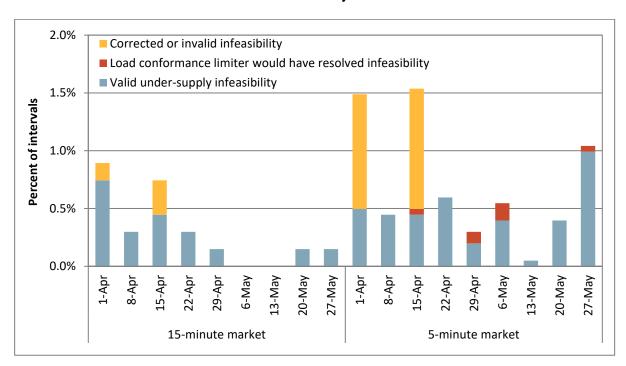


Figure 1.3 Frequency of under-supply power balance infeasibilities by week Salt River Project

⁴ Section 35 of the ISO tariff provides the ISO authority to correct prices if it detects an invalid market solution or issues due to a data input failure, occurrence of hardware or software failure, or a result that is inconsistent with the ISO tariff. During erroneous intervals, the ISO determined that prices resulting under transition period pricing were equivalent to prices that would result from a price correction, so no further price adjustment was appropriate. http://www.caiso.com/Documents/Section35 MarketValidationAndPriceCorrection May1 2014.pdf.

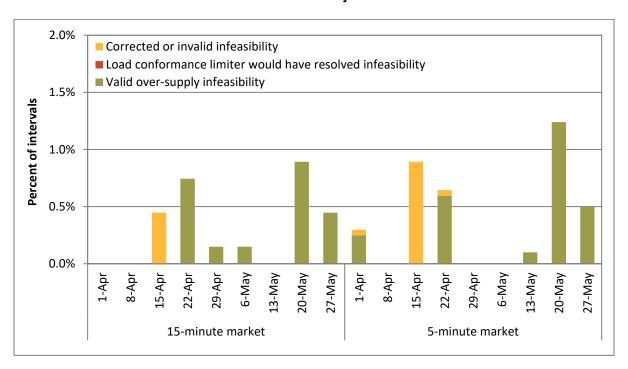
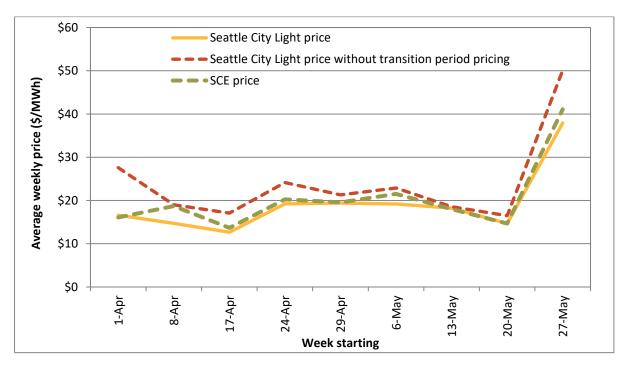


Figure 1.4 Frequency of over-supply power balance infeasibilities by week Salt River Project


Figure 1.5 and Figure 1.6 show the average weekly prices in the 15-minute market and 5-minute market with and without the special transition period pricing provisions applied to mitigate prices in the SRP area during May.⁵ For the month, transition period pricing decreased average 15-minute and 5-minute prices by \$0.46/MWh and \$18.03/MWh, respectively.

⁵ A detailed description of the methodology used to calculate these counterfactual prices that would result without transition period pricing was provided on p. 7 of the January 2017 report for Arizona Public Service from DMM: http://www.caiso.com/Documents/May1 2017 Department MarketMonitoring EIMTransitionPeriodReport ArizonaPublicSer vice Jan2017 ER15-2565.pdf

Figure 1.5 Average prices by week – Salt River Project (15-minute market)

Figure 1.6 Average prices by week Salt River Project (5-minute market)

2 Flexible ramping sufficiency test

The flexible ramping sufficiency test ensures that each balancing area has enough ramping resources over each hour to meet expected upward and downward ramping needs. The test is designed to ensure that each energy imbalance market area has sufficient ramping capacity to meet real-time market requirements without relying on transfers from other balancing areas.

If an area fails the upward sufficiency test, energy imbalance market imports cannot be increased. Similarly, if an area fails the downward sufficiency test, exports cannot be increased. In addition to the sufficiency test, each area is also subject to a capacity test. If an area fails the capacity test, then the flexible ramping sufficiency test automatically fails as a result.⁷

The SRP balancing authority area failed the upward sufficiency test in 4 intervals and the downward sufficiency tests in 37 intervals during May.

-

⁶ Business Practice Manual for the Energy Imbalance Market, August 30, 2016, p. 45-52:
<a href="https://bpmcm.caiso.com/BPM%20Document%20Library/Energy%20Imbalance%20Market/BPM_for_Energy%20Imbalance%20Market/BPM_for_Energy%20Imbalance%20Market/BPM_for_Energy%20Imbalance%20Market V6_clean.docx."</p>

⁷ Business Practice Manual for the Energy Imbalance Market, August 30, 2016, p. 45.