
California 150
Your link to Power

California Independent
System Operator Corporation

July 30, 2007

Via Federal Express

Attn: Commission's Docket Office
California Public Utilities Commission
505 Van Ness Avenue
San Francisco, CA 94102

RE: Docket No. R.07-01-041 - Order Instituting Rulemaking Regarding Policies and
Protocols for Demand Response, Load Impact Estimates, Cost-Effectiveness Methodologies,
Megawatt Goals and Alignment with California Independent System Operator Protocols

With this transmittal letter, the California Independent System Operator Corporation
(CAISO) submits, by paper filing, its original and six copies of the Comments of the California
System Operator Re: Loan Impact and Cost Effectiveness Straw Proposals. As indicated by
our Proof of Service, the CAISO served the service list for the proceeding on July 27,2007.

.-

The filng date for comments was July 27,2008. The CAISO has requested and
received permission from the Assigned Administrative Law Judge, Jessica Hecht, to file its
Comments by close of business Tuesday, July 31, 2007.

I discussed this filng with Mr. Darin Pratt of your office yesterday, July 30th. Mr. Pratt
confirmed that the CAISO would be permitted to submit the filng by expedited courier delivery.

The CAISO apologizes for its delay in submitting the materials. We experienced some
computer-technical problems when attempting to merge the Exhibit A document into one
electronic document for electronic filing (the final document was not of PDF/A-Draft quality). As
the 5:00 hour neared, we then submitted an ele~tronic filing of the Comments document only
(we inadvertently forgot to include the service list). This document posted after 5:00 and
received a July 30, 2007 filing date, along with ;the confirmation number 7026.

For reference, I am also including two email print-outs representing (i) the CPUC Docket
Office's Notice of Rejection of the Electronic fiJjng; and (ii) ALJ Hecht's communication to the
CAISO of her grant of extension to file the Comments.

Very truly youær,U' ~
Baldassare "Bi Di Capo

Counsel - Regulatory

CAISO
151 Blue Ravine Road

Folsom, California 95630

(916) 351-4400



Oi Capo, Baldassaro

From:
Sent:
To:
Subject:

CPUC Electronic Filing System (CPUCElectronicFiling(§cpuc.ca.gov)
Monday, July 30, 2007 11 :53 AM
Di Capo, Baldassaro
0000007026 - California Public Utilities Commission Rejection of Filing

Your filing, submitted on 7/27/2007 with confirmation number 0000007026, has been rejected
by the California Public Utilities Commission for the following reasons:

E-File #7026 / R. 07-01-041 / Comments of the California Independent System Operator re:
Load Impact and Cost Effectiveness Straw Proposals on the Service List for Proceeding
R. 07-01-041.

1. Document is submitted late. Thase comments were due July 27, 2007. Prior to re-
submitting, please get permission from the,inyolved ALJ to late file.

.
"

2. Service ~ist is not attached. (Rule 1.9 (d) )

Thank Yçm,

Darin Pratt
Legal Analyst
(415) 703-3852

If you have questions about this rejection, please contact the CPUC Docket Office at the
address listed below.

Docket Office
Ca~ifornia Public Utilities Commission
50~ Van Ness Avenue, Room 2001
San Francisco, CA 94102
Voice: (415) 703-2121
Fax: (415) 703-2446
Email: dkt~cpuc.ca . gov

: :,
. ~.! ~J
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Oi Capo, Baldassaro

From: Hecht, Jessica T. (JHE(§cpuc.ca.gov)
Monday, July 30,20072:16 PM

Di Capo, Baldassaro

mpieniazek (§ ecsny.com; sdebroff (§ sasllp.com; keith.mccrea (§ sablaw .com;
klatt (§ energyattorney .com; douglass (§ energyattorney.com; janet.combs (§ sce.com;
vthompson (§ sempra.com; liddell (§ energyattorney.com; jells (§ energyconnectinc.com;
marcel (§ tu rn .org; Salvacion, Lisa-Marie; nes (§ a-klaw .com; cbaskette (§ enernoc.com;
rcounihan(§enernoc.com; sawO(§pge.com; i-brown369(§yahoo.com; Sherif, Linda;
wbooth (§ booth-Iaw.com; eric(§ strategyLcom; ewoychik(§ strategyi.com; ja_boothe (§yahoo.com;
Mills, Karen; clark.pierce(§us.landisgyr.com; gesmith(§ecsny.com;
stephen.baker(§constellation.com; Carlson, Trent; Violette, Daniel; kcooney(§summitblue.com;
barrettlarry(§comcast.net; david (§ nemtzow.com; Pelote, Roger; david. reed (§ sce.com;
joyce.leung (§ sce.c'om; marian.brown (§ sce.~.om; mark.s.martinez (§ sce.com;

. andrea.horwatt(§ sce.com; carl.silsbee (§ see.com; case.admin (§ sce.com; ka-wing.poon (§ sce.com;
larry.cope (§ sce.com; garwacrd (§ sce.com; jyamagata (§ semprautilities.com; dwood8 (§ cox. net;
cfpena (§ sempra.com; jlaun (§ apogee. net; dbarker(§ semprautilities.com;
ksmith2 (§ semprautilities.com; Iwilloughby (§ semprautílties.com; Central Files (§ semprautilities.com;
gayres (§ energycoalition.org; imungi (§ energycoalition.org; wmitchell ru nner(§ socal.rr.com;
dwylie(§ aswengineering.com; hvidstenj (§ kindermorgan.com; King, Chris; sharon (§emeter.com;
Engel, Dan; filings(§a-klaw.com; snuller(§ethree.com; stephengeorge(§fccgroup.com;
Haubenstock, Arthur; abonds(§thelen.com; Middlekauff, Charles; evk1 (§pge.com; Abreu, Ken;
latd (§ pge.com; pxo2 (§ pge.com; ahmadJaruqui (§ bratte.com; jeffg ray (§ dwt.com;
cpuccases(§pge.com; ssmyers(§att.net; jwwd(§pge.com; LATc(§pge.com; sem4(§pge.com;
rwalther(§ pacbell.net; Service (§ spurr.org; cpjoe (§ gepllc.com; pthompson (§ summitblue.com;
philha (§ astound.net; ted (§ energy-solution.com; jody _london_consulting (§ earth link. net;
mrw(§ mrwassoc.com; rschmidt(§ bartlewells.com; adamb(§greenlining.org; elvine(§ Ibl.gov;
GLBarbose (§ Ibl.gov; janreid (§ coastecon.com; jshields (§ ssjid.com; joyw(§ mid.org; VanHoy, Roger;
tomk(§ mid.org; Barkovich, Barbara; c1ark.bernier(§ rlw.com; stacia.okura(§ rlw.com;
gayatri (§ jbsenergy.com; jeff(§ jbsenergy.com; jweil (§ aglet.org; rmccann (§ umich.edu;
demorse(§omsoft.com; e-recipient; Goodin, John; Brown, Andy; dhungerf(§energy.state.ca.us;
msherida (§ energy.state.ca.us; bernardo(§ braunlegal.com; vwood (§ smud.org;
bboice02(§yahoo.com; Lindh, Karen; sas(§ a-klaw.com; mike.messenger(§ powerauthority.on.ca;
Campbell, Andrew; Kaneshiro, Bruce; Vilarreal, Christopher; Lam, Dorris; Salmi Klotz, Jason R.;
Como, Joe; Morgenstern, Joy; Lee, Rebecca Tsai-Wei; Gokhale, Sudheer; Drew, Tim G.;
c1aufenb (§ energy .state.ca. us; aulmer(§ wate(:ea.gov

Subject: RE: CPUC R07 -01-041; CAISO Request for Leave to Late File CAISO Comments Re LI and CE
Straw Proposals .

Sent:

To:

Cc:

Mr. Di Capo,

I am granting your request to file CAISO's comments on the load impact and cost effectiveness straw proposals
not later than close of business tomorrow. Since you were able to serve your comments (including the
Attachment A) on the service list last Friday (the fiing deadline), and did attempt to file the document Friday as
directed, I do not believe that anyone is disadvantaged by your request to file this document late. i wil inform the
Commission's docket office that i am granting this request.

Please make sure that the document is properly filed by close of business tomorrow, Tuesday, July 31,2007.

Please let me know if you have any questions.

Jessica T. Hecht
Administrative Law Judge
California Public Utilities Commission
(415) 703-2027
j he~cpuc . ca . gov

7/3012007
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From: Di Capo, Baldassaro (mailto:BDiCapo(Qcaiso.com)

Sent: Monday, July 30,2007 12:19 PM
To: Hecht, Jessica T.
Cc: mpieniazek(§ecsny.com; sdebroff(§sasllp.com; keith .mccrea(Qsablaw .com; klatt(§energyattorney.com;
douglass(Qenergyattorney.com; janet.combs(§sce.com; vthompson(§sempra .com; liddell(§energyattorney .com;
jells(§energyconnectinc.com; marcel(§turn.org; Salvacion, Lisa-Marie; nes(§a-klaw.com;
cbaskette(§enernoc.com; rcounihan(Qenernoc.com; sawO(§pge.com; i-brown369(§yahoo.com; Sherif, Linda;
wbooth(§booth-Iaw.com; eric(§strategyi.com; ewoychik(§strategyLcom; ja_boothe(§yahoo.com; Di Capo,
Baldassaro; Mills, Karen; clark.pierce(§us.landisgyr.com; gesmith(§ecsny.com; stephen.baker(§constellation.com;
Carlson, Trent; Violette, Daniel; kcooney(§summitblue.com; barrettlarry(§comcast.net; david(§nemtzow.com;
Pelote, Roger; david.reed(§sce.com; joyce.leung(§sce.com; marian.brown(§sce.com; mark.s.martinez(§sce.com;
andrea. horwatt(§sce.com; carl.silsbee(§sce.com; case.admin(§sce.com; ka-wing.poon(§sce.com;
la rry .cope(§sce.com; garwacrd.(§sce .com; jya magata(§sempra utilties. com ; dwood8(§cox. net;
cfpena(§sempra .com; jla u n(§a pogee. net; dba rker(§s'empra util ities.com; ksm ith2(§sempra utíl ities. com;
Iwi lIough by(§sem pra utíl ities .com; Centra IFíles(§sempra uti lities .com; gayres(§energycoa Iition .org;
imungi(§energycoalition.org; wmitchellrunner(§socal.rr .com; dwylie(§aswengineering.com;
hvidstenj(§kindermorgan.com; King, Chris; sharon(§emeter.com; Engel, Dan; filngs(§a-klaw.com;
snuller(Qethree.com; stephengeorge(§fccgroup.com; Haubenstock, Arthur; abonds(§thelen.com; Middlekauff,
Charles; evk1(§pge.com; Abreu, Ken; latd(§pge.com; pxo2(§pge.com; ahmadJaruqui(Qbrattle.com;
jeffgray(Qdwt.com; cpuccases(§pge.com; ssmyers(Qatt.net; jwwd(§pge.com; LATc(§pge.com; sem4(Qpge.com;
rwa Ither(Q pacbell. net; Service(§spu rr.org; cpjoe(§gepllc.com; pthompson (Qsummitbl ue .com; ph í1ha(§astound. net;
ted(§energy-solution.com; jody _Iondon_consulting(§earthlink. net; mrw(§mrwassoc.com;
rschm idt(§ ba rtlewells.com; adamb(§g reenlin ing .org; elvi ne(§l bl.gov; GLBa rbose(§lbl.gov;
janreid(§coastecon.com; jshields(§ssjid.com; joyw(Qmid.org; VanHoy, Roger; tomk(§mid.org; Barkovich, Barbara;
cia rk. bernier(§rlw .com; stacia .okura(§rlw .com; gayatri(§jbsenergy.com; jeff(§jbsenergy.com; jweíl(§aglet.org;

: rmccann(Qumich.edu; demorse(§omsoft.com; e-recipient; Di Capo, Baldassaro; Goodin, John; Brown, Andy;
: dhungerf(§energy.state.ca.us; msherida(§energy.state.ca.us; bernardo(§braunlegal.com; vwood(§smud.org;

bboice02(Qyahoo.com; Lindh, Karen; sas(§a-klaw.com; mike.messenger(§powerauthority.on.ca; Campbell,
Andrew; Kaneshiro, Bruce; Villarreal, Christopher; Lam, Dorris; Salmi Klotz, Jason R.; Hecht, Jessica T.; Como,
Joe; Morgenstern, Joy; Lee, Rebecca Tsai-Wei; Gokhale, Sudheer K.; Drew, Tim G.; claufenb(§energy.state.ca.us;
aulmer(§water.ca.gov
Subject: CPUC R07-01-041; CAlSO Request for Leave to Late File CAISO Comments Re LI and CE Straw
Proposals

~. '¡

Dear Judge Hecht:

By this email, the California iSO respectfully requests leave for late filing of its "Comments..~fthe California
Independent System Operator Re: Load Impact and Cost Effectiveness Straw Proposals," wlìich were due July
27,2007.

In this regard, the CallSO filing was delayed because we experienced problems in our attempt to create our
Exhibit A document as a PDF document meeting the Docket Department's filing requirement that the document
be a "PDF/A-Draft." Apparently, the electronic copy of the Exhibit A document that we had was not of suffcient
electronic quality to meet this level, and we were ultimately unsuccessful in creating an Exhibit A of sufficient
quality to fie this exhibit electronically.

We were successful in serving CaIISO's comments (with the Exhibit A) on all parties in the proceeding on Friday
July 27th. Our intention is to hand file the Comments filing at the CPUC dockets offce in its entirety no later than
COB by Tuesday. In this regard, the Exhibit is over 150 pages in length and will take some time to copy, and we
will need to have the document delivered to San Francisco for filing.

7/30/2007
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Baldassaro "Bil" Di Capo
Counsel
California Independent System Operator Corp.
phone (916) 608-7157
email bdicapotQcaiso.com

This electronic message and all attachments may contain confidential information that belongs to the sender and is protected
by the attorney-client privilege or other applicable privilege. The information is intended only for use by the designated
recipient(s). If you are not the intended recipient, you are hereby notified that any use, disclosure, copying, distribution

(electronic or otherwise), or the taking of any action in reliance on the contents ofthis information is strctly prohibited. If

you have received this electronic message in error, please notify the sender immediately

..

..1ft

7/3012007



California 150
Your I.rik to Power

California Independent
System Operator Corporation

July 27, 2007

Attn: Commission's Docket Office
California Public Utilities Commssion
505 VanNess A venue

San Francisco, CA 94102
-,-,

RE: Docket No. R.07-01-041 - Order Instituting Rulemakng Regarding Policies and
Protocols for Demand Response, Load Impact Estimates, Cost-Effectiveness
Methodologies, Megawatt Goals and Alignment with California Independent System
Operator Protocols

Dear Clerk:

Enclosed for filing please find an original and five copies of the Comments Of
The California Independent System Operator Re: Load Impact And Cost Effectiveness
Straw Proposals in the above-referenced docket.

Please date stamp one copy and return to California iSO in the self-addressed stamped
envelope provided.

Than you.
. "Si~ '\¡? A-

Baldasar "ßj I" Di c:;V
Counsel - Regulatory

..

CAISO
151 Blue Ravine Road

Folsom, California 95630

(916) 351-4400



BEFORE THE PUBLIC UTILITIES COMMISSION OF 
THE STATE OF CALIFORNIA 

 
 

Order Instituting Rulemaking Regarding Policies 
and Protocols for Demand Response, Load Impact 
Estimates, Cost-Effectiveness Methodologies, 
Megawatt Goals and Alignment with California 
Independent System Operator Protocols 
 

 
 
Rulemaking 07-01-041 
(January 25, 2007) 

 
 
 

COMMENTS OF  
THE CALIFORNIA INDEPENDENT SYSTEM OPERATOR 

RE: LOAD IMPACT AND COST EFFECTIVENESS STRAW PROPOSALS 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Nancy Saracino, General Counsel 
Baldassaro “Bill” Di Capo, Counsel     
California Independent System Operator 
151 Blue Ravine Road 
Folsom California 95630 

July 27, 2007 Telephone:  (916) 351-4400 
Facsimile:    (916) 608-7296 

 
 



BEFORE THE PUBLIC UTILITIES COMMISSION OF THE 
STATE OF CALIFORNIA 

 
 
 
Order Instituting Rulemaking Regarding 
Policies and Protocols for Demand Response, 
Load Impact Estimates, Cost-Effectiveness 
Methodologies, Megawatt Goals and 
Alignment with California Independent System 
Operator Protocols 
 

Rulemaking 07-01-041 
(January 25, 2007) 

 
 

COMMENTS OF  
THE CALIFORNIA INDEPENDENT SYSTEM OPERATOR 

RE: LOAD IMPACT AND COST EFFECTIVENESS STRAW PROPOSALS 
 
 

The California Independent System Operator Corporation (“CAISO”) submits its 

comments regarding the Load Impact and Cost Effectiveness Straw Proposals submitted 

in this proceeding on July 16, 2007. 
 
Introduction 

The CAISO commends the efforts of the utilities and other parties for their efforts 

in preparing the Straw Proposals.  Further, the CAISO appreciates the Commission’s 

support, in this proceeding, to better incorporate demand response programs into the 

CAISO’s wholesale market design. 

The Federal Energy Regulatory Commission (“FERC”) is similarly interested in 

these topics, including the development of reasonable standards to measure compliance 

when demand resources are dispatched and whether ISOs should quantify the cost-

effectiveness of demand response in their wholesale power markets.  In addition, FERC 

is interested in the greater coordination between state and federal entities, in order to 

promote and integrate demand response into retail and wholesale markets and planning  
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R.07-01-041 
CAISO COMMENTS ON LI AND CE STRAW PROPOSALS 

and “to remove unnecessary obstacles to demand response participating in the wholesale 

power markets of RTOs and ISOs.”1

Responsive to these issues, on May 15, 2007, the CAISO, in collaboration with 

the CPUC, CEC, IOUs, convened a meeting with the objective of developing an informal 

process intended to advance the integration of demand resources into MRTU wholesale 

market design.  In this regard, five key demand resource working groups have been 

formed to meet this objective.  These five working groups are as follows: 
 

1. Demand Response Participation in MRTU Release 1; 
• Lead agency- CAISO 

2. Demand Response Participation in MRTU Post Release 1; 
• Lead agency- CAISO 

3. Demand Resource Product Specification; 
• Lead agency- CEC 

4. Infrastructure for Demand Resources; 
• Lead agency- CEC 

5. Vision for Demand Resources; 
• Lead agency- CPUC2. 

 
How Demand Resources Contribute to Grid Reliability 

Demand resources generally fall into one of three categories, in the context of 

their contributing to the reliability of the grid.  Demand resources can: 
 

1. Reduce the demand forecast; 

2. Provide reliability services to the grid; and 

3. Provide emergency response. 

                                                 
1 FERC Advanced Notice of Proposed Rulemaking, dated June 22, 2007 (issued in Docket Nos. RM07-19 
and AD07-7), 119 FERC ¶61,603 (Accession No. 20070622-3049) at ¶41, p.  27 (hereafter, “ANOPR”).  
The ANOPR may be found through the FERC Internet Web Search Page at 
http://elibrary.ferc.gov/idmws/docket_search.asp , and entering “RM07-19” into the docket number field.  
2 Each working group has a lead sponsoring agency, as identified above.  A summary of the objectives and 
deliverables for each working group can be found at: http://www.caiso.com/1c0a/1c0a9dac6a660.pdf  
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R.07-01-041 
CAISO COMMENTS ON LI AND CE STRAW PROPOSALS 

Demand resources can reduce the CAISO demand forecast in the day-ahead and 

day-of timeframe.  In the day ahead, the CAISO can consider the contribution from 

demand resources in CAISO’s determination of whether additional resources or capacity, 

not already bid into or scheduled in the Integrated Forward Market (“IFM”), needs to be 

committed.  CAISO performs this determination through the CAISO’s residual unit 

commitment (“RUC”) process.  Likewise, in the day-of timeframe, the contribution from 

demand resources could prevent the CAISO from having to start medium and/or quick 

start resources, based on system conditions and (the extent that demand response can 

contribute to a reduction in) the projected load forecast.  Additionally, price-triggered 

demand resources can participate in the Integrated Forward Market (“IFM”), given a 

price-sensitive demand curve. 

Demand resources can offer reliability services to the CAISO.  Currently, 

reliability services offered by demand resources include imbalance energy and non-

spinning reserve capacity for use by the CAISO in its real-time operations.  In the future, 

demand resources could potentially be eligible to provide additional ancillary services, 

such as spinning reserve and regulation, to the CAISO.  These services are generally 

considered higher quality in nature, given their inherent response times. 

Finally, traditional interruptible/curtailable demand resources can provide 

emergency-load relief to the CAISO, either: i) after a system emergency is declared; or ii) 

for a local transmission emergency.  Such emergency load relief aids in preventing the 

further degradation of the CAISO’s operating reserves and/or to prevent firm load 

shedding, during the period of the emergency condition. 

In each scenario, establishing, ex ante, and with a high degree of confidence, the 

load impacts of demand resources, is critical to the grid operator and its ability to 

maintain reliability.  Since demand resources are most valuable to the CAISO as a supply 

side substitute (i.e. as a negative generator), foreknowledge of the load impact is 

equivalent to knowing the expected output of a generation resource.  Thus, accurately 
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CAISO COMMENTS ON LI AND CE STRAW PROPOSALS 

assessing the impact of, and mechanical reliability contribution from, demand resources 

is essential to the CAISO’s ability to rely upon these resources to meet its operational 

needs. 

 
Load Impact Protocols are Critical to Meeting the CAISO’s Operational Needs 

Load impact protocols are important to the CAISO for understanding, for 

example, the basis on which the CAISO would be adjusting its demand forecast, to 

account for participation from demand resources in its RUC process.  The accuracy of the 

load drop resulting from the call of demand resources is vital to the CAISO, as their 

incorporation into the forecast means that CAISO would use the demand resources in lieu 

of long-start resources, thus foregoing starting those long-start resources.  If demand 

resources that were to be committed in the day-ahead timeframe and incorporated into the 

day ahead forecast, but were not to perform as CAISO reaches the day-of or real time, 

then CAISO would be resource short, at which point the long-start generation would be 

absolutely unavailable to make up the shortfall, because it would be physically 

impossible to timely start that generation to meet the need.  

For these reasons, other ISOs, like the ISO New England, have developed their 

own set of measurement and verification (“M&V”) protocols for application to demand 

resources participating in their organized markets.  The CAISO briefly touched on the 

need to address baseline methodologies, and their importance, during a session of the 

demand response MRTU Release 1 Working Group, as it applies to integrating demand 

resources into the wholesale market and grid operations.  The CAISO anticipates that 

suitable load impact protocols can be agreed to and ruled on in this proceeding that will 

serve both the CAISO’s operational needs and the programmatic needs of demand 

resource providers.  The CAISO understands that methodological refinements to the load 

impact protocols may be necessary over time.  Therefore, we emphasize the need for 
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CAISO COMMENTS ON LI AND CE STRAW PROPOSALS 

continual and close coordination between the CPUC, CEC, CAISO and demand resource 

providers on this issue. 

 
Load Impacts Should Reflect Geographic Specificity 
 

The Joint IOU straw proposal correctly points out that “[r]esource planners may 

want to know DR impacts for different geographic regions that are dictated by the layout 

of generation, transmission and distribution resources.”3  The CAISO’s RUC process 

assesses resource needs on a RUC zone basis, a subject that has been discussed in the 

Demand Response- MRTU Release 1 Working Group.   In short, a RUC zone is a 

designated geographic area for which the CAISO has developed sufficient historical 

demand forecast and relevant weather data to perform a demand forecast for that zone.  

As such, demand resources must be identified by RUC zone, so that the CAISO can 

consider these resources in its RUC procurement process, through lowering the demand 

forecast, and therefore the RUC procurement target based on the level of participation 

from demand resources. 

Moreover, for demand resources to qualify as local capacity for resource 

adequacy purposes, demand resources must likewise be identified and tied geographically 

to a local capacity area, which areas are identified in the CAISO’s Local Capacity 

Technical Analysis.4

 
The LI and CE Protocols Developed in this Proceeding Should Strive for 
Standardization and Glean From Work Already Performed 

The work product developed in this proceeding may have far-reaching 

implications, given the heightened interest in load impact and cost-effectiveness 

standards, both locally and nationally.  Standardization of measurement and verification 

                                                 
3 IOU Joint Proposal, Section 3.2 [Understanding What is Needed], p.16. 
4 For details on local capacity areas, see the 2008 Local Capacity Technical Analysis Report and Study 
Results at: http://www.caiso.com/1bb5/1bb5ed3d46430.pdf . 
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(“M&V”) protocols and cost effectiveness screens, where appropriate, could be very 

helpful in meeting the objective of lowering barriers to entry for demand resources, 

particularly given the priority of demand resources in California’s loading order.5

Thus, the CAISO encourages the Commission, in its decision-making, to 

thoroughly consider the comprehensive and professional research being conducted by the 

Demand Response Research Center (“DRRC”) on these topics, along with important 

work already produced on these issues.  One such significant work is the consultant 

report prepared by KEMA-Xenergy for the CEC in February 2003 on protocol 

development for demand response calculations (“KEMA-Xenergy Report”).6   Much of 

this work could be instrumental in ultimately developing national standards.  (A copy of 

the KEMA-Xenergy Report is attached to these Comments.) 

Specifically, the five criteria for selecting a good baseline method that are 

identified and described in the KEMA-Xenergy Report are similar to those conveyed in 

the Joint Parties’ DR load impact protocols straw proposal7 and, thus, are worthy of the 

Commissions’ attention.  In general, the KEMA-Xenergy Report identified the following 

criteria: 
1. Simplicity- ease of use, ease of understanding; 

2. Accuracy- lack of bias, verifiable and flexible; 

3. Minimization (or Integrity)- minimizes gaming opportunities; 

4. Predictability- know baseline before committing to a response; 

5. Consistency- similar results achieved when applied by different entities.8 

                                                 
5 The loading order is set forth in the Energy Action Plan II (EAP II), adopted by the CPUC and CEC on 
September 21, 2005.  Legislative endorsement of the EAP II can be seen, for example, by reference to the 
EAP II in SB 1368, Section 1(h). 
6 Consultant Report:  Protocol Development for Demand Response Calculation- Findings and 
Recommendations, prepared by KEMA-Xenergy, Miriam L. Goldberg and G. Kennedy Agnew, published 
by the California Energy Commission, February 2003 (CEC Document No. 400-02-017F) [hereafter, 
KEMA-Xenergy Report”]. 
7  See Straw Proposals of Enernoc, Inc., Energy Connect, Comverge, Inc. Ancillary Services 
Coalition, and California Large Energy Consumers Association on Load Impact Protocols for Demand 
Response Resources, July 16, 2007, p. 5. 
8  KEMA-Xenergy Report, CEC Report Summary forward to the report, at subsection entitled 
“Criteria for Selecting a Good Baseline Method.”  [The CEC forward is not paginated.] 

 - 7 - 



R.07-01-041 
CAISO COMMENTS ON LI AND CE STRAW PROPOSALS 

 

Before this process unfolds further, the CAISO encourages the Commission to 

adopt the same or similar criteria for use in guiding the evaluation and screening of 

various cost-effectiveness protocols and methodologies and should include these in its 

workshop report. 

 
Load Impact Protocol Options Should be Explored 

The Commission should consider adopting an approach as outlined in the KEMA-

Xenergy Report “that baseline calculation protocols should provide for alternatives based 

on customer load characteristics and operating practices.”9  In other words, the 

Commission should clearly identify the best-fit load impact protocol by customer and/or 

building type, however, and with clear guidance and rules, provide the ability for the 

program administrator to approve alternative approaches on an exception basis and with 

justification.  

 
Cost Effectiveness Protocols Should Consider Value Contribution for the Wholesale 
Power Market 

The Commission should consider and further explore and consider the value that 

demand resources can provide to the wholesale power market, a perspective broader than 

looking just at retail energy and capacity values.  Certainly, these additional value 

streams are tied to resolving seams issues between retail programs and pricing and the 

wholesale market and planning.  However, if addressed, other categories of value will 

contribute to the cost-effectiveness of demand resources.  For instance, value from 

demand resources could be derived from, amongst other possibilities: 
 

                                                 
9 KEMA-Xenergy Report at Section X.5 [Recommendations], Subsection X5.1 [Proposed Approaches by 
Accountant Type, Offering Options] at p. X-11. 
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· Sales of reliabilty services to the CAISO, in the form of ancilary services

and imbalance energy;

· Paricipation in the forward energy market;

· A reduction in transmission losses and congestion; and

· The deferral of investment in generation and transmission assets;

The Commission should consider in its workshop report a process to identify and

monetize such values streams and how they might be incorporated, at some point, into its

adopted cost-effectiveness protocols. -.- ,.

Conclusion

The CAISO looks forward to contributing to suitable outcomes that meet the

respective needs of demand resource providers, regulators and the grid operator.

Dated: July 27, 2007 Respectfully submitted,

CALIFORNIA INDEPENDENT SYSTEM
OPERATOR CORPORATION

Baldassaro "Bil" Di Capo, Esq., Counsel
. "

CALIFORNIA INDEPENDENT SYSTEM
OPERATOR CORPORATION
151 Blue Ravine Road
Folsom, CA 95630
(916) 608-7157
(916) 608-7222 (FAX)
bdicapo Cfcaiso.com
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DISCLAIMER

This report was prepared as the result of work sponsored by the
California Energy Commission. It does not necessarily represent the
views of the Energy Commission, its employees, or the State of
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employees, contractors and subcontractors make no warrant,
express or implied, and assume no legal liability for the information in
this report; nor does any party represent that the uses of the
information will not infringe upon privately owned rights. This report
has not been approved or disapproved by the California Energy
Commission nor has the California Energy Commission passed upon
the accuracy or adequacy of the information in this report.



R e p o r t  S u m m a r y 

P r o t o c o l  D e v e l o p m e n t  f o r  D em a n d  R e s p o n se  C a l cu l a t i o n 
The California Energy Commission has sponsored the development of a
standardized measurement and verification protocol for use in calculating
demand reductions by participants in Demand Response programs1.  The
protocol provides different methods to estimate the baseline electricity load
profile for different types of customer load, against which peak load reductions
can be calculated.  The baseline electricity load profile is estimated using
historical and current meter data, and represents the load that would be expected
to occur in the absence of a curtailment request. The protocol may be used for
price or emergency based programs that require customer-specific load
reduction estimates as a basis for determining payments or incentives.
Completion of the protocol is aimed at increasing small and medium-sized
customer participation in demand response programs by (1) reducing the barriers
related to inconsistency and confusion about how peak savings will be calculated
and (2) ensuring that only real and verifiable peak load reductions receive
payments.

The development of this standard peak savings protocol was based on interviews
with stakeholders in several different jurisdictions and states and statistical
testing of several alternative protocols for baseline load estimation.  The analysis
process used hourly load data from several hundred commercial and industrial
customers.  The study also proposes terminology for describing baseline
calculation methods.

This work is intended to provide the foundation for a revised protocol that may be
adopted as part of the International Performance Measurement and Verification
Protocol.  The IPMVP organization has participated in the development of this
report and recommendations. The goal of this report is to establish a clear
vocabulary for use in describing the methods used to estimate peak load
reductions delivered in response to emergency or price conditions for use in
future state or regional protocols. The report also offers guidelines on good
estimation practice and the pros and cons of alternative peak savings calculation
methods.

CRITERIA FOR SELECTING A GOOD BASELINE METHOD

Criteria that were balanced in developing a method to estimate baselines and
peak savings include:

• Simplicity, including ease of use, ease of understanding, and low costs
for participant and operator to calculate the baseline load profile and
resulting savings.

• Accuracy, including lack of bias (i.e., no systematic tendency to over- or
under-state reductions), appropriate handling of weather-sensitive
accounts, and verifiability

                                                       
1  This report was prepared by KEMA-Xenergy consulting for staff of the California
Energy Commission. Copies of the report can be downloaded from the Commission’s website at
www.energy.ca.gov/demandresponse.



• Minimization of the ability for customers  to game or inflate their baseline
load profile

• Predictability, or the ability for customers to know the baseline before
committing to a particular curtailment amount and event

• Consistency with other peak saving methods used by utilities and
independent system operators

As a result of the analysis of customer data sets, it was decided the protocol
should:

• allow for calculation options that recognize different customer and building
circumstances

• favor simple calculation methods if the potential accuracy gains of from
more complex methods appear to be slight

• indicate alternatives and trade-offs with respect to the selection criteria

Recommendations

Offering Options

Baseline calculation protocols used for demand response programs should allow
the program administrator to select the most appropriate method based on each
customer’s load type and operating practices.  One way to simplify the provision
of options is to establish a default calculation method for all programs or building
types and then allow certain deviations in the method for special types of
customer accounts.

The basis for the selection of a method should include the customer’s business
type, historical load patterns, and operating practices.  For example, a customer
who indicates a desire to be able to cancel a work shift in advance of the control
period should have access to a baseline calculation method that does not distort
the estimated baseline because of this practice.

At the same time, the program administrator should have some discretion to bar
customers from using a calculation approach that they appear to have
manipulated in the past.  Thus, if there is evidence that a particular customer
tends to inflate load after notification, beyond what would reasonably be
expected for pre-cooling, that customer might not be allowed to use a method
that includes an adjustment to the average load profile based on energy use in
pre-curtailment hours.

Practical Default and Alternative Baseline Calculation Methods

The baseline calculation method found to work best for a range of load types
consists of taking a simple average of the last 10 days of demand data, by hour
of the day, and then shifting the resulting profile up or down so that it matches
the average observed load for the period 1 to 2 hours prior to curtailment.  This
method can be recommended for both weather-sensitive and non-weather-



sensitive accounts, with both low and high variability, for summer and non-
summer curtailments.

If the default method is problematic either because of the potential for customer
gaming or because of a need to curtail more promptly, the next best alternative
depends on the weather sensitivity and energy use variability of the account.
The default and alternatives that performed reasonably well for different types of
accounts and seasons are indicated below.

Table 1
Methods for Estimating a Baseline Energy Use Profile

By Customer Account Type and Event-Specific Baseline
Season:

Weather Sensitivity:
Variability: Low High Low High Low High Low High

DEFAULT Baseline Profile : 10 day average baseline load 
profile (BLP) plus additive adjustment based on actual energy 
use for 1-2  hours prior to demand response signal. X X X X X X X X
ALTERNATIVES:

10 day average BLP plus additive adjustment based on actual 
load for three to four hours prior to demand response signal. X X X X
Weather model to construct  BLP based on actual average 
outside temps when DR signal sent; diagnostics model used to 
deternine if building loads are suffficiently weather sensitive to 
use this approach. X X X
Use only the highest five of the last 10 days to construct BLP, 
with scalar adjustment based on a Temperature-Humidity Index 
load model. X X X
Use only the highest five of the last 10 days to construct BLP, 
without any adjustment for control day. X
Use the highest 10 of the last 11 days to construct BLP without 
adjustment for control day conditions. X X X X

Baseline load proflie- The  kw demand levels for each hour of a 24 hour day averaged over the previous 10  non curtailment days

Demand response signal: Price or emergency signal sent to request reduced electric loads for a fixed time period

Additive adjustment:   The adjusted BLP  is calculated by adding a fixed amount A to the  10 day average BLP for each hour.

Scalar adjustment:   The adjusted BLP is calculated by multiplying the 10 day average DLP  for each hour by a fixed amount S.

Weather model:  Hourly load data from non-curtailed days is fit by a regression model using weather and calendar variables.  The BLP is the fitted model 
applied to the observed conditions during  and after a DR signal.

Summer Nonsummer
Weather-
Sensitive

Non-Weather-
Sensitive

Weather-
Sensitive

Non-Weather-
Sensitive
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X EXECUTIVE SUMMARY 

X.1 INTRODUCTION 

X.1.1 Background on this Project 

During the electricity crises of the last two years, a number of states and utilities within these 
states have developed programs to encourage customers to reduce their peak loads on short 
notice (under 2 to 24 hours) in exchange for some form of compensation.  Such demand response 
(DR) programs depend on a credible operational procedure for determining the magnitude of 
load reductions for each customer during each load reduction period.   
 
The use of inconsistent methods for calculating baselines and corresponding load reductions has 
caused both confusion and dissatisfaction among participating customers.  The lack of a standard 
measurement procedure may be reducing the number of customers willing to participate in DR 
programs, particularly in smaller- and medium-sized commercial customers in California.  

X.1.2 Objectives 

The objective of this work is to develop a standardized measurement and verification (M&V) 
protocol for use by building engineers, facility operators, or outside M&V experts to “measure” 
the load drops achieved at a premises.  Completion of this protocol is aimed at increasing 
participation in DR programs from small- and medium-sized customers by reducing the barriers 
related to inconsistency and confusion about baseline methods. 

X.1.3 Project Steps 

Steps in the project include: 

• Review of existing methods 

• Testing of alternative methods on data sets from various locations and customer types 

• Draft report on findings and recommendations, circulated for review and presented for 
discussion at a public workshop 

• Final report 

• Submission of the final recommendations to the International Performance Measurement 
and Verification Protocol (IPMVP) organization for adoption as part of the IPMVP. 

 
This is the final report on findings and recommendations.  Included are the review of existing 
methods and the results of tests on alternative methods.   
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X.1.4 The Role of the IPMVP 

The IPMVP organization has participated in the development of this report and 
recommendations.  The organization is responsible for the continued development and 
dissemination of standardized verification methods.  It is hoped that the involvement of the 
IPMVP at various stages of review and the anticipated adoption of the DR protocol as an IPMVP 
document will represent a broad base of support for the framework developed. 
 
There are direct parallels in the current demand response area to what was occurring in the world 
of M&V for energy-efficiency performance contracting eight years ago.  The core concept of the 
IPMVP document is that parties involved in contracts to reduce energy use should have a 
common language with which to structure and manage the settlement of those contracts.  The 
IPMVP was designed to allow parties flexibility in designing M&V procedures that make sense 
for each contact. 
 
As is true for the energy-efficiency IPMVP, the intent of this report is not to provide a 
prescriptive set of steps and rules.  Rather, the goal is to establish a clear vocabulary, and to offer 
guidelines on good practice and the pros and cons of alternative method specifications.  Toward 
the goal of developing consistent terminology, this document develops a taxonomy of different 
methods and attempts to provide clear definitions.  We anticipate that a discussion of definitions 
and distinctions will be an important part of the refinement of this document. 

X.1.5 The Role of Other Contributors 

This work would not have been possible without the contributions of several other organizations 
and individuals. 

• Method donors have shared details of methods they have developed and applied for 
quantifying demand reductions. 

• Data donors have provided interval load data from curtailed and noncurtailed customers 
for use in testing methods. 

• Reviewers who reviewed the major project deliverables. 
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X.2 REVIEW OF EXISTING METHODS 

X.2.1 The Demand Response Baseline 

The focus of this study was on calculations of demand response from whole-premise interval 
load data.  Demand response is calculated as the difference between the baseline and the actual 
metered load in each interval (Figure X-1).  The baseline is the estimate of what the load would 
have been in each interval in the absence of the curtailment.  Thus, the key question for the 
demand response calculation is how the baseline is determined. 
 

Figure X-1 
Example of Demand Response Calculation from Baseline and Actual Loads 

 

X.2.2 Desirable Features in a Demand Response Baseline Calculation Method 

Most of the goals developers described for the baseline were similar.  They were  

• to reflect load that would have been used absent the program,  

• ease of use for program participants,  
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• ease of use for program administrators, and  

• deterrence of gaming.   
 
Given the multiple objectives, all customer baseline developers understood that the baseline 
methodology they chose was a compromise.  Criteria that are balanced in developing a baseline 
include 

• Simplicity 

• Ease of use 

• Ease of understanding 

• Verifiability  

• Accuracy 

• Lack of bias (i.e., no systematic tendency to over- or under-state reductions) 

• Ability to handle weather-sensitive accounts fairly 

• Minimization of gaming 

• Ability to be known prior to customer’s commitment to a particular curtailment amount 
and event 

• Costs for participant and operator to implement 

• Consistency with other ISOs. 

X.2.3 Components of Whole-Premise Baseline Calculation Methods 

Baseline calculation methods based on whole-premise interval-metering data can be described in 
terms of three fundamental components: 

• Data selection criteria determine what days and time periods of data will be used in the 
baseline calculation.   

• The estimation method is a calculation procedure that determines the provisional 
baseline load at each interval for the curtailment day, using the data selected by the data 
selection criteria. 

• The adjustment method shifts or scales the provisional baseline to align it with known 
conditions of the curtailment day. 

Data Selection Criteria 

Common starting points for data selection include 

• Use of the last 10 to 20 uncurtailed business days 

• Use of a subset of the last 10 or 11 business days that had the highest load 
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• Use of a full season of data. 
 
Selection criteria include varying procedures for excluding days from the starting point and 
replacing excluded days, sometimes in an iterative process. 

Estimation Method 

Most estimation methods can be characterized as either an average or some form of weather-
based regression model. 

Adjustment Methods 

Common adjustment methods (used to adjust interval meter on the day of the curtailment) 
include: 

• Unadjusted 

• Additive 

• Scalar 

• Weather-based additive or scalar.   

X.2.4 Characterization of Existing Methods 

Existing baseline estimation methods are summarized in Figure X-1 in terms of the components 
discussed above. 
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Figure X-2 
Summary of Existing Baseline Estimation Methods

Initial Timeframe Final Selection

Excluded Days (other 
than weekends and 
previous program 

Control days)

Adjustment 
Hours, If 
Adjusted

PJM-Day Ahead 2002 WS/NWS,  
Self Gen, 
Cust. Spec.

Top 5 of 10, Optional 
adjustment to control-
day weather

Hourly 10 days, n-2 to n-
11

High 5 of 10 Low Output Days.  Interval Average h-1,h-2.

PJM Emergency None None Hourly Hour before Same None
ISO-NE 2001-2002 WS/NWS, 

Self Gen, 
Adjustment to control-
day load

Hourly 10 days, n-1 to n-
10

Same Extreme Output Days. Interval Average h-1,h-2.

NYISO-DADRP  2001 Self Gen Top 5 of 10 Hourly 10 days, n-2 to n-
11

High 5 of 10 Low Output Days.  Interval Average

NYISO-DADRP 2002 WS/NWS, 
Self Gen 

Top 5 of 10, Optional 
adjustment to control-
day load

Hourly 10 days, n-2 to n-
11

High 5 of 10 Low Output Days.  Interval Average h-3, h-4.

ERCOT-BUL 2002 WS/NWS Optional adjustment to 
control-day load

15 minute 10 days, n-1 to n-
10

Middle 8 None Interval Average h-1, h-2.

CAISO 2001#1 None None Hourly 10 days None None Interval Average
CAISO 2001#2 None None Hourly 11 days None None Interval Average
XENERGY WS/NWS Regression-based 

estimate, Adjustment 
to control-day load

Hourly Variable None None Regression-based h-1, h-2.

LBNL/Kinney WS/NWS Regression-based 
estimate

Hourly 10 days, n-1 to n-
10

None None Regression-based

Nexant WS/NWS Adjustment to control-
day load

15 minute 10 days None None Interval Average h-1

Utility A WS/NWS Adjustment to control-
day load

Hourly Previous Month None All Days that do not fit 
the match-day criteria. 

Interval Average one hour, 8am -
11am

Utility B None None Hourly 5 days None Customer-specificed 
anomalous loads

Interval Average

Utility C WS/NWS Regression-based 
estimate

Hourly Undefined 
minimum data 

i t

None None Regression-based

Utility D WS/NWS Regression-based 
estimate

Hourly Weekdays, June 
through September

None None Regression-based 5am - 10am

Utility E None Match based data 
selection

15 minute Undefined 10 Days with min. 
SSE compared to 
day n-1

None Interval Average All match-day 
hours.

Utility F WS/NWS, 
Cust. Spec.

Adjustment to control-
day load

Hourly 2-3 previous years None Anomalous loads Interval Average h-1, h-2.

CMTA Proposed 
OBMC

WS/NWS Adjustment to control-
day load

Hourly 10 days, n-1 to n-
10

None None Interval Average h-1 through h-4

* WS/NWS:  Different methods for weather-sensitive and nonweather-sensitive loads
    Self Gen:  Different methods for onsite generation

** Top 5 of 10:  Select 5 days with highest average load during the hours curtailed on the curtailment day

Data Selection
 Load Type 
Differences 
Addressed*

How Weather 
Sensitivity is 
Addressed**

Time Interval Estimation Method
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X.3 FINDINGS FROM METHOD TESTS 

Several combinations of data selection criteria, estimation method, and adjustment were tested 
on interval load data from curtailed and uncurtailed customer accounts across the country.  A 
total of 646 accounts were included in the tests.  For accounts that were not curtailed, baseline 
estimates were compared with actual load for each hour of an actual or simulated curtailment 
period.  For accounts that were curtailed, each candidate baseline estimate was compared with 
the estimate produced by the “best” method.   
 
Performance of each method was assessed in terms of both bias and overall error magnitude.  
Bias is the systematic tendency to over- or under-state the baseline and corresponding demand 
reduction.  Variability is how wide the swings are around the typical or expected value.  Overall 
error magnitude reflects both bias and variability.   
 
Key findings are indicated below.  These findings indicate the effects of various method features 
on bias and variability as measured in this study for the accounts and specific methods tested.  
These results offer general guidelines, but the performance of a particular method in a particular 
situation may be different. 

X.3.1 Adjustments 

• Additive adjustment to the load data from two hours before curtailment can often reduce 
the bias and variability of almost all methods, including weather models, for weather-
sensitive or non-weather-sensitive, high or low variability accounts.  Other types of 
adjustments can improve the performance of averages, but generally with higher bias and 
variability. 

• With this additive adjustment, simple averaging methods in most cases perform 
essentially as well as complex weather models, even for weather-sensitive accounts. 

• Without adjustment, most averages tend to understate the load impacts of a curtailment. 

• Additive adjustment to the last 2 hours before a curtailment can be problematic for 
several reasons: 

1 It opens the possibility of gaming by deliberately increasing load just before the 
curtailment period to boost the baseline. 

1 Legitimate pre-cooling in response to a curtailment notice or expectation will also 
erroneously increase the baseline. 

1 Conversely, an operation that achieves its curtailment target promptly upon 
notification and before the beginning of the required curtailment period will have a 
severely understated baseline. 
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X.3.2 Data Selection 

• Bias and variability of weather models tends to be reduced by the use of longer input data 
series, but not dramatically. 

• The decreased variability with longer input series is more noticeable for conditional 
weather models applied to non-weather-sensitive accounts, particularly high-variability 
accounts. 

• The different average methods performed similarly in terms of bias and variability, 
except for those that select a subset of days based on high load.   

• For summer loads, the High 5 of 10 average generally reduces the otherwise negative 
bias.  For summer loads using additive adjustment, the High 5 of 10 days gave the lowest 
bias measure of any of the averages, for both weather-sensitive and non-weather-sensitive 
accounts, and comparable variability.  The High 10 of 11 average method gave some bias 
reduction, but not as much.   

• For nonsummer loads, however, the High 5 of 10 average method inflates an already 
positive bias.  The other averages perform better and roughly comparably to each other, 
in terms of both bias and variability, for both weather-sensitive and non-weather-sensitive 
accounts.  The High 10 of 11 is somewhat better than the others in terms of the bias and 
variability measured in this study. 

X.3.3 Weather Modeling 

• For summer weather-sensitive accounts, weather models tend to perform somewhat better 
than averages, but the difference is not dramatic. 

• For summer non-weather-sensitive accounts, use of a “conditional” weather model does 
not increase bias or variability.  The conditional weather model automatically deletes 
weather terms if the statistical diagnostics based on the load data indicate these terms are 
inappropriate for a particular account.  Use of such diagnostics protects against retaining 
terms in the model that are not well determined and are likely not to be meaningful.  
Thus, if weather models are used, a single methodology can be applied to both weather-
sensitive and non-weather-sensitive accounts.   

• For nonsummer loads, weather models do not perform better than averages. 
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X.4 PROS AND CONS OF ALTERNATIVE APPROACHES 

Advantages and disadvantages of key method features in terms of the criteria indicated in 
Section X.2.2 are summarized in the table below.  This table is based on both qualitative 
considerations and the results of the performance tests. 
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Table X-1 
Advantages and Disadvantages of Key Baseline Method Features 

Based on Qualitative Considerations and Test Results 

 

Baseline Method Variant Pros Cons
Average Any Simple, easy to use and understand, 

low cost
Tends to understate baseline for weather-
sensitive loads, especially if unadjusted

High 5 of last 10 
days

Partial adjustment for weather-sensitive 
loads

Still tends to understate baseline for weather-
sensitive loads
Can allow windfall load reduction credit on cool 
days

Regression Any Provides baseline corresponding to 
particular weather conditions of 
curtailment day

More complex, harder to understand, higher 
cost

If observations don’t include conditions as 
extreme as the curtailment day, model estimate 
may be inaccurate
If account isn't weather-sensitive, may be less 
accurate than simpler methods

Full Season Adequate data and range of variation to 
yield accurate coefficients

Operating conditions from the period data are 
taken from may be different from curtailment 
day

Recent 10 days Operating conditions more likely to be 
similar to curtailment day

Model based on limited data may be inaccurate

Lag temperature/ 
degree-day

Tends to reduce bias for weather-
sensitive accounts

Tends to increase variability of baseline 
estimate.

Conditional Allows same general form and 
procedure to be used for weather-
sensitive and non-weather-sensitive 
accounts, without pre-screening.  
Doesn't add much error for non-weather-
sensitive accounts.

More complex.  May give less consistent results 
across events for an account, if weather terms 
are sometimes retained and sometimes not.

Adjustment to 
precurtailment hours

Any Simple, easy to use and understand, 
low cost

May be potential for gaming behavior during day-
of-curtailment adjustment period

Adjusts to weather and operating 
conditions of curtailment day

Appropriate pre-curtailment increase in load 
(e.g., pre-cooling) will result in overstated 
baseline

Limits potential for collecting windfall 
credits for planned shut-downs

Pre-curtailment decrease in load in response to 
curtailment request (e.g., long ramp-down, 
canceling a shift) will result in understated 
baseline

Additive May adjust well for load change that is 
constant throughout day (e.g., industrial 
processes)

May not be appropriate if load changes during 
curtailment period (ratio adjustment may be 
better suited)

Scalar May adjust well for load change that is 
function of exogenous factor throughout 
day (e.g., higher levels of occupancy)

May not be appropriate if the day-to-day load 
variation is constant over the day (additive 
adjustment may be better suited)

to last 2 hours 
before curtailment 
period

If load in these hours is unaffected by 
anticipated or initiated curtailment, 
provides best accuracy

If substantial curtailment is initiated in these 
hours, severely understates baselines

to 3rd and 4th hour 
before curtailment 
period

Less potential for understated baseline 
due to pre-curtailment-period demand 
response

More variability than adjustment to last 2 hours

Weather-Based Adjustment Any Explicitly takes into account weather 
conditions

Adjustment may not be known to customer until 
after curtailment period  (i.e., until after weather 
conditions are known for the day)

No opportunity for gaming as with 
adjustment to precurtailment hours

If no observations are available for extreme 
conditions, estimates used for adjustment may 
be outside range of model
Will badly predict load reductions if the buildings 
are dominated by internal loads
Less accurate than alternative adjustments or 
weather model for both weather-sensitive and 
non-weather-sensitive accounts
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X.5 RECOMMENDATIONS  

In developing our recommendations, we did not attempt to score each method or feature with 
respect to each of the desirable features indicated above, nor assign explicit weights to the 
criteria.  In general, our approach is  

• allow for options that recognize different circumstances 

• favor simplicity if the potential accuracy gains of greater complexity appear to be 
slight 

• indicate alternatives and trade-offs with respect to the criteria. 

X.5.1 Proposed Approaches by Account Type 

Offering Options 

A general recommendation is that baseline calculation protocols should provide for alternatives 
based on customer load characteristics and operating practices.  One way to simplify the 
provision of options is to establish a default method and allow certain deviations.   
 
The basis for the selection of a method should be not just the customer’s business type, but also 
the load patterns evident in the data as well as the customer’s description of operating practices.  
Thus, for example, a customer who indicates a desire to be able to cancel a shift in advance of 
the control period should have access to a baseline calculation method that is not distorted by this 
practice. 
 
At the same time, the program operator should have some discretion to bar customers from using 
an approach that they appear to have manipulated in the past.  Thus, if there is evidence that a 
particular customer tends to inflate the baseline load after notification, beyond what would 
reasonably be expected for pre-cooling, that customer might not be able to use a method that 
includes adjustment to the 2 pre-curtailment hours. 

A Practical Default Baseline Calculation Method 

A method that generally works well for a range of account types is the simple average of the last 
10 days, with additive adjustment to the load shape 2 hours prior to the curtailment period.  This 
method can be recommended for both weather-sensitive and non-weather-sensitive accounts, 
with both low and high variability, for summer and nonsummer curtailments. 
 
This method is not recommended for accounts that tend to curtail in advance of the required 
period in response to a curtailment notice.  It is also not recommended for situations where the 
potential for gaming is a strong concern, whether across the program or for particular customers. 
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Alternatives for Summer Weather-Sensitive Accounts 

For summer programs, practical alternatives for weather-sensitive accounts include the 
following: 

• Unadjusted weather models.  Longer input time periods to estimate the baseline load are 
preferable, particularly for high-variability loads. 

• The High 5 of 10 day average with Temperature-Humidity Index (THI) adjustment. 
 
Simpler methods with less desirable but potentially acceptable performance include: 

• Unadjusted averages, particularly the High 5 of 10. 

• Averages or weather models adjusted to the third and fourth hour before curtailment. 

Alternatives for Summer Non-Weather-Sensitive Accounts 

For non-weather-sensitive summer loads, the unadjusted High 10 of 11 average performs nearly 
as well as the recommended default, particularly for low-variability loads.  Next best is the 
simple average of the last 10 days with additive adjustment to the third and fourth hours before 
curtailment. 
  
For low-variability loads, unadjusted weather models, with weather terms retained only if 
indicated by the data, actually perform slightly better than the recommended default.  However, 
unlike the case for weather-sensitive accounts, these models perform better if based on shorter 
periods of data.  For high-variability loads, unadjusted weather models tend to be worse than the 
unadjusted High 10 of 11 average.   

Alternatives for Nonsummer Accounts 

For nonsummer loads, modeling is more challenging and there are fewer alternatives.  For 
weather-sensitive accounts, the High 5 of 10 day average with THI adjustment can be used.  For 
low-variability loads, the unadjusted High 5 of 10 day appears to perform slightly better, but for 
high-variability loads it is worse. 
 
For non-weather-sensitive nonsummer loads, the unadjusted High 10 of 11 appears to be the best 
alternative.  Any of the averages with additive adjustment to the third and fourth hour before 
curtailment do not perform as well. 

Summary of Recommended Methods and Alternatives 

The recommended methods and alternatives for different account types are summarized in the 
table below. 
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Table X-2 
Recommended Methods and Alternatives 

  

Season
Weather 
Sensitivity Variability Estimation

Data 
Selection Adjustment Estimation Data Selection Adjustment

Summer
Weather-
Sensitive Low Average last 10 add 1-2

weather 
models any none
Average High 5 THI

Summer
Weather-
Sensitive High Average last 10 add 1-2

weather 
models longer is better none
Average High 5 of 10 THI

Summer
Non-Weather-
Sensitive Low Average last 10 add 1-2

weather 
models shorter is better none
Average High 10 of 11 none
Average last 10 add 3-4

Summer
Non-Weather-
Sensitive High Average last 10 add 1-2 Average High 10 of 11 none

Average last 10 add 3-4

Nonsummer 
Weather-
Sensitive Low Average last 10 add 1-2 Average High 5 of 10 none

Nonsummer 
Weather-
Sensitive High Average last 10 add 1-2 Average High 5 of 10 THI

Nonsummer 
Weather-
Sensitive Low Average last 10 add 1-2 Average High 10 of 11 none

Average last 10 add 3-4

Nonsummer 
Weather-
Sensitive High Average last 10 add 1-2 Average High 10 of 11 none

Average last 10 add 3-4

Recommended Default Recommended Alternatives
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X.6 AREAS FOR FUTURE DEVELOPMENT 

Reviewers of a draft of this report offered a number of valuable suggestions.  Many of these 
suggestions have been incorporated in the final version.  Others, while of considerable merit, 
were beyond the scope of what could be accomplished in this study. 
 
Most of the suggestions that could not be addressed were in the following categories: 

1. Test additional methods 

2. Examine results by finer categories of customer type  

3. Provide more explicit rules and clear-cut bases for choosing among alternatives, 
including methods for identifying gaming. 

 
These issues will be explored in further work by the IPMVP Technical Committee.  The 
committee will be building on this study to develop a DR baseline protocol that can be adopted 
as part of the IPMVP document.  The Protocol itself will include the establishment of consistent 
terminology, guidance on appropriate methods for different situations, and rationale for that 
guidance.  The technical analysis that forms a major portion of this report will not itself be part 
of the Protocol, but will be referenced as part of the rationale for the guidance. 
 
As part of the further work by the IPMVP, some additional methods may be tested.  Candidates 
for testing include: 

• ASHRAE load forecasting models 

• variable degree-day models 

• use of a single hour or two hours prior to curtailment as a flat baseline. 

The additional testing may also examine results by finer segments.  Customer type is not known 
for most of the data sets examined in this study.  However, customers can be classified by size, 
and possibly by other patterns in the load data. 
 
An IPMVP Protocol by its nature will offer options and guidance rather than being prescriptive.  
However, this Protocol can serve as the basis for establishing specific rules and procedures 
within a jurisdiction, and provide a common language for understanding these procedures.  
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1 INTRODUCTION 

1.1 PROJECT BACKGROUND 

During the electricity crises of the last two years, a number of states and utilities within these 
states have developed programs to encourage customers to reduce their peak loads on short 
notice (under 2 to 24 hours) in exchange for some form of compensation.  Compensation may be 
a specified incentive payment per kW reduced, or other benefits.  Many programs involve a 
contracted magnitude demand reduction, with incentives paid if the contracted load drop is 
delivered.  Some involve a penalty if the contracted reduction is not delivered. 
 
Such demand response (DR) programs depend on a credible operational procedure for 
determining the magnitude of load reductions.  Different regulatory jurisdictions, utilities, and 
system operators have ended up defining different methods of calculating both the load 
curtailments achieved by participating accounts and the “baseline” load shapes that should be 
used to calculate the level of load reduction realized.  
 
The use of inconsistent methods for calculating baselines and corresponding load reductions has 
caused both confusion and dissatisfaction among participating customers.  This situation may 
serve as a barrier to entry to new customers who want to participate in demand response 
programs but don’t want to take the time to master the details of estimating and confirming load 
reductions at their premises.  More importantly, the lack of a standard measurement procedure 
may be reducing the number of customers willing to participate in DR programs, particularly in 
smaller and medium sized commercial customers in California.  
 
The objective of this work is to develop a standardized measurement and verification (M&V) 
protocol for use by building engineers, facility operators or outside M&V experts to “measure” 
the load drops achieved at a premise.  Completion of this protocol is aimed at increasing 
participation in DR programs from small and medium sized customers by reducing the barriers 
related to inconsistency and confusion about baseline methods. 
 
The intent of the protocol is to facilitate program participation and operations.  As a result, the 
protocol development must consider the practicality of implementation and potential effects on 
program and customer operations as well as the technical performance of candidate methods.  To 
this end, this work begins with a review of the issues that drive the development of demand 
response baseline methods, and the rationale behind several existing methods.  We then provide 
the technical performance assessment for a wide range of methods.  The recommendations 
developed attempt to strike a balance between technical accuracy and practical implications for 
program operators and participants. 
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1.2 PROJECT AND REPORT ORGANIZATION 

1.2.1 Steps in the Project  

Project tasks include: 

• Review of existing methods 

• Selection of alternative methods for testing 

• Testing of alternative methods on data sets from various locations and customer types 

• Draft report and workshop on findings and recommendations 

• Compilation of comments on the draft 

• Final report 

• Submission of the final recommendations to the International Performance Measurement 
and Verification Protocol (IPMVP) organization for adoption as part of the IPMVP. 

 
This is the final report on findings and recommendations.  Included are the review of existing 
methods and the results of tests on alternative methods.   

1.2.2 Organization of the Report 

The next section provides background on demand response calculation methods.  Included here 
are discussions of the purposes of the calculation, and the rationale for different method features.  
We provide a taxonomy of demand response calculation methods to provide a consistent 
vocabulary for discussing these features.   
 
In Section 3 we discuss the issues and concerns that have been at the forefront in the 
development of demand response calculation methods in different parts of the country.  We 
describe the specific approaches that have been adopted to address these concerns, and 
summarize advantages and disadvantages of key method features.  Appendix A provides further 
detail on individual methods.   
 
Section 4 describes the analysis conducted to test alternative method performance.  Results of the 
analysis are presented in Section 5.  Recommendations based on the review and analysis are 
offered in Section 6.  A glossary of terms is given in Appendix C. 

1.2.3 The Role of the IPMVP 

The International Performance Measurement and Verification Protocol (IPMVP) organization 
has participated in the development of this report and recommendations.  The “IPMVP “ refers to 
a document as well as an organization. The organization is responsible for the continued 
development of the concept of standardized verification methods, distribution of the document, 
and providing guidance and training on the appropriate use of the document. The latest document 
(Concepts and Options for Determining Energy and Water Savings) discusses issues pertaining 
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to quantifying the long-term results of energy efficiency projects. The core concept of the 
IPVMP is that parties involved in contracts to reduce energy use should have a common 
language with which to structure and manage the settlement of those contracts. The IPMVP was 
designed to allow parties flexibility in designing monitoring and verification (M&V) procedures 
that make sense for each contact. 
 
There are direct parallels in the current demand response area to what was occurring in the world 
of M&V for energy efficiency performance contracting eight years ago.  Development of 
protocols for DR calculation methods with the goal that they may be adopted as another IPMVP 
document means several things.  First, two individuals representing the IPMVP organization are 
actively involved in this project.  They bring to the project the lessons and discipline of the 
earlier IPMVP development.  Second, the approach to demand response measurement protocols 
is similar to that of the energy efficiency IPMVP.  That is, the intent is not to provide a 
prescriptive set of steps and rules.  Rather, the goal is to establish a clear vocabulary, and to offer 
guidelines on good practice and the pros and cons of alternative method specifications.  Finally, 
the involvement of the IPMVP organization at various stages of review and the anticipated 
adoption of the DR protocol as an IPMVP document will represent a broad base of support for 
the framework developed. 

Toward the goal of developing consistent terminology, this document develops a taxonomy of 
different methods, and attempts to provide clear definitions.  A glossary of terms and acronyms 
is included as Appendix C.  We anticipate that a discussion of definitions and distinctions will be 
an important part of the refinement of this document. 

1.2.4 The Role of Other Contributors 

Several other organizations have contributed to this work in one of several forms: 

• Method donors have shared details of methods they have developed and applied for 
quantifying demand reductions. 

• Data donors have provided interval load data from curtailed and noncurtailed customers 
for use in testing methods. 

• Reviewers have (agreed to) review the major project deliverables. 
 
The contributors at the different levels are listed below.   
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Table 1-1 
Contributors 

*† Brian Soth, Director, Retail Energy Products, and Meghan Jonee-Guinn, Operations Manager, 
Demand Buy Back Program Portland General Electric Company. 

*† Carl Raish, Administrator, Load Research, Tampa Electric. 
* Tennessee Valley Authority. 
*† Suzanne Galster, Load Research Manager, and Brett Johnson, Load Research 

Contractor/Analyst, Xcel Energy. 
*† Mary Ann Piette, Staff Scientist, and Satkartar Kinney, Senior Research Associate, Lawrence 

Berkeley National Laboratory. 
John Avina, Director of Operations, Abraxas Energy Consulting 
Stephen Fernands, President, Customized Energy Solutions 
Rich Hackner, GDS Associates/Wisconsin Focus on Energy program 
Srinivas Katipamula, Ph.D, Senior Research Scientist, Pacific Northwest National Laboratory 
Peter Livingston, PE, CEM, Program Manager, San Diego Regional Energy Office 
Gregory Urbin and Mary Straub, Baltimore Gas and Electric Company 
Glen Perez, Compliance Audits Manager, California ISO 
Linda Low, Mark Martinez, David Reed, and Mark Wallenrod, Southern California Edison 
San Diego Gas & Electric Company 
Steven Schiller, P.E., Senior Vice President, Nexant, Inc. 
Jay Zarnikau, Ph.D., Frontier Associates 
Additional data and method donors, names withheld by request. 
 
* Data Donor 
† Method Donor  
 
 



 

2 BACKGROUND

 

 2–1  

2 BACKGROUND 

This section provides background on demand response calculation methods.  We begin by 
discussing the different purposes that a demand response calculation may serve.  We then present 
a “taxonomy” of demand response calculation methods.  We describe broad classes of 
approaches to determining individual customers’ demand reductions during particular control 
events.  We then present a classification scheme for methods based on analysis of whole-premise 
load data.  These methods are the focus of this study. 

2.1 PURPOSES OF DEMAND RESPONSE CALCULATION METHODS  

Programs that pay customers according to the amount of demand reduced during each 
curtailment period require an agreed procedure for calculating this demand response.  The 
objective of this study is to assess alternative methods for this application.   
 
Figure 2–1 illustrates the demand response calculation.  The actual load is the customer’s 
metered load for each hour of the day.  This load shows a precipitous drop in response to a 
curtailment call.  The “baseline” is an estimate of what the customer’s load would have been 
across the day in the absence of the curtailment call.  This baseline matches the actual load 
reasonably well prior to the curtailment.  The difference between the baseline and the actual load 
is the calculated demand response for each hour of the curtailment period.  Thus, the load 
reduction credited to the customer depends on the method for calculating the baseline estimate of 
what would have occurred in the absence of the program. 
 
There are load management programs that do not require explicit calculation of each customer’s 
load reduction as a basis for financial settlement between the customer and the utility or program 
operator.  Utility programs based on firm load agreements or stipulated default loads, described 
below, are primary examples.  For these programs, customer load reductions are often calculated 
for purposes of overall program evaluation and rate setting.  Several of the methods reviewed 
here were developed for this purpose, rather than as a formal basis for financial settlement for 
program participation. 
 
Demand response calculation methods differ also in the parameters targeted by the calculation.  
For programs that make payments based on calculated load reduction in each curtailment period, 
the key parameter is the difference between the actual load (kW) and load that would have 
occurred absent the program kW for each time increment in the curtailment period.  In some 
cases, the minimum, maximum, or average of these differences over the curtailment period may 
be of interest.  For evaluation, rate setting, and sometimes for determination of capacity 
requirements in capacity markets, the demand reduction at the time of the system peak is 
important.  Evaluation and payments may also require estimates of total energy reduction (kWh) 
over control periods as well as demand reduction in each interval. 
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Figure 2-1 
Example of Demand Response Calculation from Baseline and Actual Loads 

Many of the newer demand response programs offered by Independent System Operators (ISOs) 
provide monetary incentives to end-users commensurate with actual load reductions.  This is a 
shift from traditional utility load management programs that attract participation with lower 
tariffs in return for the potential of a certain number of service curtailments.  Demand reduction 
for the ISO programs generally involves computation of the kW reduction for each time 
increment of the control period.  In some cases (e.g., the New York ISO) there are separate 
protocols for measuring load (kW) demand response as compared to energy (kWh) response, as 
the demand reduction is bid into two separate markets.  The development of a baseline protocol 
is then at least a partial function of its purpose.   
 
Our review of existing methods and their development focuses primarily on methods developed 
for ISO or utility programs that attempt to measure the whole-premise demand reduction for each 
time increment of the control period.  Deviations from this context are explicitly noted.   
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2.2 TAXONOMY OF DEMAND RESPONSE CALCULATION METHODS 

2.2.1 Classes of Approach 

Crediting customers for demand response or load reduction during a given period requires a 
means of determining the amount of load reduced.  There are three primary classes of approach 
to the demand response calculation.   
 

A. Stipulated Default Load.  The most common example of a stipulated approach is a 
“firm load” arrangement.  A participant reduces load to a pre-determined “firm” load 
level upon notice.  Failure to do so may invoke penalties, expose the participant to market 
prices, or requires the participant to pay for the energy at a higher than usual price.  
Determination of payments due to and from the customer depends only on confirmation 
that the customer’s load did not exceed the firm level during the control period.  The 
credit given to the customer for reducing to the firm level on notice is negotiated in 
advance, based on an estimate of the typical magnitude of load reduction.   
 
Another version of a stipulated default allows the customer to specify and pay for a base 
load level.  The customer then pays for load above that level or receives credit for load 
below that level at prices related to market conditions.  This approach provides a variant 
of a real-time pricing program. 
 

B. End-Use Metering of Self-Generation.  The demand response is measured as the 
metered onsite generation.  There may be no attempt to account for what level of onsite 
generation might otherwise have occurred, or to assess whether load at the site has 
increased in ways that offset the additional generation. 
 

C. Whole Premise.  The demand response is measured as the difference between the 
metered load at each interval and an estimate of the load that would have occurred absent 
the demand response program.  This estimate of load in the absence of the program is 
referred to by most programs and in this document as the “baseline” or “customer 
baseline load” (CBL).  The baseline is determined from analysis of whole-premise 
interval metering data before and after the beginning of the control period.  The demand 
response can be a combination of demand reduction and/or increased use of onsite 
generation.  In either case the net load is metered at the whole premise utility or meter 
service provider revenue meter. 
 

Use of stipulated approaches and metering of self-generation are fairly straightforward and have 
not been highly contentious.  The focus of this review is on the Whole Premise approach, and in 
particular on baseline calculation methods.   
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2.2.2 Components of Whole-Premise Baseline Calculation Methods 

Baseline calculation methods based on whole-premise interval metering data can be described in 
terms of three fundamental components. 

• A set of data selection criteria,  

• An estimation method, and sometimes 

• An adjustment method.   
 

These three components are explained below.  Details on different procedures that have been 
used for each of them are then described. 

Data Selection Criteria  

The data selection criteria determine what data will be used in the baseline calculation.  What 
data selection rules are appropriate depends in part on the estimation method.  The selection 
criteria address both what should be included and what should be excluded.  Inclusion is 
frequently determined by time period (e.g., a certain number of previous days).  The other 
common approach is to select days that are similar to the curtailment day in terms of weather 
variables and/or system load.  Exclusions are less varied across different calculation methods.  
All baseline calculation methods examined exclude hours in which there was a curtailment in 
effect.  Other exclusion criteria are targeted to identifying abnormal load unrelated to curtailment 
events.  These exclusions vary with particular methods.  

Basic Estimation Method 

Once the data selection criteria have determined the appropriate data for a baseline calculation, 
the estimation method delivers an estimate of the load curve for the hours in question.  If the 
selection criteria limit the data to a single load observation for each hour, there is no estimation 
method required.  When the selection criteria return more than one possible load for each hour, 
the estimation method combines these data.   
 
The two general types of estimation methods used are averaging and regression models.  
Averaging means that for each hour of the control period, the baseline is calculated as the 
average over all selected days of the load at that hour.   

Figure 2–2 below illustrates a baseline calculated as the average of the past 10 uncurtailed 
business days.  This is the baseline method used for the Figure 2-1 above.  For the illustration 
below, a customer that was not curtailed is shown, so that the calculated baseline can be 
compared with the actual load.  The figure shows the hourly loads for each of the 10 days, and 
the average.  Also shown in the figure is the actual load curve on the curtailment day.  The loads 
on the recent uncurtailed days are lower than the loads on the curtailment day.  This is a common 
occurrence when the whole premise consumption, as well as the possibility of curtailment, is 
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weather sensitive (e.g., curtailment is much more likely on a very hot day).  As a result, the 
average understates the curtailment-day load. 

 

Figure 2-2 
Illustration of Baseline Calculated by Averaging  

 
A simple regression model using 10 days of data is illustrated in Figure 2–3.  In this model, the 
load Ldh at each hour h of a given day d is modeled as a function of the daily cooling degree-days 
CDDd: 
 

Ldh = αh + γhCDDd. 
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Figure 2-3 
Illustration of an Hourly Regression Model 

That is, for each hour h of the curtailment period, a separate line is fit to the loads at that hour.   
 
Figure 2–3 shows the actual load observations for the 10 days, for each hour h in the curtailment 
period.  Also shown are the fitted lines for each hour.  Days used in the regression all had daily 
temperature below 70oF.  At right side of the plot, at a higher temperature than on any of the 
days used to fit the regression model, are the actual loads on the curtailment day.   Despite the 
scatter in the data, the model does reasonably well at estimating the loads for this day.  As in the 
previous figure, the illustration is for a day when curtailment did not occur, so that the actual 
load can be compared with the model. 
 
The baseline estimated by this regression model for the curtailment day is shown in Figure 2–4.  
Also shown in Figure 2–4 are baselines calculated using data from the past 20 uncurtailed days, 
and using a full season of data.  In this example, the models based on different lengths of input 
data give fairly similar results. 
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Figure 2-4 
Illustration of Baselines Calculated by Regression Models 

Using Varying Data Selection Criteria 

 
Adjustment Method 

Many baseline calculation methods include an adjustment method to take advantage of data 
from the day of a program implementation.  That is, a “provisional” baseline is adjusted to the 
actual load data of that day.  Actual load from some hour or hours immediately preceding1 
curtailment is compared to the provisional baseline created by the estimation method.  The 
provisional baseline is then adjusted to line up with the actual load for those last non-curtailment 
hours.  Adjustment methods vary both with respect to which hours are used for the adjustment 
and the type of adjustment, typically additive or multiplicative.  Further details and specific 
examples are described below.  

                                                 
1 ERCOT considered employing an adjustment of load both preceding and following the curtailment call. 
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2.2.3 Further Details on Components of Baseline Calculation Approaches 

Common Combinations of Data Selection Criteria and Estimation Methods 

Baseline methods can be defined by any combination of data selection criteria, estimation 
method, and adjustment method.  However, certain data selection criteria and estimation 
methods tend to be used together, because one is designed to compensate for limitations of the 
other.  The common combinations are the following: 

• Single point data selection criteria – No estimation method required:  These methods 
involve the selection of a single day or single load levels as the baseline.  As a result, no 
estimation method is required to combine data from multiple days.  One example is a flat 
baseline defined by the load in the hour before curtailment, as in the PJM emergency 
program.  Another is the selection of a single “best-fit” match day based on similarity of 
temperature, system peak load, or other criteria; in this case, the baseline for each hour is 
the load on the match day at that hour.  Alternatively, the previous day’s hourly loads 
may be taken as the baseline loads. 

• Multiple day selection criteria – Estimation method required for aggregation:  
Multiple days are selected from the recent days.  Possible selection criteria are described 
below.  When multiple days are selected, some means is needed to aggregate the load 
data from these days into a baseline.  Averaging by hour of the day is the most common 
method of aggregation.  Regression models are also used. 

• Seasonal data selection criteria – Regression approaches:  When a full season of data 
are used as the basis for calculating the baseline, regression models rather than simple 
averages are typically used.  Regression techniques allow for the explicit incorporation of 
additional variables other than loads on uncontrolled days.  These methods provide 
estimates for a particular set of conditions, without requiring that the input data be 
screened to match those conditions.  When a full season of data are used, regression 
rather than averaging is typically used, to develop an estimate for conditions similar to 
the curtailment day.  However, regression methods can be used with shorter than seasonal 
data selection.   

Estimation by Averaging  

The most common approach is a combination of multiple day selection criteria and a simple 
average for each hour of the curtailment.  Averaging has the advantage of simplicity but depends 
on the assumption that the selected data approximate what the curtailment day load would have 
been without the curtailment.  If the selected days are expected to be similar to what the 
curtailment day would have been, the average based on a larger pool of days will be a more 
accurate baseline.  On the other hand, increasing the number of days by including days that are 
less likely to be like what the curtailment day would have been can make the average less 
accurate as a baseline.   
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Key factors that can affect how similar the days in the baseline are to the curtailment day include 
day type, weather, and structural/operational changes at the facility.  Day type is a classification 
of days according to the calendar, such as by day of the week (at a minimum, weekday or 
weekend), holiday, and season or month.  Facility operations tend to vary with day type.  
Weather affects heating and cooling loads.  Structural or operational changes refer to either 
changes in the equipment or the building itself, or to long-term changes in operations such as 
changing shifts or schedules. 

Data Selection Criteria Used with Averaging 

Data selection criteria used with averaging generally limit data so as to limit the potential for 
distortions in the baseline due to such factors.  Most baseline calculation methods used recently 
by the ISOs limit data to the 10 or 11 preceding business days, excluding days when curtailments 
occurred.  This data restriction removes weekend days and holidays and puts a limit on the 
ongoing effect of large-scale weather and structural changes.  For non-weather-sensitive 
accounts with a consistent load curve within any two-week period this approach is suitable.  
Where weather and structural changes are clearly factors within a two-week span, these data 
selection criteria are limited in their ability to control for these factors in the averages.  
 
Weather is a particularly critical issue when averaging is used and load is weather-sensitive.  To 
the extent that the previous two weeks’ weather is not similar to the curtailment day weather, an 
estimate based on averages will tend to understate baseline loads and corresponding demand 
reductions.  The reason is that curtailment events are most likely to be called during periods of 
high load, which tend to correspond to extreme weather.  Recent uncontrolled days will usually 
correspond to less extreme weather and loads.  Furthermore, the exclusion of recent days with 
program implementation assures that representative load data will stay out of the sample 
regardless of whether curtailment took place at a particular site.  Thus, estimated baselines for 
weather-sensitive accounts are likely to be systematically understated for the periods when the 
baseline calculation is most likely to be needed.   
 
The understatement of load due to weather sensitivity can be addressed both indirectly and 
directly within the averaging estimation method.  An indirect adjustment is to select for the 
baseline calculation only the recent days with the highest loads.  An example is the “5 out of 10” 
rule used by the NYISO and PJM.  From the previous 10 uncontrolled business days, the five 
days with the greatest curtailment period total load are selected.  This approach reduces the 
problem of understatement of the baseline, but does not eliminate it.  Even the highest 5 of the 
last 10 uncontrolled days will typically have lower loads than would have occurred on a day 
when curtailment was needed.  That is, days when curtailments are called are likely to be more 
extreme than the days used to construct the baseline, when no curtailment was called.  On the 
other hand, if demand response is invoked on a day when the weather is not extreme, or is 
extreme only in a small part of the region covered by the curtailment call, any method that 
selects high load days for defining the baseline would have an upward bias on such days. 
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Examples of alternative selection rules are illustrated in Figure 2-5 for a particular account on a 
curtailment day.  This example is for an account that was not curtailed, so that the baseline 
estimates can be compared with the customer’s actual metered load.  This actual load is the 
heavy curve in the picture.  The lowest curve is the baseline calculated as the simple average of 
the load at each hour, over the previous 10 uncurtailed business days.  The dotted line is for the 
average of the highest 5 of the last 10 days.  Between these two, just slightly above the simple 
average of the last 10, is the average of the highest 10 of the last 11 days.    
 

Figure 2-5 
Examples of Alternative Selection Rules 

A more direct approach to selecting days for the baseline that are more similar to the curtailed 
day is to account for weather in the data selection process.  Match day criteria, whether load or 
temperature based, can be used to select days with similar load characteristics.  Clearly this 
approach only works to the extent that such comparison days exist.  Match day approaches 
consequently require a sufficiently large pool of days to select from that comparable days are 
likely to be found.  Match day criteria will be ineffective during the first heat wave of a summer 
unless either previous summer load is available for consideration, or the baseline calculation can 
be deferred until more summer data are available.  However, any extension of the overall time 
span from which data can be drawn increases the possibility of structural changes affecting the 
accuracy of the baseline.  This is less of a problem if current season data are used than if prior 
season data are used.  However, for programs that involve financial settlement for individual 
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control events, parties are typically reluctant to wait until the end of the season to determine 
curtailment amounts.  

Estimation by Regression 

The other common estimation methods are regression-based approaches.  An advantage of a 
regression estimation method is the explicit modeling of factors that cannot be accounted for in 
an averaging approach.   
 
In simple terms, a regression model determines the relationship between some observable factors 
and load.  Using this relationship, load can be estimated for any scenario based on the levels of 
those factors for that scenario. 
 
Factors affecting a customer’s load at a given hour include: 

• Operating schedules across days and hours 

• Activity levels, such as production levels at a manufacturing plant, or occupancy levels in 
a hotel or hospital 

• Weather conditions that drive cooling and/or heating loads. 
 
Load models tend to include terms for day type, hour of the day, and weather.  While activity 
levels are important drivers of load, it is difficult to obtain measures of activity that are objective 
and meaningful for a specific customer.  In a customized model, activity measures appropriate to 
a particular customer can be incorporated. 
 
Regression approaches also have disadvantages.  Regression estimation is a more complicated 
technique than simple averaging.  Ease of calculation and transparency are both important 
considerations for baseline protocols.  Regression approaches also can require more data.  The 
concerns with respect to longer data spans and structural load changes remain.  That is, obtaining 
good estimates of the effects of the regression variables requires that data be available over a 
range of conditions; however, expanding the range of input days increases the chance of 
including days when the relationships being estimated in the model were different than on the 
curtailed day.  Regression approaches operate on the assumption that the relationship between, 
say, cooling degree-days and load is the same on curtailment days as on the noncurtailment days 
that contributed to the regression estimates.   
 
Finally, if the regression model includes factors that do not influence the particular customer’s 
load, the model may simply add noise compared to a simpler average.  In particular, using 
weather models for non-weather-sensitive accounts may do more harm than good. 

Data Selection Criteria for Regression Models 

When regression models are used, data selection criteria are typically fairly simple.  The key 
question is how far back, and possibly forward, to go in time.  If the regression model is offered 
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as an alternative to a default averaging method, the regression may use the same data selection 
rules as for the average.   
 
Regressions based on the past 10 uncurtailed days have the advantage of using operating 
conditions likely to be similar, apart from weather, to those of the curtailment day.  The 
disadvantage is that the short series means that the model is estimated less accurately.  This is 
particularly a problem if the range of weather variation is slight, which makes it hard to estimate 
the effects of changes in weather.  Moreover, with more limited data, the model diagnostics will 
be less reliable indicators of whether the model form itself is appropriate to this customer.  If the 
model is not appropriate, using the fitted model to extrapolate to more extreme weather 
conditions, which is the typical application in this context, can introduce large errors.  In 
addition, a smaller number of input days increases the potential effect of an occasional 
anomalous day. 
 
Regressions based on a full season of data will tend to be more accurate.  However, most 
program operators and participants do not want to wait until the end of the season to determine 
curtailment credits.  Models based on the previous season can be used.  This approach introduces 
errors if the operations have changed in the interim. 

Adjustment Methods 

Adjustment approaches in use include: 

• None (unadjusted). 

• Additive adjustment.  Adjusts a provisional baseline load curve.  A constant is added to 
the provisional baseline load for each hour of the curtailment period.  For simple additive 
adjustment, the constant is calculated as the difference between the actual load and the 
provisional baseline load for some period prior to the curtailment.   

• Scalar adjustment.  Adjusts a provisional baseline load curve.  The provisional baseline 
load for each hour of the curtailment period is multiplied by a fixed scalar.  For simple 
scalar adjustment, the scalar multiplier is calculated as the ratio of the actual load to the 
provisional baseline load for some period prior to the curtailment.   

• Weather-based adjustment.  A model of load as a function of some weather parameter is 
fit to historical load data.  The fitted model is used to estimate load (a) for the weather 
conditions of the days included in the provisional baseline, and (b) for the weather 
conditions of the curtailment day.  The difference or ratio of these two estimates is 
calculated, and applied to the provisional baseline as an additive or scalar adjustment. 

Additive and Scalar Adjustments 

The additive and ratio or scalar adjustments are illustrated in Figure 2–6.  The unadjusted 
baseline is the average of the last 10 business days.  The additive adjustment shifts this 
unadjusted baseline up to match the load in the two hour before curtailment.  The scalar 
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adjustment scales the unadjusted baseline to match the load in the same two hours.  Both these 
adjustments bring the unadjusted baseline closer to the actual load during the curtailment period. 
 

Figure 2-6 
Additive and Scalar Adjustments 

to the Two Hours Prior to Curtailment 

Figure 2–7 illustrates the same type of adjustments, but adjusting to the third and fourth hours 
before curtailment.  This period is typically prior to the time customers would have been notified 
of the curtailment.   
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Figure 2-7 
Additive and Scalar Adjustments 

to the Third and Fourth Hours Prior to Curtailment 

 
Reasons to prefer adjustment to earlier hours include the following: 

1. There is less opportunity for the customer to manipulate the baseline by artificially 
boosting load after receiving a curtailment call but before the beginning of the 
curtailment period.   

2. There is less possibility that the baseline will be set too low because the customer began 
curtailment promptly after notification, prior to the start of the formal curtailment 
requirement.  In these cases, the adjustment to the two hours prior to the curtailment 
period would shift the baseline down to match already curtailed load. 

 
On the other hand, if neither of these reasons is a concern, the third and fourth hour prior to 
curtailment may not be as accurate a basis for adjusting the load as the closer first and second 
hours. 

PJM Weather-Based Adjustment 

A weather-based adjustment is used by PJM.  This method first fits a regression model to load as 
a function of the temperature-humidity index (THI).  The time period used to fit this regression is 
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longer than the limited window used for the provisional baseline.  The fitted model is not used 
directly to construct the baseline.  Instead, the model is used to estimate the load for two 
conditions, one the average THI for the peak hours of the curtailment day, the other the average 
THI for the peak hours on the baseline days.  The ratio of the modeled curtailment-day load to 
the modeled baseline-day load is then used as a multiplicative adjustment to the provisional 
baseline based on a simple average.   
 
The method is illustrated in Figure 2–8.  The two horizontal lines spanning the peak hours 
indicate the THI model estimate of load for the curtailment day and for the baseline days.  The 
bottom load curve is the provisional baseline, the simple average of the last 10 uncurtailed 
business days.  The curtailment-day THI model estimate is around the average value of the actual 
load across the peak hours on that day, indicating that the THI model itself is doing a reasonable 
job of matching actual loads.  Likewise, the baseline-period THI model estimate is around the 
average value across the peak hours of the provisional baseline.  The final, adjusted baseline is 
the provisional baseline scaled by the ratio of the two THI model estimates.  The THI-adjusted 
baseline is much closer to the actual load than is the unadjusted baseline. 
 

Figure 2-8 
Illustration of PJM’s THI-model Adjustment 
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Use of a longer time period as input to the THI regression avoids some potential sources of 
modeling error.  Use of the model to develop an adjustment factor mitigates systematic errors 
that may exist in the fitted model.  Applying the adjustment factor to a baseline developed from 
recent data limits problems related to operational changes over the time span of the data.  The 
same type of approach could be used with a different weather model, or with an additive rather 
than scalar adjustment. 

Effects of Adjustment 

Adjustments may be made to any of the base estimation methods.  Adjustment factors take 
advantage of very recent data to overcome potential limitations of any provisional baseline 
calculation.  Adjustment factors have the obvious advantage of utilizing data from immediately 
before (and in some cases also after) the curtailment period.   
 
Adjustment methods retain the daily shape produced by the estimation method, but translate it to 
align with known conditions of the curtailment day.  An additive adjustment shifts the curve up 
or down by a constant amount.  A scalar or ratio adjustment scales the shape by a constant 
amount.     
 
Any such adjustment approach assumes the adjustment hours’ load is a fair indicator of that 
day’s load in the absence of curtailment.  If the adjustment hours’ load is abnormally high, the 
adjustment and thus the baseline will be high for the whole day.  This high load could be the 
result of the perfectly sound policy of pre-cooling with the intent of shedding load during a 
curtailment period.  It could also be a result of a strategic decision to increase the adjustment and 
thus increase the credited reduction (i.e., game the baseline).  In fact, these two approaches 
would be indistinguishable to the outside observer and yet both would unfairly overstate the 
baseline.   

Conversely, industrial processes frequently take time to shut down, or schedule operations in 
blocks of hours.  Thus, if a curtailment is required to start at a particular time, it may be 
necessary to begin the curtailment substantially before that time.  As a result, adjustment to the 
hours just prior to the official start of the curtailment period can produce an unfairly low 
baseline. 
 
Finally, the hours used for calculating the adjustment amounts often occur during the daily 
ramping up period (e.g., 8–10 AM).  There is potential for more variation during this period of 
increasing load.  This effect can result in wide swings if adjustments are used. 
 
Any of these issues can change an adjustment designed to refine a provisional baseline into an 
additional source of error.  The volatility of adjustment period load, for any of the above reasons, 
is a fundamental concern with any adjustment approach. 
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Additive Versus Scalar Adjustments 

The two different adjustment methods, additive and ratio, assume a different relationship 
between adjustment period loads and curtailment period loads.  The additive adjustment 
implicitly assumes that the observed difference between curtailment-day and baseline load at the 
adjustment hours reflects a difference in operations that would be the same in magnitude across 
all hours of the day.  An example might be a constant-load process that is on or off for the day.   
 
For weather-sensitive accounts, the difference between the provisional baseline and the 
curtailment day would generally not be expected to be the same in each hour.  Nonetheless, 
several programs use additive adjustments as a rough correction for weather sensitivity.   
 
Some practitioners believe that a ratio or scalar adjustment provides a better correction for 
weather sensitivity.  This adjustment assumes that the difference between the curtailment-day 
load and the provisional baseline reflects factors that will vary in magnitude roughly in 
proportion to the hourly provisional baseline.  If load is high in the early morning because the 
day is hot, the increased load will be even greater later in the day.  There can also be cases where 
fluctuations in non-weather-sensitive accounts are better described by scaling a basic load curve 
than by an additive shift.  An additional advantage of scaling compared to an additive adjustment 
is that scaling avoids the possibility of calculating negative loads for the adjusted baseline. 
 
One way to view a regression approach is that it attempts to find an appropriate mix between 
adjustments for fixed loads and adjustments for variable loads.  Even so, some methods use a 
mix of regression and additive or scalar adjustment to the curtailment day.  One example is the 
PJM weather-based adjustment, described above.  This method uses a weather model as the basis 
for adjusting a simple average provisional baseline.  Conversely, a provisional baseline based on 
a weather model can be combined with a simple adjustment method, such as the additive 
adjustment to align with load in the two hours before curtailment. 

Methods for Non-Weather-Sensitive Accounts 

While much of the attention in baseline method development has been given to addressing 
weather sensitivity, many of the customers participating in demand response programs may have 
little weather sensitivity.  Indeed, many of the simpler methods that do not account for weather 
variation were developed in the context of programs with large, non-weather-sensitive accounts.  
For such loads, methods designed to mitigate weather-related biases can simply increase random 
errors.   
 
Many programs address this issue by making weather-adjustment procedures optional.  
Customers enrolling in the program choose the form of the baseline calculation that will be used.  
For instance, PJM has three choices: (1) for non-weather-sensitive accounts, (2) for weather-
sensitive accounts, and (3) the possibility of a custom baseline (that must be approved). 
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3 EXISTING METHODS 

In this section, a number of existing demand response calculation methods are reviewed.  This 
review was based on several sources: 

• public documentation of baseline methods, in particular from ISO and utility websites 

• papers shared by analysts who have developed methods, primarily from utilities 

• interviews with analysts and stakeholders involved with the method development process 
at ISOs and utilities. 

 
We begin by describing the process of developing the methods, and the key issues that were 
considered by the parties involved.  We then describe a number of specific methods, and 
summarize their advantages and disadvantages. 

3.1 DEVELOPING DEMAND RESPONSE CALCULATION METHODS 

The demand reduction is calculated as the difference between the metered load and an estimated 
“baseline” in each increment.  Thus, the central question is how the baseline is determined.  As 
noted, the accuracy of the calculated baseline as an estimate of what the customer’s load would 
have been in the absence of the program is only one of several criteria for defining the baseline 
calculation methods.  Other criteria relate to the practicality of the method for operators and 
customers, and its potential effect on decision-making. 
 
To better understand these other criteria, XENERGY interviewed 11 key participants in the 
development of the baseline methodology for five independent system operators (ISOs) and three 
utility programs.  Notes of working groups, program and tariff filings reports, and program 
documentation also informed analysis of the baseline method development.  We have also drawn 
on conference presentations and informal conversations with demand response program analysts 
and stakeholders in the baseline method development process. 

3.1.1 Key Issues  

Key observations on the baseline development process based on this review include the 
following: 

1. The baselines for ISO programs tend to be created by working groups exclusively 
focused on demand response programs, while small teams or individuals created the 
baselines of utility programs.   

2. Baselines used by utilities for program evaluation are more likely to be calculated from a 
more sophisticated model. 
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3. The ISO baselines evolved between the 2001 and 2002 program years. 

4. ISOs considered and used different portions of baseline methodologies of other ISOs, but 
each ISO had its own variant.   

5. A baseline approved by another ISO was a significant seal of approval when considering 
various methodologies. 

6. The ISO New England (ISO-NE) baseline development process was much less 
interactive than the other ISOs.   

7. All parties understood that there were imperfections and tradeoffs in their baselines.   

8. NYISO (New York Independent System Operator) and PJM (Pennsylvania Jersey 
Maryland Interconnection) working groups were many times contentious and political.  
The baseline was just one of many issues in implementing their programs.  

9. Trade-offs were made between simple baselines, which were perceived to be less likely 
to capture the “real” load reductions absent the demand response program, and the more 
custom baselines for individual sites.   

10. Gaming (manipulating load to create a more advantageous baseline) and/or free-ridership 
(obtaining incentive payments for load reductions that would have taken place without 
the program) were a major concern in baseline development.  

11. There are sharp differences on the issue of demand response and shut-downs.  Should all 
day / long-term shut-downs be compensated?  Most of the baselines will not compensate 
for multiple-day shut-downs. 

12. In some cases (the 2001 California ISO Discretionary Load Curtailment Program, and the 
2001 and 2002 PJM programs) the managing organization allowed the participant to 
propose an alternate measurement program that would be reviewed and approved by the 
ISO.  For the California ISO (CA ISO), this allowed for other options such as engineering 
analysis, operational or test data, use of loggers versus interval metering, etc. 

13. While there have been many discussions of the implications of choosing different types 
of baselines, there has been little statistical justification of choosing a particular baseline.  
They are all works in progress.  

 
These observations substantially mirror the experiences of developing the energy efficiency 
IPMVP.  This activity involves highly technical situations and requires trained professionals for 
some of the engineering and statistical calculations.  At the same time, establishment of a savings 
calculation method is primarily a contractual undertaking that seeks to apportion risk and provide 
fair rewards.  Thus, an important first step is to create a framework that any sensible person 
could understand.  Details and refinements can be added in time.  Minimizing the number of 
different variations of reasonable approaches can improve the attractiveness of programs and 
increase participation levels. 
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3.1.2 The Process of Developing the Methods 

From a process point of view there is generally a sharp differentiation between the utility and 
ISO development of baselines for the purposes of measuring the impacts of demand response 
programs.  For the ISO programs, the purpose of the baseline is to determine payments to 
participating customers for individual curtailment events.  For traditional utility programs, 
payments to customers are often not tied to explicit calculations of load reductions.   
 
Even where new utility programs are designed to create market-based mechanisms for demand 
response, the utility is generally able to develop its baseline approach largely at its own 
discretion.  Their program designs are subject to regulatory review, but are generally not the 
subject of wide public debate. 
 
By contrast, the ISO, which acts as an impartial market operator, tends to develop baselines 
through a participatory stakeholder process.  The ISO baselines generally have been created via 
committee, where many parties give their input.  The baseline is only one component in the 
design of a demand-response a program.  These programs must be approved by vote.  One 
respondent noted that simplicity in explaining the baseline methodology to the voting members 
was an important criterion.   
 
In addition at the ISO level, demand response programs are looked at warily from entrenched 
market participants who may lose revenue or be assessed program costs.  Counterbalancing this 
resistance is pressure from the Federal Energy Regulatory Commission (FERC), and state Public 
Utility Commissions (PUCs) to make economic demand response an important integrated part of 
the market.   

The implementation of the PJM economic load response program has been particularly 
contentious.  Numerous comments and protests have been filed at the FERC for the proposed 
2002 program (Docket #ER02-1326).  The baseline methodology, and even the use of a baseline 
as a program component, has been called into question.  Specifically in regards to the baseline, 
PJM has had to defend the use of the five highest days out of ten methodology and the weather-
sensitivity adjustment.  These method elements are discussed in Section 4. 

3.1.3 Desirable Features in a Baseline Calculation Method 

Most of the goals developers described for the baseline were similar.  They were  

• to reflect the estimated level of load (kW) that would have occurred in the absence of the 
program,  

• ease of use for program participants,  

• ease of use for program administrators, and  

• deterrence of gaming.   
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Given the multiple objectives, all baseline developers understood that the baseline methodology 
they chose was a compromise.  Development of the ISO’s baselines were further complicated by 
the political realities of the approval process.  None of the respondents believes their method is 
the universal best way to calculate the baseline.  In practice, the baseline methodology has been 
driven by the comparative importance of the objectives of the demand response program, the 
wholesale environment, the structure of the group choosing the baseline, and financial 
considerations.  The financial impact includes cost to implement (e.g., need for sub-metering) 
and assessment of program costs (e.g., who is financially responsible for incentive payments).   
 
In program documentation, criteria for the baseline choice were not explicit, with an exception of 
the development of the Electric Reliability Council of Texas (ERCOT) baseline.  Criteria 
reported by interview respondents generally included: 

• Simplicity 

• Ease of use 

• Ease of understanding 

• Verifiability  

• Accuracy 

• Lack of bias (i.e., no systematic tendency to over- or under-state reductions) 

• Ability to handle weather-sensitive accounts fairly 

• Minimization of gaming 

• Ability to be known prior to customer’s commitment to a particular curtailment amount 
and event 

• Costs for participant and operator to implement 

• Consistency with other ISOs.1 
 
While not necessarily mentioned explicitly, simplicity, ease of use, and ease of understanding are 
all related to a desire to minimize the burden on participants and program operators.  Burden 
means costs, as well as related time and nuisance factors. 
  
Accuracy has two aspects.  One is lack of bias.  Bias is a systematic tendency to over- or under-
state the baseline and the corresponding demand reduction.  The second aspect of accuracy is 
variability.  A method may be close to unbiased, that is, to be close to correct on average, yet 
have a high variance, meaning it tends to have large errors in either direction.  Methods that have 
high variance are unreliable, and add risk to program participation and operations.   
 

                                                 
1 Indeed, PJM cites consistency with NYISO program as a positive program attribute in a filing to the FERC.  For 
example, PJM adopted a Customer Baseline Load (“CBL”) calculation methodology that is very similar to the one 
used in the New York program and has thus standardized the measurement of load response.  Response of PJM 
Interconnection L.L.C. To Protests.  Docket ER02-1326 April 22, 2002.   
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Handling weather-sensitive accounts fairly is a question of both limiting bias and limiting 
variance related to weather-sensitivity.  At the same time, methods introduced to improve 
baselines for weather-sensitive accounts should not increase errors for non-weather-sensitive 
accounts. 
 
Gaming issues and the value of knowing the baseline in advance are discussed below. 
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3.2 CONTENTIOUS ISSUES IN BASELINE DEVELOPMENT 

As noted, there are a number of desirable features in baseline methods.  Attempting to balance 
competing objectives has been a challenge to the groups that have developed the rules for 
different areas.  Following is a discussion of some of the most contentious issues. 

3.2.1 Data Selection and Weather Adjustment 

Two of the most contentious issues for the baseline has been the justification of the days used to 
calculate the baseline and the use of a weather-sensitive adjustment.  These issues are related, in 
that the selection of days is used in part to address weather sensitivity.  Both PJM and the 
NYISO have used a “high 5 of 10” method, which selects the 5 days with the highest loads from 
the past 10 business days.  The use of a particular window of days such as the highest 5 of 10 is 
justified explicitly by PJM in its filing. 
 

By eliminating the five lowest usage days, PJM creates a baseline that reflects 
load conditions that most approximate those conditions when load reductions are 
likely to occur — i.e., when it is hot and consumption is high.  Under cool 
conditions (i.e., low usage days), participants are not likely to reduce load; 
therefore, to include the low usage days in the calculation would create a baseline 
that is not representative of the participant’s load absent a load reduction.  
Further, contrary to Mirant, the baseline methodology should include a weather-
sensitivity adjustment, which will serve to either raise or lower a customer’s 
calculated baseline according to weather fluctuations, eliminating the possibility 
that utilization of the highest five days prior to a relatively cool day will result in 
over-estimation of the customer’s actual load. 

 
The 5 highest out of 10 day methodology was debated at PJM and the NYISO.  An alternative 
methodology of the lowest 5 days out of last 10 was proposed by Mirant at the PJM working 
group level (see http://www.pjm.com/committees/user_group/dsrwg/meeting/ 
20020225_meeting_materials.html).  Mirant contended that this method would be much more 
likely to deter gaming and reimbursement for load reduction not actually delivered.  While this is 
probably correct, the methodology was not endorsed at the working group level as other 
priorities prevailed. 
 
The “high 10 of 11,” the average of the highest 10 of the last 11 uncurtailed business days, was 
employed by the California ISO for its 2001 Demand Relief Program.  The adoption of this 
methodology was relatively uncontroversial according to a California ISO representative.  In 
2000 the California ISO had a smaller program that used the average of all 10 of the last 10 days 
for the baseline.  This methodology was exactly the same as used by the major utilities for their 
(similar) programs, and was easily adopted for the 2000 program.  In the design of the 2001 
Demand Relief Program, the California ISO got input from various stakeholders and reached a 
consensus to use the previous 11-business days and drop out 1 day that was the lowest demand. 
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The New York ISO methodology evolved from 2001 to 2002.  In 2001 there was the implicit 
assumption used that the use of the high 5 of 10 methodology was an approximate weather-
sensitivity adjustment.  According to interviewees, this proved to be insufficient.  Accordingly, 
the New York ISO looked for ways to improve their baseline for weather sensitive accounts for 
the 2002 baseline.  To this end they included an adjustment similar to that used by the ISO New 
England (ISO-NE).   
 
While most ISOs now include an adjustment as a way of addressing weather-sensitive accounts, 
the specifics vary.  The ISO-NE baseline uses an additive adjustment to the two hours prior to 
curtailment, as described in Section 2.  That is, a constant amount is added to the initial baseline 
load in each time increment, so that the adjusted baseline matches the metered load for the 
average of the two hour period prior to the curtailment period.  The NYISO, ERCOT, and PJM 
use a scalar adjustment.  That is, the initial baseline load in each interval is scaled by a constant 
factor.  The PJM adjustment, as described in Section 2, does not align the baseline with the 
observed load at a previous hour; instead, the adjustment scales the provisional baseline 
according to the relationship between the curtailment day and the baseline as indicated by a 
weather model. 
 
There has been little hard evidence offered to justify either the additive or the ratio adjustment 
process.  These adjustment procedures are described further in Section 5, and their performance 
examined. 
 
The utility programs use more sophisticated and more opaque, but possibly more accurate 
methods to calculate baselines.  The Cinergy method is the prime example of this type of 
methodology.  It is econometrically sophisticated (e.g., uses state space and Kalman filtering to 
estimate mean daily load in the first of two stages of baseline computation), and is proprietary.  
The Cinergy method almost certainly would be rejected as too complicated for an ISO method.  
The ISOs, because of their process (e.g. consensus or vote at working group and then approval 
votes at higher levels) were constrained to relatively simple, straightforward, methods that are 
(relatively) easy to understand, and replicate.   

3.2.2 Gaming and Free Ridership  

Establishing rules to limit opportunities for “gaming” or “free ridership” has been a frequent 
concern in baseline method development.  Gaming means manipulating loads deliberately to 
inflate the baseline artificially and obtain excess incentive payments.  Free ridership means 
obtaining payments for actions that would have been taken anyway without the demand response 
program.  Many data selection rules have been established to limit gaming and free rider 
opportunities.  Some special situations are worth noting.   
 
One situation of particular concern is plant shut-down.  Other concerns relate to the potential for 
demand reductions to be credited when none has taken place.  Sometimes procedures designed to 
reduce systematic over- or under-statement in one situation can generate an opposite potential 
error in another.  
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Shut-Downs 

A good deal of discussion in the creation of baselines has been the appropriate way to handle 
temporary complete or partial closure of customers sites resulting in drastic reductions in load 
(also known as “shut-downs”).  For an industrial plant that shuts down for two weeks over the 
summer, there have been debates over whether the plant should be able to claim compensation 
for that load reduction.  Many argue that if the plant was going to shut down regardless of a 
demand response program, and then obtains “windfall” payments from the demand response 
program, this is a case of free ridership.   That is, payments that were intended to provide 
incentives to change customer behavior are being made to a customer whose behavior is the 
same as it would have been without the program. 
 
One way the shutdown problem is addressed is by using a baseline with a scalar adjustment to 
the hours just before curtailment, as described in Section 2.  With this adjustment, zero usage 
during the pre-curtailment period results in a baseline of zero during the curtailment period.  
Thus, there is no opportunity to collect windfall payments as a free rider in the demand response 
program for the shut-down.   
 
On the other hand, shut-downs may be initiated, at least in part, because of program incentives.  
Screening out the largest responses may take away an appropriate mechanism to signal such 
behavior. 

Minimum Bids to Limit Free Riding on Weather or Shut-Downs 

For some economic bidding programs (e.g., New York and PJM) only bids with a minimum 
price are accepted (e.g., $50–$75/MWh).  This rule inhibits participants from bidding demand 
reduction that may be based only on weather effects.   
 
For example, if the baseline is an average with the high 5 of 10 data selection rule, the baseline 
would tend to overstate expected load on a cool day for a weather-sensitive account.  The 
customer could therefore bid a “reduction,” and count on receiving credit for it, without actually 
doing anything to reduce load compared to normal operations.  
 
Employing a minimum bid to inhibit free riding on weather implicitly assumes that high prices 
are strongly correlated with extreme weather conditions.  If the minimum bid price is $75/MWh, 
and if the price of energy (generally) goes above $75/MWh only on hot days, then it is 
impossible to get a “free ride on weather” on cool days.  That is, the customer could bid 
$75/MWh on cool days, but the bid (generally) would not be accepted because the clearing price 
would be below that level.  
 
In the absence of a day-of adjustment, the minimum price bid would also deter free riding on 
shut-downs.  For example, if a plant were to be shut down for a week, it would be easy to bid a 
low price into an economic program for the week and know with near certainty that the load 
reduction bid would be accepted.  The minimum bid price would preclude the acceptance of such 
bid for “normal” days. 
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Of course, picking an appropriate minimum bid price is very important.  If the market generally 
has prices higher than the minimum bid (e.g., $75/MWh in the California ISO during early 
2001), then free ridership potential would be high.  Conversely, if the market minimum price is 
set too high, there will be few if any opportunities for demand response participation, and little 
incentive to invest in demand response systems and technology. 

Manipulating Baseline Loads 

Gaming, that is altering behavior to artificially inflate a baseline, was also a major concern for 
many developers of baselines.  A number of programs (e.g., ISO-NE, PJM, NYISO) screen out 
large changes in load in the creation of the baseline.  For example, the ISO-NE 2002 program 
excludes days with four or more consecutive hours that are less than 75 percent or greater than 
125 percent the average of a provisional baseline.  This means that if a customer sees a heat 
wave coming, maneuvers of using additional energy to increase their baseline will be restricted. 

3.2.3 Advance Customer Knowledge of the Baseline 

Another factor considered was the customer’s ability to know its baseline prior to committing to 
a load reduction, particularly for bidding programs.  Knowing the baseline prior to commitment 
reduces customer risk.  To meet a program commitment the customer has to reduce total load to 
the computed baseline level less the amount of the load reduction bid.  If the baseline is not 
determined until after the load reduction commitment is made a risk-averse customer will 
commit less load reduction than they can deliver in order to ensure that they can deliver their full 
load-reduction commitment.  Generally, customers will not know their baseline prior to load 
reduction commitment when the baseline includes a day-of curtailment adjustment(s).  If a 
weather adjustment is used, then it is likely that the customer will not know their baseline until 
after the day (curtailment period) is over as the adjustment will be based on the day (curtailment 
period) weather conditions.  
 
If the baseline is not determined until after the curtailment, the customer can’t know until after 
the curtailment whether they will be credited with enough load reduction to fulfill their bid 
commitment.  As many programs have penalties for non-performance, bidders will tend to be 
conservative in their bids. 
 
Not knowing the baseline in advance also increases the cost of participation in these programs, as 
the bidders must forecast what they believe their baselines will be prior to bidding.  That is if 
baseline is based on weather, then the customer will have to procure a weather forecast, and 
forecast a baseline in order to determine how much load they should actually reduce in order to 
meet their load reduction commitment.   
 
On the other hand, knowing the baseline in advance could lead to gaming.  For days when the 
baseline seems to be understated (e.g., cool days after a heat wave), customers could confidently 
bid load reduction, with the expectation that they will not have to alter their operations at all to 
be credited with the full load reduction.   
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Advance customer knowledge was a major issue in the development of the NYISO baseline.  For 
this ISO’s day-ahead bidding program the baseline is based on days at least two days prior to the 
event, or one day prior to the bid.  This has the dual effect of  

1. allowing the customer to know at the time of the bid decision the baseline that will 
determine the customer’s incentive, and  

2. making it more difficult to game the baseline.   
 
For example, in the New York ISO day-ahead bidding program, a bid for Wednesday load 
reduction is made on Tuesday.  Possible days in the baseline begin with Monday and work into 
the past.  Thus, a participant cannot blatantly increase load on Tuesday to boost its baseline.  
This procedure does not preclude increasing load in the previous days to increase the baseline, 
but the uncertainty of the market-clearing price makes such behavior risky for participants 
contemplating premeditated gaming.   
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3.3 CHARACTERIZATION OF DIFFERENT BASELINES 

A categorization of baseline calculation methods reviewed is provided in Table 3-1.  More detail 
on these protocols is provided in Appendix A.  A brief discussion of the key features of the 
methods presented in the table follows. 
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Table 3-1 
Summary Baseline Protocol Matrix 

Initial Timeframe Final Selection

Excluded Days (other 
than weekends and 
previous program 

Control days)

Adjustment 
Hours, If 
Adjusted

PJM-Day Ahead 2002 WS/NWS,  
Self Gen, 
Cust. Spec.

Top 5 of 10, Optional 
adjustment to control-
day weather

Hourly 10 days, n-2 to n-
11

High 5 of 10 Low Output Days.  Interval Average h-1,h-2.

PJM Emergency None None Hourly Hour before Same None
ISO-NE 2001-2002 WS/NWS, 

Self Gen, 
Adjustment to control-
day load

Hourly 10 days, n-1 to n-
10

Same Extreme Output Days. Interval Average h-1,h-2.

NYISO-DADRP  2001 Self Gen Top 5 of 10 Hourly 10 days, n-2 to n-
11

High 5 of 10 Low Output Days.  Interval Average

NYISO-DADRP 2002 WS/NWS, 
Self Gen 

Top 5 of 10, Optional 
adjustment to control-
day load

Hourly 10 days, n-2 to n-
11

High 5 of 10 Low Output Days.  Interval Average h-3, h-4.

ERCOT-BUL 2002 WS/NWS Optional adjustment to 
control-day load

15 minute 10 days, n-1 to n-
10

Middle 8 None Interval Average h-1, h-2.

CAISO 2001#1 None None Hourly 10 days None None Interval Average
CAISO 2001#2 None None Hourly 11 days None None Interval Average
XENERGY WS/NWS Regression-based 

estimate, Adjustment 
to control-day load

Hourly Variable None None Regression-based h-1, h-2.

LBNL/Kinney WS/NWS Regression-based 
estimate

Hourly 10 days, n-1 to n-
10

None None Regression-based

Nexant WS/NWS Adjustment to control-
day load

15 minute 10 days None None Interval Average h-1

Utility A WS/NWS Adjustment to control-
day load

Hourly Previous Month None All Days that do not fit 
the match-day criteria. 

Interval Average one hour, 8am -
11am

Utility B None None Hourly 5 days None Customer-specific 
anomalous loads

Interval Average

Utility C WS/NWS Regression-based 
estimate

Hourly Undefined 
minimum data 

i t

None None Regression-based

Utility D WS/NWS Regression-based 
estimate

Hourly Weekdays, June 
through September

None None Regression-based 5am - 10am

Utility E None Match based data 
selection

15 minute Undefined 10 Days with min. 
SSE compared to 
day n-1

None Interval Average All match-day 
hours.

Utility F WS/NWS, 
Cust. Spec.

Adjustment to control-
day load

Hourly 2-3 previous years None Anomalous loads Interval Average h-1, h-2.

CMTA Proposed 
OBMC

WS/NWS Adjustment to control-
day load

Hourly 10 days, n-1 to n-
10

None None Interval Average h-1 through h-4

* WS/NWS:  Different methods for weather-sensitive and nonweather-sensitive loads
    Self Gen:  Different methods for onsite generation

** Top 5 of 10:  Select 5 days with highest average load during the hours curtailed on the curtailment day

Data Selection
 Load Type 
Differences 
Addressed*

How Weather 
Sensitivity is 
Addressed**

Time Interval Estimation Method
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3.3.1 Purpose of the Demand Response Calculation 

The methods reviewed for ISO programs have all been used as the basis for payments to 
participants for particular curtailment-day reductions.  Many of the other methods reviewed were 
developed as proposals or custom approaches for use in the ISO programs.  Most of the utility 
methods reviewed were developed for program evaluation rather than as a basis for payments.   

3.3.2 Addressing Weather-Sensitive Accounts 

Many of the procedures reviewed allow different calculation methods for weather-sensitive and 
non-weather-sensitive accounts.  Methods used to address weather sensitivity include regression 
models with weather terms, additive and scalar adjustments to curtailment-day load before 
curtailment, data restriction to days with higher loads, and match days based on load or weather 
match criteria. 

3.3.3 Time Increment 

Most of the methods are defined for hourly load data.  A few use 15-minute data.  The same 
methods could be used with whatever time increment is required for settlement. 

3.3.4 Data Selection Criteria 

Most of the methods that use a version of averaging, with or without adjustment, use 10 or 11 
noncurtailment business days prior to the curtailment day as the basis for the baseline 
calculation.  Restriction to the 5 days with highest average load out of these 10 and exclusion of 
extreme high or low load days are common screens.  Rules for which days may be included, how 
far back in time to go to replace excluded days, and the sequence for screening days out and 
replacing them vary widely across programs and are often complex.  Details are provided in 
Appendix A. 
 
Methods that rely on regression or match days often use a full season or even multiple years of 
data in the regression.  A few regression methods, developed as alternative to ISO averaging 
methods, rely on the same 10 days as required for the average. 

3.3.5 Estimation Method 

All the methods reviewed can be characterized as some form of averaging or regression, 
sometimes with adjustments.  The one exception is the PJM emergency program, which uses the 
single hour before control as the baseline for the entire curtailment period.  Thus, there is no 
“estimation” required other than selecting this hour’s load. 
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3.3.6 Adjustments 

Most of the adjustments to curtailment-day conditions match to the load one to two hours before 
curtailment.  Additive and scalar adjustments were roughly equally common. 
 

3.4 PROS AND CONS OF ALTERNATIVE APPROACHES 

No baseline methodology is perfect.  Thus implicit in the choice of any baseline methodology are 
tradeoffs.  The table below summarizes some of the most prominent pros and cons of various 
baseline methodology components. 
 

Table 3-2 
Pros and Cons of Key Baseline Methods and Combinations 

 Baseline Method Variant Pros Cons
Average Any Simple, easy to use and understand, 

low cost
Tends to understate baseline for weather-
sensitive loads.

High 5 of last 10 
days

Partial adjustment for weather-sensitive 
loads

Still tends to understate baseline for weather-
sensitive loads
Can allow windfall load reduction credit on cool 
days

Regression Any Provides baseline corresponding to 
particular weather conditions of 
curtailment day

More complex, harder to understand, higher 
cost

If observations don’t include conditions as 
extreme as the curtailment day, model estimate 
may be inaccurate
If account isn't weather-sensitive, may be less 
accurate than simpler methods

Full Season Adequate data and range of variation to 
yield accurate coefficients

Operating conditions from the period data are 
taken from may be different from curtailment 
day

Recent 10 days Operating conditions more likely to be 
similar to curtailment day

Model based on limited data may be inaccurate

Adjustment to 
precurtailment hours

Any
Simple, easy to use and understand, low 

May be potential for gaming behavior during day-
of-curtailment adjustment period

Adjusts to weather and operating 
conditions of curtailment day

Appropriate pre-curtailment increase in load 
(e.g., pre-cooling) will result in overstated 
baseline

Limits potential for collecting windfall 
credits for planned shut-downs

 Pre-curtailment decrease in load in response to 
curtailment request (e.g., long ramp-down, 
canceling a shift) will result in understated 
baseline

Additive May adjust well for load change that is 
constant throughout day (e.g., industrial 
processes)

May not be appropriate if load changes during 
curtailment period (ratio adjustment may be 
better suited)

Scalar May adjust well for load change that is 
function of exogenous factor throughout 
day (e.g., higher levels of occupancy)

May not be appropriate if the day-to-day load 
variation is constant over the day (additive 
adjustment may be better suited)

Weather-Based Adjustment Any Explicitly takes into account weather 
conditions

Adjustment may not be known to customer until 
after curtailment period  (i.e., until after weather 
conditions are known for the day)
If no observations are available for extreme 
conditions, estimates used for adjustment may 
be outside range of model
Will badly predict load reductions if the buildings 
are dominated by internal loads
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4 TESTING APPROACH 

A major element of this project was to test several alternative baseline methods on several data 
sets from different locations.  Interval load data were provided for customers who have 
participated in some type of demand response or controllable rates program.  In addition, for 
most locations load data were also provided for a group of customers of similar size who were 
not participants in such a program.  Performance measures for different baseline methods were 
developed by analysis of both curtailed and uncurtailed accounts. 
 
In this section, we describe  

• the baseline calculation methods selected for testing 

• the time periods studied for both controlled and uncontrolled accounts 

• the statistics calculated as measures of method performance. 

4.1 BASELINE CALCULATION METHODS TESTED 

The taxonomy of existing methods presented in Section 3 classified methods based on three 
elements: 

• data selection criteria 

• estimation method 

• adjustment method. 
 
We tested various combinations of these elements, rather than testing only those combinations 
currently being used.  Some of the selection criteria in use for specific methods are complex, 
with an iterative process of screening days out, then going back further in time to replace the 
eliminated days.  For purposes of the tests, we simplified some of these screening rules.  We do 
not believe these simplifications substantially alter the performance characteristics of the 
methods.  
 
It was not practical to test all possible combinations of candidate selection criteria, estimation, 
and adjustment methods.  We did try to test each component in combination with enough 
variations in the other components to get a good sense of the effect of each.  In addition, we 
made sure to include the combinations that corresponded most closely to key methods currently 
in use.  In particular, the methods tested include those in use by the ISOs in California, New 
York, New England, and PJM, except for some details on data selection criteria. 
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4.1.1 Data Selection Criteria 

Initial Selection 

The initial selection of days for the ISO programs all involve something like the last 2 weeks of 
business days.  Methods used by utilities for program evaluation tend to involve data for a full 
season.  Variations we considered are the following: 

• previous 10 business days beginning on d0-1 (California and New England ISOs) 

• previous 10 business days beginning on d0-2 

• highest 10 of the last 11 business days, beginning d0-1 

• highest 5 of the last 10 business days, beginning d0-2 (New York and PJM ISOs) 

• previous 20 business days beginning d0-1 

• 20 business days from d0-10 to d0+10. 

• entire season that includes the control day 

• entire season from the previous year that includes the control day 
 
where day d0 indicates the curtailment day.   

Exclusions 

All existing methods delete from the data selection any days that had a control event.  Some 
replace these excluded days by going farther back in time as needed.  Similarly, some methods 
screen out days of low or extreme output based on varying criteria and with or without 
replacement.  For this analysis all excluded control days were replaced with the next eligible day.  
No extreme output exclusions were tested.  If extreme output exclusions were used they would 
likely affect high variability account results. 

4.1.2 Estimation Method 

The two broad types of estimation methods are averaging and regression.  We describe these 
methods more specifically below.  In the analysis conducted, all load data were available on an 
hourly basis, and the analysis was conducted on this basis.  In some markets, load data are 
collected and demand response is calculated on a finer time interval, such as half-hour or 15-
minute.  Our discussion refers to analysis of hourly data.  However, the same principles would 
apply with data at a finer time increment. 

Averages 

Averaging means that the baseline for each time interval of the curtailment day is calculated as 
the simple average, across all the days chosen by the data selection criteria, of the loads at that 
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time interval.  For example, the baseline for the hour ending 1 pm is the average over all the 
selected days of the loads on those days for the hour ending 1 pm. 

Regression Models 

Types of Models Considered 

Regression can take a wide variety of forms.  Regression models are used to construct models 
that can develop a baseline load curve based on dependent variables related to weather, building 
operation or other factors.  It’s beyond the scope of this work to attempt to determine the best 
general regression model for this application. 
 
In the context of calculating demand response baselines, the regression model uses the data 
selected for a particular account and event.  The model is fit to those data, and applied to the 
conditions during the event, to estimate the load that account would have in the absence of the 
control or curtailment, at each time increment in the event.  In all applications reviewed and all 
methods tested, the model is fit separately for each account.   
 
In most cases, the model is also fit separately for each event, because different data are selected.  
The exception is model fitting based on a full season of data.  In these cases, the same model fit 
applies to all events.  The estimated loads vary by event because the control-day conditions vary. 
 
In these models, each observation corresponds to a particular day and hour (or finer time 
interval).  The dependent variable is the account’s load at that day and hour.  In almost all the 
applications reviewed, a different set of coefficients is estimated for each hour of the day.  The 
predictor variables are typically weather variables and possibly daytype.  Thus, each observation 
consists of the account’s load for a particular day and hour together with the corresponding 
weather variables. 
 
The purpose of the regression model is to provide a reliable estimate of what the load for a 
particular customer would have been on a particular day in the absence of a control event.  This 
is somewhat different from contexts where a model must yield reasonable results across a 
population of customers and over a broader time span.  Inaccuracies for an individual customer 
and event have financial consequences for the customer, and in the long run may affect the 
customer’s willingness to participate in a demand response program.   
 
As noted in Section 2, factors affecting a customer’s load on a particular day include the daytype, 
weather, and activity level.  For some customers, activity level may vary from day to day in ways 
that have substantial effects on load.  Thus, data on factors such as production output, 
occupancy, or number of shifts operated could potentially be useful predictors for some 
accounts, particularly those that are not weather-sensitive.  However, meaningful, objective 
customer-specific variables that track activity by day are typically not available.  Daytype is 
readily available.  However, we assume that attention is restricted to business days within a 
season.  Daytype was therefore fixed within the models tested.  Thus, the models tested include 
only weather terms. 
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Differences among regression models for this application include the following. 

The Type of Weather Variable(s) Included 

Typically, temperature, degree-days, and/or temperature-humidity index are used.  Some load 
research analysts incorporate additional weather terms such as precipitation, cloud cover, 
sunshine, and wind speed in load models, but these were not used in the primary demand-
response estimation methods reviewed.  Temperature and humidity are the dominant drivers of 
cooling loads.   
 
If the facility is consistently in cooling (or heating) mode across the span of the data used in the 
regression, degree-day variables offer no advantage over temperature variables.  However, if the 
data include milder conditions when cooling or heating is not required, degree-day variables 
generally perform better.  In effect, degree-days “count” temperature only when it is high enough 
to require cooling or low enough to require heating. 

Whether the Degree-Day Base is Fixed in Advance 

If degree-day variables are used, the degree-day base may be fixed in advance or may be 
determined from the regression.  The base or reference temperature for a building is the 
temperature at which cooling or heating is first required in the building.  Cooling or heating 
degree-days for a day are the difference between this reference temperature and the outside air 
temperature.   
 
Degree-days calculated at the appropriate temperature are more closely correlated with load than 
degree-days at other bases.  If too low a reference temperature is used for cooling, the model will 
tend to under-estimate load in hot weather, and overstate load in cooler weather.  If too high a 
reference temperature is used, the opposite occurs.   
 
The appropriate degree-day base varies substantially across buildings.  The reference 
temperature depends on building thermal mass, solar gain, and internal loads.  The only 
meaningful way to determine the best base temperature for a given building is by analysis of load 
data in relation to temperature data.  Models that allow the degree-day base to vary tend to have 
lower systematic error, but also are more complex, and more time consuming to fit.   

These models are also less well determined if data are limited.  Thus, if the data selection rules 
require use of only 10 days of data in calculating the baseline, erratic results might be obtained if 
the degree-day base is determined separately for each of these 10-day fits.  However, it may be 
effective to estimate the appropriate reference temperature based on a longer history, possibly 
including the previous year, and use this reference temperature for all baseline calculations for a 
season.    
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Whether Lagged Weather Terms are Included 

Lag temperature or degree-day terms are used to account for heat build-up over time in a 
building.  This is the effect of “thermal mass.”  An approach the authors have used includes as a 
predictor the weighted average of degree-days for the past 48 hours, with the weights 
exponentially decreasing.  Simpler approaches put multiple temperature or degree-day variables 
into the model, at different lags.  Lagging humidity is not highly meaningful, as buildings do not 
store humidity in the way that they store heat. 

Whether the Predictor Variables are Hourly or Daily 

Although the coefficients are almost always allowed to vary by hour of the day, the predictors 
may vary only daily.  Because buildings store heat, the cooling load in a building does not 
respond instantaneously to the outside temperature, but depends on the temperature over recent 
hours.  Explicit incorporation of lag weather variables can account for this effect.  However, 
modeling load in a given hour as a function of the average temperature over the day can often 
work as well.   
 
In part, this approach works because the variation in temperature over the course of the day is 
similar from day to day.  Thus, the 10 am coefficients of daily average temperature tend to be 
smaller than the 4 pm coefficients.  This is partly because there has been less heat build-up by 10 
am and partly because the actual outdoor temperature at 10 am for a given daily average is lower 
than that at 4 pm. 

Models Tested 

All the models we tested had hourly varying coefficients including an hourly intercept.  That is, 
24 sets of hourly coefficients were fit.  If no terms but the intercept were included in the model, 
the model reduced to the average, by hour of the day, of the loads on the days included in the 
model fit. 
 
The following models were tested. 
 

A. Average.  No variables besides the intercept term. 
Ldh = αh 
 

B. Daily temperature. 
Ldh = αh + βhTd 
 

C. Hourly temperature  
Ldh = αh + βhTdh 
 

D. Daily heating and cooling degree-days  
Ldh = αh + βhHDDd + γhCDDd 
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E. Hourly heating and cooling degree-hours  
Ldh = αh + βhHDHdh + γhCDHdh 
 

F. Hourly heating and cooling degree-hours with lagged degree-hours 
Ldh = αh + β1hHDHdh + γ1hCDHdh + β2hLHDHdh + γ2hLHDHdh 

G. Hourly temperature-humidity index 
Ldh = αh + βhTHIdh 
 

In the formulas above, for a given account, 

Ldh = load at hour h on day d  

Td = daily average temperature (average of daily minimum and maximum) on day d 

HDDd = heating degree-days base 65°F on day d 

CDDd = cooling degree-days base 65°F on day d 

HDHdh = heating degree-hours base 65°F at hour h on day d 

CDHdh = cooling degree-hours base 65°F at hour h on day d 

LHDHdh = lagged heating degree-hours base 65°F at hour h on day d 

LCDHdh = lagged cooling degree-hours base 65°F at hour h on day d 

THI is the temperature-humidity index for hour h on day d. 
 
αh, βh, γh are coefficients determined by the regression, h = 1, 2, …, 24. 

 
The lag degree-day terms are based on lagged temperature calculated as 
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where  

 
LTdh is lagged hourly temperature and Tdh is hourly temperature and e is the natural base. 

 
The temperature-humidity index is calculated by PJM’s method as: 
 

THIdh = Tdh – .55(1-RHdh/100)(Tdh–58), Tdh > 58, 
Tdh, Tdh < 58. 

 
where RHdh is relative humidity at hour d of day h.  The temperature-humidity index increases 
with humidity as well as with temperature and therefore may be a better predictor of load 
increases related to cooling. 
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As the definitions indicate, a fixed degree-day base was used despite the caveats indicated above 
under “Whether the Degree-Day Base is Fixed in Advance.”  This simplification was made to 
allow fitting of weather models for a large number of accounts, each for several actual or 
simulated control periods, and using several different data selection rules.  However, as 
described above, a model with the reference temperature fitted to each account (based on an 
adequate length of data) would be expected to perform somewhat better. 

Conditional Weather Models 

Each of the weather models B through G was fit as a “conditional weather model.”  That is, the 
weather terms were kept in the model only if certain model diagnostics indicated that these terms 
were meaningful and well determined.   
 
The full set of cooling heating coefficients were either all retained or all dropped from the model.  
Likewise, the full set of hourly heating coefficients were either all retained or all dropped from 
the model.   
 
The requirements for retaining the cooling (or heating) terms in the model were the following: 

1. Although some negative coefficients were allowed, the full set of cooling (or heating) 
coefficients must have a positive sum.  That is, the overall heating or cooling effect 
identified in the model must at least be physically meaningful.   

2. The F-statistic for including the set of cooling (or heating) coefficients must be 
significant at the 0.10 significance level.  That is, the data must indicate that there is a 
consistent and reasonably well determined relationship between load and the weather 
terms.   

If both the heating and cooling terms were dropped from the model based on these criteria, the 
model reduced to a simple average by hour of the day. 

4.1.3 Adjustment Method 

Adjustment methods tested are additive or scalar, as described in Section 2.  Common 
adjustments are to some combination of the load in the hours between 1 and 4 hours prior to 
curtailment.  Adjustments tested were: 

• additive to load at hours h0-1 and h0-2 

• scalar to load at hours h0-1 and h0-2 

• additive to load at hours h0-3 and h0-4 

• scalar to load at hours h0-3 and h0-4 

• weather-based adjustment of all loads based on the difference or ratio of regression-
estimated load using curtailment period and baseline period THI (in scalar form, the PJM 
approach).  PJM requires a minimum of one month’s data or a full previous season.  
Because of limited previous season data the THI adjustment for this analysis is based on 
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the present season of data.  This adjustment is tested only with averages, not with weather 
models.   

 
In the descriptions above, h0 indicates the hour beginning the curtailment period. 
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4.2 DAYS AND HOURS TO BE EXAMINED 

Each account for which data were provided was classified as either curtailed or uncurtailed.  
Curtailed accounts were those that were participants in a curtailment or demand-response 
program.  Uncurtailed accounts were not program participants.  Some curtailed accounts had 
data provided for years in which no curtailment occurred. 
 
The time periods for which measure performance was tested depended on the data set, and 
whether the load data were for curtailed or uncurtailed accounts. 

4.2.1 Uncurtailed Accounts 

For uncurtailed accounts, certain days were set aside as test days.  The baseline calculation 
methods were then used, with the non-test days’ data as input, to calculate the load on the test 
days.  Differences between actual and estimated load on the test days indicate the accuracy of the 
estimation method. 
 
Selection of test days was as follows: 

1. For data sets that included both curtailed and uncurtailed accounts on actual control days, 
the days when the curtailed accounts were curtailed defined the test days for uncurtailed 
accounts. 

2. For data sets that included uncurtailed customers only, test days were selected based on 
extreme temperature.  

3. For data sets that included some years with no curtailment for customers in a curtailment 
program, the test days for years with no curtailment were determined in the same way as 
for data sets with only uncurtailed accounts. 

 
For each of the test days, method performance was tested for each of two 4-hour periods, one 
from 7 AM to 11 AM, the other from 11 AM to 3 PM.   

4.2.2 Curtailed Accounts 

For curtailed accounts (i.e., accounts in curtailment or demand-response programs) in years 
when curtailments occurred, the performance was tested during the hours of actual curtailment 
periods.  Curtailment periods were determined from the program records of when curtailment 
was called, not based on whether an individual customer curtailed or not. 
 
There is no correct baseline against which to assess method performance for these accounts on 
these days.  The preferred method(s) was selected based on the results of the tests on uncurtailed 
accounts.  Other methods were assessed in comparison with the preferred method. 
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4.3 DATA USED FOR TESTING 

Interval load data were provided for this study from several parts of the U.S., for both curtailed 
and uncurtailed accounts.  A total of 646 accounts were used in the analysis.  For some accounts, 
multiple years of data were used.  The total number of accounts used in the study by region, year, 
and curtailment category is shown in the table below.   
 

Table 4-1 
Interval Load Data Used in the Study 

by Region, Year, and Curtailment 

 
All the regions had accounts with summer curtailment data.  Only the Midwest, Northwest, and 
Southeast had nonsummer curtailment data. 
 
The table shows that only 2 interruptible and 2 non-interruptible accounts in the study were from 
the state of California, which sponsored the work.  While a greater representation of California 
experience would have been desirable, we feel that the results developed here have broad 
applicability and can be useful guide for California practice.  Our investigation of differences by 
region indicated that most differences across data sets provided appeared to be related to the 
types of accounts included rather than to regional variations. For this reason, we have provided 
results separately by weather-sensitivity and degree of load variability in an account, as well as 
by season. 

Region Year

Total 
Number of 
Accounts

Non-
Interruptible 
Accounts

Interruptible 
Accounts

California 2000 3 2 1
California 2001 1   1
Mid Atlantic 2001 33 17 16
Midwest 1998 28   28
Midwest 1999 37   37
Midwest 2000 39   39
Midwest 2001 61 11 50
Northeast 2001 15 5 10
Northwest 2000 16 10 6
Northwest 2001 16 10 6
Southeast 1992 66 24
Southeast 1998 66   66
Southeast 1999 62   62
Southeast 2000 63   63
Southwest 1997 24 17 7
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4.4 ACCOUNT TYPE CLASSIFICATION 

The results in the next section are displayed separately by account type.  Account types are 
weather-sensitive and non-weather-sensitive, each with low variability and high variability.   
 
Initially, we examined results separately by location.  The key difference across locations 
appeared to be extreme errors that occurred for certain data sets that had very large accounts with 
wide swings in load.  For this reason, we developed the account type classifications.   

Weather Sensitivity 

Accounts were classified as weather-sensitive or not based on the diagnostics from a weather 
model fit.  The weather model used was an hourly degree-hour model based on a full year of 
load data, with the degree-day bases estimated as part of the model.  This is model “E” as 
defined above, except that the degree-day bases are parameters estimated by the model. 
 
This “classification” model was used only for this purpose, and was not used as one of the tested 
methods.  Because of the optimized selection of degree-day base, this model requires extensive 
processing time when applied to large numbers of accounts.  In addition, its performance can be 
unreliable if restricted to short time periods. 
 
The classification model diagnostics determined if the heating and/or cooling coefficients should 
be dropped from the model.  This determination was made in the same way as described above 
for all the conditional weather models.  As noted, these diagnostics required   

1. The full set of cooling (or heating) coefficients must have a positive sum.   

2. The F-statistic for including the set of cooling (or heating) coefficients must be 
significant at the 0.10 significance level.   

 
If cooling coefficients were retained the account was considered weather sensitive for the 
summer analysis.  If heating coefficients were retained the account was considered weather 
sensitive for the nonsummer analysis. 
 
For all the models tested, these same diagnostic criteria were used for each model fit.  Thus, an 
account classified as non-weather-sensitive based on the classification model might have heating 
and/or cooling terms included for one or more of the tested models.  Likewise, an account 
classified as weather-sensitive by the classification model might have neither set of terms for a 
particular tested model. 
 
An alternative way of classifying an account as weather sensitive or not would be in terms of the 
fraction of its maximum load or total energy use is for cooling and/or heating.  That type of 
information is not typically available for an account.  The weather-related fraction could be 
estimated from the fitted classification model.  However, that calculation would depend on 
having a reliable estimate of the cooling and heating coefficients.  
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The approach taken here is to classify an account as weather-sensitive if there is a positive 
relationship between load and the weather drivers that is discernible above the other variations in 
load level.  Thus, an account that in fact has a large cooling load but for which other variations 
swamp the variations due to weather would be classified as non-weather-sensitive for the 
summer analysis. 

Load Variability 

Accounts were also classified as high or low variability.  Variability was assessed not in terms of 
how “flat” the load was across the day, but how much the load at a given hour varied from day to 
day.  For loads that are more highly variable in this sense, any projection based on previous days 
is likely to have greater error.  That is, baselines and corresponding demand reduction estimates 
for these accounts will be subject to greater uncertainty. 
 
The account variability was measured in terms of the root-mean-square deviation of load in each 
hour from the corresponding mean for that hour.  This root-mean-square deviation was 
calculated across all curtailment hours, and normalized by dividing by the root-mean-square load 
during these hours.  This is a version of Theil’s U statistic, described in Section 4.5.1, applied to 
the load level during curtailment periods.  This statistic is similar to a coefficient of variation for 
load during peak hours.  Because we are looking at deviations relative to the mean for each hour 
of the day, systematic differences across hours in the day do not affect this measure of 
variability, but differences in load from day to day do. 
 
Within each season and curtailment type (summer or nonsummer, curtailed or noncurtailed) the 
cut-off between high and low variability was set so that approximately one quarter of the 
accounts were in the high variability group.  The cut-offs are indicated in the table below.   
 

Table 4-2 
Cut-Offs of Theil’s U for High Variability Accounts 

 
The cut-offs used were in the neighborhood of 30 to 40 percent for each group.  For summer 
curtailed accounts, for example, high variability accounts are those for which the day-to-day 
variation from the average for each hour is greater than 40 percent.  Thus, if the average 
weekday 4 pm load is 600 kW, the typical day-to-day variation in the 4 pm load would be more 
than 240 kW. 

Cutoff
Summer Uncurtailed 0.29
Summer Curtailed 0.40
Nonsummer Uncurtailed 0.32
Nonsummer Curtailed 0.42
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Data-Base Classification Compared with Account Identifiers 

We asked the data donors to provide an indication if possible as to whether each account was 
weather-sensitive or not.  Some donors indicated that all accounts were industrial, therefore non-
weather-sensitive.  Others provided SIC or NAICs codes for each account.  Some provided no 
information. 
 
The table below shows the proportion of industrial and non-industrial accounts studied for each 
of the account types.  While there is a general perception that industrial accounts are non-
weather-sensitive and commercial accounts such as office are weather-sensitive, the 
classification based on the data put many industrial accounts in the weather-sensitive category.  
This finding is consistent with observations in previous work by members of the study team.  
However, the table also shows that the curtailed accounts were more likely to be classified as 
non-weather-sensitive than the uncurtailed accounts. 
 

Table 4-3 
Account Type Compared with Industrial/Nonindustrial Classification 

 
The next tables show the numbers of accounts in each category, and their size distribution.  The 
distributions are all quite skewed, with the mean kW greater than the 75th percentile (3rd quartile) 
in almost all cases.  Though we attempted to get similar size accounts in the curtailed and 
uncurtailed groups, the tables show that the uncurtailed accounts tended to be larger.   
 

Table 4-4 
Summer Uncurtailed Account Size Distribution (kW) by Account Type Classification 

Account Type
Number of 
Accts Mean 1st Quartile Median 3rd Quartile

Weather Sensitive Low Variability 130 1,839 285 539 1,354
Weather Sensitive High Variability 21 1,132 223 412 782
Non-Weather Sensitive Low Variability 51 4,679 581 1,337 3,948
Non-Weather Sensitive High Variability 26 4,232 426 591 1,408  

 

Analysis Account Type
Account Type

Non-Ind. Ind. Unknown Non-Ind. Ind. Non-Ind. Ind. Unknown Non-Ind. Ind.
Weather Sensitive Low Variability 28 25 77 19 29 12 12 46 3 11
Weather Sensitive High Variability 4 4 13   8 3 2 7   5
Non-Weather Sensitive Low Variability 14 20 17 4 41 22 23 54 2 43
Non-Weather Sensitive High Variability 1 11 14 1 25  17 14 1 14

Industrial/Nonindustrial Classification
Summer Curtailed Nonsummer CurtailedSummer Noncurtailed Nonsummer Noncurtailed
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Table 4-5 
Summer Curtailed Account Size Distribution (kW) by Account Type Classification 

Account Type
Number of 
Accts Mean 1st Quartile Median 3rd Quartile

Weather Sensitive Low Variability 48 5,374 844 1,868 4,072
Weather Sensitive High Variability 8 8,064 582 1,229 5,781
Non-Weather Sensitive Low Variability 45 12,607 1,880 4,915 9,922
Non-Weather Sensitive High Variability 26 10,689 1,142 2,819 5,933  

 

Table 4-6 
Winter Uncurtailed Account Size Distribution (kW) by Account Type Classification 

Account Type
Number of 
Accts Mean 1st Quartile Median 3rd Quartile

Weather Sensitive Low Variability 70 1,313 263 495 1,060
Weather Sensitive High Variability 12 550 103 276 639
Non-Weather Sensitive Low Variability 99 3,844 504 986 2,462
Non-Weather Sensitive High Variability 31 3,603 412 1,158 4,166  

 

Table 4-7 
Winter Curtailed Account Size Distribution (kW) by Account Type Classification 

Account Type
Number of 
Accounts Mean 1st Quartile Median 3rd Quartile

Weather Sensitive Low Variability 14 11,710 1,354 2,381 8,849
Weather Sensitive High Variability 5 2,991 1,142 1,416 1,561
Non-Weather Sensitive Low Variability 45 11,626 1,625 3,852 8,623
Non-Weather Sensitive High Variability 15 11,268 1,313 3,870 6,967  

 

The next table shows the numbers of accounts, account-day combinations, and account-hour 
combinations for which baseline errors were calculated, by season, curtailment, and account 
type.  For each account, only actual curtailment days and hours, or those defined as test periods 
for uncurtailed accounts, are included in the account-day and account-hour totals.   
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Table 4-8 
Number of Observations in the Study 

 

The number of accounts is the number of distinct customers for which the methods were tested.  
To a certain extent, method performance will be a characteristic of the customer, related to the 
customer’s operating practices and associated load patterns.  The number of account-days is the 
number of distinct combinations of customers and control events.  Finally, the number of 
account-hours is the number of individual observations of method error in the analysis. 

Weather 
Sensitivity Variability Accounts Account-Days

Account-Day-
Hours

Summer  Uncurtailed Accounts WS Low 130 334 1,336
NWS Low 51 121 484
WS High 21 59 236
NWS High 26 47 188
TOTAL 228 561 2,244

Summer Curtailed Accounts WS Low 48 292 1,591
NWS Low 45 365 2,410
WS High 8 49 227
NWS High 26 192 973
TOTAL 127 898 5,201

Nonsummer Uncurtailed Accounts WS Low 70 166 664
NWS Low 99 263 1,052
WS High 12 18 72
NWS High 31 76 304
TOTAL 212 523 2,092

Nonsummer Curtailed Accounts WS Low 14 96 890
NWS Low 45 320 2,356
WS High 5 25 106
NWS High 15 120 459
TOTAL 79 561 3,811

All Accounts 646 2,543 13,348
WS=Weather Sensitive, NWS=Non-Weather Sensitive
Account/Day/Hours for Uncurtailed Accounts represent only one of the two simulated four hour control periods.
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4.5 PERFORMANCE MEASURES 

The tests were run for several alternative methods on several different data sets for several hours 
on several days.  Developing meaningful measures of method performance is essential to provide 
a basis for conclusions.  Performance measures provided are somewhat different for uncurtailed 
and curtailed accounts. 

4.5.1 Performance Measures for Uncurtailed Test Periods  

Key Calculations 

For each account used as an uncurtailed test case, the estimated load for each hour and several 
measures of error were calculated and reviewed for each method.  Hours included in the 
calculations were actual curtailment hours for curtailed accounts, and test period or “simulated 
curtailment” hours for uncurtailed accounts.  The key calculations used and displayed in this 
report are shown in Table 4-9. 
 

Table 4-9 
Key Calculations for Each Estimation Method and Account 

Description Formula 

estimated load L^
jdh = estimated load for account j on day d at hour 

h 

hourly error ejdh = L^
jdh - Ljdh  

relative hourly error rjdh = ejdh/Ljdh 

account root-mean-square hourly error RMSEHj = √[Σd=1
nj Σh=1

njd ejdh
2 / Σd=1

nj njd] 

account root-mean-square hourly load RMSLHj = √[Σd=1
nj Σh=1

njd Ljdh
2 / Σd=1

nj njd] 

account Theil’s U hourly, or relative root-
mean-square hourly error  

TUHj =RMSEHj / RMSLHj 

Theil’s U daily, or relative root-mean-square 
daily error  

TUDj =RMSEDj /RMSLDj  

account average error ej.. =Σd=1
nj Σh=1

njd ejdh / Σd=1
nj njd  

relative account error rj__ = ej../Lj.. 

 

In the equations above,  

Ljdh = actual load for account j on day d at hour h.   
njd = number of hours in curtailment period for account j on day d 
nj = number of test days for account j. 
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Key Indicators of Method Accuracy 

The goal of the performance tests is to assess the accuracy of the various baseline measures 
tested.  As discussed in Section 3.3, accuracy has two components, bias and variability.  Bias is 
the systematic tendency to over- or under-state baselines and corresponding load reductions.  
Variability is how widely the baseline is likely to vary from its typical or expected level.  

Bias 

As a key measure of bias, we focus on the median relative hourly error.  Because accounts in this 
study are of widely varying sizes, when looking at the range of errors across accounts we need to 
normalize them.  Thus, the error for each hour for each account is expressed as a fraction of the 
actual load for that hour and account.  If the median, across all accounts and curtailment hours, 
of these relative hourly errors is positive, then more often than not the baseline is overstated, and 
the magnitude of demand response is overstated.  If the median of the relative hourly errors is 
negative, then more often than not the baseline is understated and the magnitude of demand 
response is understated. 

Overall Error Magnitude 

As a key measure of the total magnitude of error, we consider Theil’s U statistic for each 
account.  This statistic is a “relative root-mean-square error.”  It is calculated for each account as 
the ratio of the root-mean-square error to the root-mean-square load.   
 
The root-mean-square error is like a standard deviation, and represents the typical error 
magnitude for the account.  This root-mean-square error reflects both systematic error, or bias, 
and the level of variability around the typical error.   
 
The root-mean-square load is a corresponding “typical” load level.  Normalizing the root-mean-
square error by the root-mean-square load is something like calculating a correlation coefficient.  
However, the U statistic may be greater than 1, since errors can be greater than the loads they 
estimate.   
 
The denominator of the U statistic will be weighted toward larger loads.  That is, for a given 
account, relative errors at higher-load hours will tend to count more heavily than those at lower-
load hours.   
 
Theil’s U statistic calculated for a given account indicates the typical relative error magnitude for 
that account.  The distribution of this statistic across accounts indicates the range of performance.  
We look at this distribution in terms of both the median and an extreme, the 95th percentile.  The 
median Theil’s U indicates the typical relative error magnitude for a typical account.  The 95th 
percentile indicates typical performance for the accounts where the performance is generally 
worse.  Because the U statistic for each account is normalized by the typical account load, the 
distributions of U across accounts treat large and small accounts equally.  
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Descriptive statistics and graphical displays of distributions of the error measures are presented 
in Section 5.   

4.5.2 Performance Measures for Curtailment Days 

For the curtailed load during curtailment periods, an approximate error e~
jdh was calculated for 

each method as the difference between the load estimate from that method and the preferred 
method.  That is,  
 

e~
jdh = L^

jdh – L*
jdh , 

 
where 
 

L*
jdh = estimated load for account j on day d and hour h using the preferred method. 

 
This calculation was performed only for day-hour combinations dh included in called curtailment 
periods for account j.  All of the error measures used for the uncurtailed tests were then 
calculated for the curtailment periods.   
 
In addition, for the curtailment periods the load reduction was calculated for the preferred 
method and for each other tested method: 
 

Djdh = L*
jdh – Ljdh 

 
D^

jdh = L^
jdh – Ljdh . 

The error in the demand response is the same as the error in the load estimate: 
 

D^
jdh – Djdh = (L^

jdh – Ljdh) – (L*
jdh - Ljdh) = L^

jdh – L*
jdh = e~

jdh . 
 
However, relative errors are of interest not just relative to the load level but also relative to the 
demand response D.  Two types of relative errors were calculated for the curtailed accounts.  The 
first is the same as for uncurtailed accounts, expressing the hourly error e~

jdh as a fraction of the 
hypothetical load in the absence of curtailment (based on the preferred method).  The second 
type of relative error is the hourly error as a fraction of the curtailment amount determined using 
the preferred method. 
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5 RESULTS OF PERFORMANCE TESTS 

5.1 INTRODUCTION 

This section presents the results of the tests described in Section 4.  The purpose of the tests is to 
examine the accuracy of baselines determined by various methods, under a wide range of 
conditions.  The baseline methods tested and the data sets on which they were tested are 
described in Section 4.   
 
For each method tested, the key measures we use to examine the method performance are the 
following. 
 
Bias:  Median relative hourly error, across all accounts, test days, and hours. 

The relative hourly error rjdh is calculated for each account-day-hour combination.  The 
median of all these relative hourly errors is the key indicator of method bias.  Median 
relative hourly error greater than 0 indicates a systematic tendency to overstate baselines 
and load reductions.  Median relative hourly error less than 0 indicates a systematic 
tendency to understate baselines and load reductions.   
 

Typical error magnitude:  Median U statistic, across all accounts. 
This measure reflects both bias and variability.  For each method, for each account, 
Theil’s U is calculated across all test days and hours.  The U statistic is similar to a 
coefficient of variation.  It indicates the typical error magnitude relative to a typical load 
level.  The median of U across accounts indicates the typical relative error for a typical 
account.   
 

Error magnitude for extreme accounts:  95th percentile U statistic, across all accounts. 
The extremes of Theil’s U indicate how far off the baseline tends to be for the less well-
behaved accounts.  The focus is not on individual problematic hours, but on accounts for 
which the method error tends to be high across hours. 
 

For curtailed accounts, the same types of error measures are calculated as for noncurtailed 
accounts, except that each of these is calculated for errors relative to estimated load and also for 
errors relative to estimated curtailment amounts.  As described in Section 4, the errors calculated 
for curtailed accounts are the difference between the estimate for a particular method and that of 
the “best” method, a full season weather model.  Thus, these errors are not a perfect measure of 
performance, and are not entirely comparable to the error measures for noncurtailed accounts. 
They are nonetheless informative. 
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5.2 A FIRST LOOK AT THE COMPARISONS 

Before considering these performance measures across the full range of methods explored, we 
illustrate the types of comparisons being made.  For purposes of this illustration, we consider two 
combinations of estimation method and data selection rule: 

• A1 is the average, by hour of the day, of the past 10 uncurtailed business days. 

• D8 is a regression model using a full season of data, and daily heating and/or cooling 
degree-days as the predictor variables for each hour.  Like all the weather models tested, 
it is a “conditional” model, with heating or cooling degree-days included in the model for 
a particular account only if the diagnostic screens are passed. 

Formal specifications of these methods are given in Section 4.  
 
For each of these combinations of estimation method and data selection criteria, each of the 
possible adjustments was applied. 

• Additive adjustment to hours h0–1 to h0–2 

• Scalar adjustment to hours h0–1 to h0–2 

• Additive adjustment to hours h0–3 to h0–4  

• Scalar adjustment to hours h0–3 to h0–4 

• Additive adjustment based on the THI regression model using the previous season’s data. 

• Scalar adjustment based on the THI regression model using the previous season’s data. 
 
These adjustments are described and illustrated in Section 2. 

5.2.1 Looking at Bias 

We focus on the median relative hourly error as the key measure of bias, that is, systematic 
tendency to over- or understate load.  The median rather than mean relative hourly error is used 
because relative errors can be quite large if the true load is small, and these occasional explosive 
values can distort the mean without indicating typical behavior. 
 
Figure 5-1 shows the median relative hourly error for the average A1 together with each of the 
adjustments.  The results for the different adjustments are plotted in a vertical line, and indicated 
with different symbols.  The figure shows that the unadjusted method A1 (circle) has a median 
relative hourly error around –8 percent.  That is, the simple average of the last 10 uncurtailed 
business days tends to understate the baseline by about 8 percent. 
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Figure 5-1 
Median Relative Hourly Error 

Simple 10-Day Average and Full-Season Degree-Day Regression 
Summer Uncurtailed Weather-Sensitive Low-Variability Accounts 

ws=1

Adjustment None Additive 1-2 Scalar 1-2
Additive 3-4 Scalar 3-4 Additive THI
Scalar THI
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-0.03
-0.02
-0.01
0.00
0.01
0.02
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0.04
0.05
0.06
0.07
0.08
0.09
0.10

Base estimation method and data selection
A1 D8

 
 
With the additive adjustment to the last two hours before curtailment (‘+’) the median relative 
error is still negative, but only about half a percent.  With an additive adjustment to the third and 
fourth hour before (triangle) yields a relative error of –1.5 percent.  Using the more complicated 
THI adjustment in additive (diamond) or scalar (square) gives about –2 percent.  Scalar 
adjustment to the last two hours (‘x’) or to the third and fourth hour (black dot) before gives a 
slightly positive bias.  
 
Overall, then, any of the adjustments seem to reduce substantially the negative bias of using a 
simple average of the past 10 days.  That is, use of these adjustments mitigates the average’s 
understatement of baselines and demand reductions for weather-sensitive accounts. 

Also shown in the figure is the same set of results for method D8, the full-season daily degree-
day model.  The figure shows that the unadjusted weather model (‘o’) has only slight negative 
bias, -0.5 percent.  With any of the adjustments, the model has a slight positive bias, about +0.5 
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percent.  The THI adjustments were not tested with the regression models, on the assumption 
that the models themselves should capture whatever effect is captured in the THI adjustment.  
Thus, for weather-sensitive accounts, use of the full-season model substantially eliminates any 
systematic tendency to over- or under-state the baseline. 

5.2.2 Looking at Overall Error Magnitude 

The key indicator of error magnitude we use is the median, across all accounts, of Theil’s U 
statistic for the account.  Theil’s U is the root-mean-square error, relative to the root-mean-
square load.  Thus, high relative errors for hours when the load is small contribute little to U.  
Relative errors at hours when the load is high count most heavily.  The median of Theil’s U 
across accounts indicates what the typical hourly error is for a typical account.  Theil’s U reflects 
both systematic error and variability. 
 
Figure 5-2 shows the medians of Theil’s U for the same cases whose median relative errors are 
plotted in Figure 5-1.  For the unadjusted average A1, the median account U is about 11 percent.  
All of the adjustment methods reduce U.  The lowest U for method A1 is with the additive and 
scalar adjustments to hours –1 to –2, at 5.4 and 5.8 percent, respectively.   
 
For the weather model D8, the unadjusted method has Theil’s U of 6.2 percent, only slightly 
worse than the best adjusted average.  The additive and scalar adjustments to the last two hours 
are slightly better, at 4.9 and 5.7 percent, respectively.  The scalar adjustment to hours –3 to –4 is 
somewhat worse, at 7.5 percent. 
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Figure 5-2 
Median Account Theil’s U  

Simple 10-Day Average and Full-Season Degree-Day Regression 
Summer Uncurtailed Weather-Sensitive Low-Variability Accounts 

ws=1

Adjustment None Additive 1-2 Scalar 1-2
Additive 3-4 Scalar 3-4 Additive THI
Scalar THI

0.0

0.1

0.2

Base estimation method and data selection
A1 D8

 

In addition to looking at the median of Theil’s U, we also looked at the 95th percentile.  This 
measure indicates how bad the errors tend to be for the less predictable accounts.  Figure 5-3 
shows these results for the same cases as in Figures 5-1 and 5-2.  Because we are looking at the 
extremes, the scale of the plot is changed to accommodate the values. 
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Figure 5-3 
 95th Percentile Account Theil’s U  

Simple 10-Day Average and Full-Season Degree-Day Regression 
Summer Uncurtailed Weather-Sensitive Low-Variability Accounts 

ws=1

Adjustment None Additive 1-2 Scalar 1-2
Additive 3-4 Scalar 3-4 Additive THI
Scalar THI

0.0

0.1

0.2

0.3

0.4

0.5

Base estimation method and data selection
A1 D8

 
 
The figure shows that the extreme cases show typical error in the range of 15 to 35 percent, 
depending on the adjustment method and estimation method.  The 95th percentiles of Theil’s U 
show much more spread across adjustment methods than do the medians.  Nevertheless, some of 
the same patterns observed for the medians still hold: 

• Without adjustment, the full-season weather model performs better than the 10-day 
average.   

• For both average and regression, the additive adjustment to the last two hours has 
smallest errors, and the scalar adjustment the next smallest. 

• With the additive adjustment to the last two hours, the simple average method is nearly as 
good at estimating the base load as the weather model. 

 
However, the difference between the better- and worse-performing adjustments is more 
pronounced for the extreme cases than for the medians. 
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5.2.3 Preliminary Indications 

Based on these illustrative results, some preliminary indications are the following: 

1. A relatively simple adjustment to a simple method may yield a method that performs 
nearly as well as a more complicated weather model. 

2. Even for a complicated weather model, there may still be some bias if no adjustment is 
made. 

3. The weather model appears to be less sensitive to the type of adjustment made than is the 
simple average. 

4. The additive adjustment to the two hours before curtailment appears to perform best in 
terms of both bias and variability. 

5. In general, the patterns in the 95th percentile are qualitatively similar to those for the 
median, though the magnitudes are greater, and the corresponding difference between the 
better and worse methods is greater.   

 
As will be seen, these patterns are borne out in other comparisons.  While we might not have 
anticipated all these results, they do make sense. 
 
Some of the reasons that adjustment to the hours just before curtailment could improve baseline 
accuracy were discussed conceptually in Section 2.  These hours are most reflective of actual 
operations just prior to curtailment.  Thus, to the extent operations are different from those in the 
baseline days, the adjustment to the pre-curtailment hours captures some of that difference.  
These hours also reflect the actual weather on that day, at least up to the time of the curtailment.  
As a result, this adjustment can also serve to correct for weather differences, to an extent. 
 
It is not surprising that adjustment to the two hours just before curtailment would perform 
somewhat better than the adjustment to the third and fourth hour before.  The later hours are 
more likely to be past the morning ramp-up, reflect more of the weather and heat build-up for the 
day, and be indicative of operations for the main part of the day.  
 
Not necessarily expected was the finding that the additive adjustment does slightly better than 
the scalar adjustment overall.  This result appears to be due to the scalar adjustment’s becoming 
very large if the baseline load was very low compared to the actual during the adjustment hours.   
 
Also not necessarily expected was the finding that the THI adjustments tend to be worse in terms 
of both bias and overall error magnitude than the adjustment to recent hours.  This result 
suggests there are important curtailment-day differences apart from weather, which are captured 
in the other adjustments.  The THI adjustment has the advantage of being “ungamable,” because 
it does not utilize recent loads.  Its disadvantage is that it is therefore not informed by differences 
in these loads when they might be meaningful indicators of operations on the curtailment day. 
 



SECTION 5   RESULTS OF PERFORMANCE TESTS 

 5–8  

Particularly intriguing is the performance of the full-season weather model with additive 
adjustment to the last two hours.  The unadjusted model has near zero bias, but the adjustment 
noticeably reduces the variability of the method, bringing the error magnitude down from 6.2 
percent to 4.9 percent in terms of median account U, and from 25 percent to 15 percent for the 
extreme (95th percentile) accounts.   
 
While it might have been expected that the weather model would not benefit from the simple 
adjustments, this result does make sense.  It is also consistent with the finding that the weather-
based THI adjustments don’t do as well as the adjustment to the last two hours.  That is, there are 
non-weather effects that are difficult to model explicitly, but that are reflected in the earlier load 
on the day being predicted. 
 
Another way to say this is that the prior hours capture some of the random effects that are left 
unexplained by the weather model.  Load forecasters often include the most recent data available 
as explicit terms in prediction models.  Rather than including the adjustment as an extra tweak on 
the weather model, the load in the hours prior to curtailment could be included as predictors in 
the model.  Model diagnostics could then determine whether to retain these terms, while the 
model coefficients would determine the relative weight given to the prior data and the current-
day information. 
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5.3 A BRIEF GUIDE TO THE DISPLAYS 

In the remainder of this chapter, we present the same types of figures as Figures 5-1 through 5-3.  
However, in each figure we include all tested combinations of estimation method, data selection 
criteria, and adjustment.  

Combinations Tested 

In the displays, each combination of an estimation method and data selection criteria is indicated 
by a letter code for the method together with a number code for the selection criteria.  Brief 
definitions of the codes are indicated in the table below.  These method components are 
described more fully in Section 4. 
 

Table 5-1 
Codes for Estimation Methods and Data Selection Criteria 

 
 
 
Each estimation method and data selection criteria was tested with each of the possible 
adjustments listed in Section 4 and displayed in Figures 5-1 through 5-3.  The exception is that 
the THI adjustments were applied only to averages, not to weather models. 
 
The component methods selected were designed to include the main ISO methods in use.  The 
codes corresponding to each of these methods are indicated in the table below.  Also indicated 
are ways the data selection rule tested differs from the details of the ISO method. 

Method Selection
Code Estimation Method Code Data Selection Rule

A Average 1 Previous 10
B Daily Temperature 2 Previous 11
C Hourly Temperature 3 Previous 10 starting d0-2
D Daily Degree-Day 4 Previous 20
E Hourly Degree-Day 5 Previous 10 and Next 10
F Lagged Hourly Degree-Day 6 High 10 of 11
G THI 7 High 5 of 10, starting d0-2

8 Full season
9 Full previous season
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Table 5-2 
Correspondence of Tested Methods to ISO Baseline Methods 

 

Organization of the Displays 

Each display consists of a plot similar to one of Figures 5-1 through 5-3.  Combinations of 
estimation method and data selection criteria are indicated by horizontal position in the graph.  
The adjustment method is indicated by the plotting symbol.   
 
Bias Plots  

Each plotted point is the median relative hourly error for a different combination of 
method features.  From left to right, different combinations of estimation method and 
data selection criteria are shown.  For each of these combinations, the median relative 
hourly error is plotted for each of the adjustment methods tested.   

 
Typical Error Magnitude Plots 

The median of the U statistic across accounts is plotted for each method.  The different 
methods are displayed in the same way as for the median relative hourly error. 

 

Differences 
between Tested 
method and ISO

Initial Final Exclusions
Estimation 

Method
Selection 
Method Adjustment Initial Final Exclusions

California #1

 Previous 
10 
business 
days 
beginning 
on d0-1 Same

Control 
days, with 
replacement Average None A1 Average Last 10 None

Previous 
10 
business 
days 
beginning 
on d0-1 Same

Control 
days, with 
replacement

California #2

 Previous 
11 
business 
days 
beginning 
on d0-1 

Days with 
top 10 
average 
loads for 
control 
period

Control 
days, with 
replacement Average None A2 Average

High 10 of 
11 None

Previous 
11 
business 
days 
beginning 
on d0-1 

Days with 
top 10 
average 
loads for 
control 
period

Control 
days, with 
replacement

New England

 Previous 
10 
business 
days 
beginning 
on d0-1 Same

Control days 
and extreme 
load days, 
without 
replacement 
(min. 7 
days) Average Additive 1-2 A1 Average Last 10 Additive 1-2

 Previous 
10 
business 
days 
beginning 
on d0-1 Same

Control 
days, with 
replacement 

Control days are 
replaced with 
replacement 
(always ten days).  
No extreme load 
day exclusions.

New York

 Previous 
10 
business 
days 
beginning 
on d0-2 

Days with 
top 5 
average 
loads for 
control 
period

Control days 
and extreme 
load days, 
with 
replacement Average

Optional 
Scalar 3-4 
(limited to .8 
to 1.2) A7 Average

High 5 of 
10 Scalar 3-4

 Previous 
10 
business 
days 
beginning 
on d0-2 

Days with 
top 5 
average 
loads for 
control 
period

Control 
days, with 
replacement

No extreme load 
day exclusions.  
Unbounded 
adjustment.

PJM

 Previous 
10 
business 
days 
beginning 
on d0-2 

Days with 
top 5 
average 
loads for 
control 
period

Control days 
and extreme 
load days, 
with 
replacement Average

Optional 
Scalar THI 
adjustment A7 Average

High 5 of 
10 Scalar THI 

 Previous 
10 
business 
days 
beginning 
on d0-2 

Days with 
top 5 
average 
loads for 
control 
period

Control 
days, with 
replacement

No extreme load 
day exclusions.  
THI adjustment 
parameters are 
estimated on full 
same season 
rather than 
previous season or 
partial same 
season.

ISO

Shorthand DescriptionsEstimation -
Selection 

Code
Estimation 

Method Adjustment

ISO Baseline Methodology Closest Method Tested

Data Selection Full Data Selection Description
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Error Magnitude for Extreme Accounts 
This display is the same as the median account U, except that the 95th percentile is plotted 
instead of the median. 

 
A different set of figures is presented for each combination of  

• curtailment classification (curtailed or uncurtailed accounts) 

• account type (weather-sensitive or non-weather-sensitive accounts, with high or low 
variability) 

• season (summer or non summer). 
 
Thus, a total of 16 sets of the three figures are presented.  We begin with summer uncurtailed 
accounts.  We first look at weather-sensitive accounts, low and then high variability.  We then 
examine non-weather-sensitive accounts.  This same sequence is then followed for non summer 
uncurtailed, summer curtailed, and non summer uncurtailed.  
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5.4 TEST RESULTS FOR UNCURTAILED ACCOUNTS, SUMMER  

We begin with the uncurtailed accounts, summer season.  For uncurtailed accounts, the actual 
load during the test period is known.  Thus, the estimation methods can be tested against actual 
loads.  Method performance based on these cases can be used to select the best method.  For the 
curtailed accounts, performance of each method can then be assessed relative to “truth” as 
defined by this best method.  We focus first on the summer because the majority of load 
reduction programs are aimed at reducing summer peaks. 

5.4.1 Weather-Sensitive Accounts 

Low-Variability Accounts 

Figure 5-4 shows the median relative hourly errors for all tested methods, for weather-sensitive 
low-variability accounts.  Starting from the left, the first group of methods shown are the various 
averages, based on different data selection criteria.  Next are the different weather models, all 
using the last 10 uncurtailed business days.  Next is the same sequence of models, all using the 
last 20 uncurtailed business days.  Finally, the same sequence of models use a full season of data.  
For each estimation method and data selection criteria, the results with the different adjustments 
are plotted using the same symbols as in Figures 5-1 through 5-3. 
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Figure 5-4 
Median Relative Hourly Error 

Summer Uncurtailed Weather-Sensitive Low-Variability Accounts 

ws=1

Adjustment None Additive 1-2 Scalar 1-2
Additive 3-4 Scalar 3-4 Additive THI
Scalar THI
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Bias 

While there are a large number of factors being compared in the figure, some patterns can be 
observed. 

1. With no adjustment, the weather models all have lower magnitude bias than any of the 
averages.  However, the “High 5 of 10” method (A7, highest 5 of the last 10 uncurtailed 
business days) is nearly as good. 

2. Except for the High 5 of 10 method, the averages all have much worse bias  (-6 to –10 
percent) than the weather models (on the order of –3 percent or smaller). 

3. With no adjustment, almost all the weather models still have some negative bias.  The 
one exception is the full-season lag model (F8).  This method becomes slightly positively 
biased when adjustments are incorporated. 

4. With adjustment to the hours h0–1 and h0–2, all the methods have bias within +1 percent, 
except the full-season lag model. 

5. The adjustment to hours h0–3 to h0–4 are slightly worse than to the hours h0–1 to h0–2, 
and, the THI adjustments a little worse than these.  The exception is the High 5 of 10 
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method, where the additive adjustment to hours h0–1 to h0–2 and the additive and scalar 
THI adjustments all give near 0 bias. 

Typical Error Magnitude 

Figure 5-5 shows the median account U for the same methods and accounts.  Observations from 
this figure are the following. 

1. For each estimation-selection method, the additive adjustment to the last 2 hours has the 
smallest median Theil’s U.  That is, this combination tends to yield the smallest 
magnitude relative error for each account.  Next best is the scalar adjustment to the last 2 
hours. 

2. With this additive adjustment, there is little difference among the averages A1 through 
A8. 

3. For any adjustment and any selection rule, there is little difference among the different 
weather models B through G, except that the lag models F tend to have higher median 
Theil’s U.  That is, the inclusion of the lag terms in the models tends to increase the 
model variance. 

4. With the best adjustment a1, the 20-day weather models (other than the lag F) have 
slightly lower error magnitude than the 10-day averages, and the full-season models still 
lower.  However, the 10-day weather models tend to have slightly higher errors than the 
averages. 

5. For the unadjusted methods, the averages are generally worse than the weather models.  
The exceptions are that the High 5 method is better than the 10- and 20-day regressions, 
and the lag models are as bad as some of the averages. 

6. For all the weather models, the scalar adjustment to hours h0–3 to h0–4 has worse U than 
the unadjusted model. 
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Figure 5-5 
 Median Account Theil’s U 

Simple 10-Day Average and Full-Season Degree-Day Regression 
Summer Uncurtailed Weather-Sensitive Low-Variability Accounts 

ws=1

Adjustment None Additive 1-2 Scalar 1-2
Additive 3-4 Scalar 3-4 Additive THI
Scalar THI
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Base estimation method and data selection
A1 A2 A3 A4 A5 A6 A7 A8 B1 C1 D1 E1 F1 G1 B4 C4 D4 E4 F4 G4 B8 C8 D8 E8 F8 G8

 

Error Magnitude for Extreme Accounts 

Figure 5-6 shows the 95th percentile of Theil’s U for the same cases.  For these extreme error 
magnitudes, the weather models are not dramatically better than the averages, even without 
adjustment.  The additive adjustment to the two hours prior to curtailment performs best in 
almost all cases.  The improvement between the unadjusted and this adjustment is substantial 
even for the weather models, from around 30 percent down to 15 to 20 percent typical relative 
error.  Thus, while the adjustment choice seems to make little difference in performance for the 
typical account, it does make a difference to how bad the worse accounts get. 
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Figure 5-6 
95th Percentile Account Theil’s U 

Simple 10-Day Average and Full-Season Degree-Day Regression 
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High-Variability Accounts 

Figures 5-7 through 5-9 show the same plots for the weather-sensitive accounts with high 
variability.  Note that a wider scale is used for the Theil’s U plots than for the corresponding 
plots for the low-variability accounts. 
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Figure 5-7 
Median Relative Hourly Error 

Summer Uncurtailed Weather-Sensitive High-Variability Accounts 
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Figure 5-8 
Median Account Theil’s U  

Summer Uncurtailed Weather-Sensitive High-Variability Accounts 
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Figure 5-9 
95th Percentile Account Theil’s U  

Summer Uncurtailed Weather-Sensitive High-Variability Accounts 
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Not surprisingly, these plots show that accounts with high variability are generally more difficult 
to predict accurately, even when they are weather-sensitive.  Median relative errors are farther 
from zero for all methods, and are more than 10 percent off for the unadjusted averages.  Median 
Theil’s U is around 20 percent for the unadjusted weather models, and closer to 30 percent for 
the unadjusted averages.  The additive adjustment to the last two hours still tends to minimize 
both bias and median Theil’s U for each estimation-selection combination, though in some cases 
the scalar adjustment does somewhat better.  In terms of the extreme Theil’s U, the scalar 
adjustment always does best.  For the averages, the THI adjustments are better than no 
adjustment, but worse than any of the adjustments to the pre-curtailment hours.  Without 
adjustment, the weather models have smaller bias than the averages, but with adjustment to pre-
curtailment hours the averages perform about as well as the weather models. 
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5.4.2 Non-Weather-Sensitive Accounts 

Low-Variability Accounts 

Figures 5-10 through 5-12 show the performance for non-weather-sensitive low-variability 
accounts in the summer. 
 

Figure 5-10 
Median Relative Hourly Error 
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Figure 5-11 
Median Account Theil’s U  

Summer Uncurtailed Non-Weather-Sensitive Low-Variability Accounts 
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Figure 5-12 
95th Percentile Account Theil’s U  

Summer Uncurtailed Non-Weather-Sensitive Low-Variability Accounts 
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Observations from these plots include the following. 

1. Most of the unadjusted averages (A1 through A5) show some negative bias (around –1 
percent) even for these non-weather-sensitive accounts.  The reason may be that these 
accounts do have some weather-sensitive load components, but the diagnostics classify 
the account as non-weather-sensitive because other variations generally dominate the 
weather-sensitive load components. 

2. The unadjusted High 5 average (A7) tends to over-adjust, with a median +3 percent 
relative error. 

3. With adjustments, all the methods come within + 1 percent median relative error. 

4. For all estimation-selection methods, the adjustment to the last two hours again has the 
lowest median Theil’s U of all the adjustment methods, and in most cases has the 
smallest or nearly smallest median relative hourly error. 

5. The THI adjustments have the worst bias and worst median Theil’s U for all the averages. 

6. The conditional weather models perform about the same as the averages.  However, the 
lag models have somewhat worse variability indicated by higher median Theil’s U.  For 
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weather models based on less than a full season, the extremes (indicated by 95th 
percentile Theil’s U) are much worse with the lag model. 

High-Variability Accounts 

The final set of figures for tests of uncurtailed accounts are for the non-weather-sensitive high-
variability accounts.  As for the weather-sensitive accounts, the high-variability accounts show 
median relative errors farther from zero and larger median and 95th percentiles of account Theil’s 
U.  That is, both systematic errors and overall error magnitudes are larger than for the low-
variability accounts. 
 
For each adjustment method, the full-season weather models have slightly less bias but much 
worse variability than the averages, indicated by higher median and 95th percentile Theil’s U.  
Thus, for high-variability accounts without weather drivers, using a closer set of days is more 
helpful than having a longer data series.  The 10- and 20-day weather models perform 
comparably to the averages.  The additive adjustment to the last two hours is still the best 
performer in terms of Theil’s U and median relative error.  However, the other adjustments, other 
than the THI, are nearly as good. 
 

Figure 5-13 
Median Relative Hourly Error 

Summer Uncurtailed Non-Weather-Sensitive High-Variability Accounts 
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Figure 5-14 
Median Account Theil’s U  

Summer Uncurtailed Non-Weather-Sensitive High-Variability Accounts 
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Figure 5-15 
95th Percentile Account Theil’s U  

Summer Uncurtailed Non-Weather-Sensitive High-Variability Accounts 
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5.4.3 Summary  

Based on the results for uncurtailed accounts above, it appears that the following can be 
recommended for summer baselines: 

1. Additive adjustment to the two hours before curtailment appears to be the best 
adjustment, in terms of minimizing both bias and overall error magnitude, for all 
methods, for weather-sensitive and non-weather-sensitive, high- and low-variability 
accounts. 

2. For weather-sensitive accounts, weather models perform somewhat better than averages.  
However, adjusted averages (scalar or additive) can perform nearly as well.  Longer input 
data series improves weather model performance, but only slightly. 

3. For non-weather-sensitive accounts, conditional weather models (i.e., models that drop 
inappropriate weather variables based on diagnostic screening) do not increase variability 
compared to simpler averages.  However, for high-variability non-weather-sensitive 
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accounts full-season weather models can be higher variability than either simple averages 
or weather models based on 10 or 20 days. 

4. The High 5 of 10 selection rule (highest 5 of last 10 days) gives the best unadjusted 
average for weather-sensitive accounts.  However, with additive adjustment to the last 
two hours the method is no better than the other averages.  For non-weather-sensitive 
accounts the High 5 of 10 average has positive bias unless an adjustment is included. 

5. The THI adjustments have higher variability and worse bias than the other adjustments to 
averages. 
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5.5 UNCURTAILED ACCOUNTS, NON SUMMER  

Results for weather-sensitive accounts in the non summer period corresponding to those shown 
above are shown in the next series of figures.  Observations for all non summer results are 
provided at the end. 
 
5.5.1 Weather-Sensitive Accounts 

Low-Variability Accounts 
 

Figure 5-16 
Median Relative Hourly Error 
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Figure 5-17 
Median Account Theil’s U  
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Figure 5-18 
95th Percentile Account Theil’s U  
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High-Variability Accounts 

Figure 5-19 
Median Relative Hourly Error 
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Figure 5-20 
Median Account Theil’s U  
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Figure 5-21 
95th Percentile Account Theil’s U  
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5.5.2 Non-Weather-Sensitive Accounts 

Low-Variability Accounts 

Figure 5-22 
Median Relative Hourly Error 
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Figure 5-23 
Median Account Theil’s U  
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Figure 5-24 
95th Percentile Account Theil’s U  

Nonsummer Uncurtailed Non-Weather-Sensitive Low-Variability Accounts 

ws=0

Adjustment None Additive 1-2 Scalar 1-2
Additive 3-4 Scalar 3-4 Additive THI
Scalar THI

0.0

0.1

0.2

0.3

0.4

0.5

Base estimation method and data selection
A1 A2 A3 A4 A5 A6 A7 A8 B1 C1 D1 E1 F1 G1 B4 C4 D4 E4 F4 G4 B8 C8 D8 E8 F8 G8

 



SECTION 5   RESULTS OF PERFORMANCE TESTS 

 5–36  

High-Variability Accounts 

Figure 5-25 
Median Relative Hourly Error 
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Figure 5-26 
Median Account Theil’s U  
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Figure 5-27 
95th Percentile Account Theil’s U  
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5.5.3 Observations for Non Summer Accounts 

Observations for the uncurtailed non summer accounts are as follows: 

• Accurate weather modeling is more difficult than for summer loads.  The performance of 
weather models is not clearly better than that of the use of average day methods even for 
low-variability weather-sensitive accounts.  For high-variability weather-sensitive 
accounts the adjusted averages do better in terms of both bias and overall error 
magnitude. 

• For low-variability weather-sensitive accounts, the unadjusted High 5 of 10 average 
method performs best in terms of small bias and low variability.  For high-variability 
and/or non-weather-sensitive accounts, the unadjusted High 5 method does not perform 
as well as adjusted methods. 

• For all estimation-selection rules and three of the four account types, the additive 
adjustment to the last two hours has smallest median Theil’s U, and smallest or close to 
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smallest bias.  However, for high-variability non-weather-sensitive accounts, the scalar 
adjustment has slightly worse bias but somewhat lower Theil’s U. 

• For non-weather-sensitive accounts there is little difference across estimation methods 
and selection rules in either bias or overall error magnitude.   

• Unadjusted averages and weather models tend to understate baseline load profiles and 
peak savings estimates. 
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5.6 CURTAILED SUMMER ACCOUNTS 

5.6.1 Reference Case for Comparisons 

To provide similar method comparisons to those presented above for actual curtailment events, it 
was necessary to select a method to represent the best estimate of the true load that would have 
occurred in the absence of curtailment.  Based on the results for the uncurtailed accounts, we 
initially selected the conditional full-season degree-day model with additive adjustment to the 
last two hours.   
 
However, the comparative results immediately illustrated a key shortcoming of this method in 
actual curtailment situations.  Many operations will send a shift home early or cancel a shift 
entirely when faced with a curtailment notice or the likely prospect of one.  When this happens, 
the load in the two hours before curtailment is near zero, and the adjustment of the average or 
modeled load to these two hours produces a negative or zero baseline for the duration of the 
curtailment period.   
 
An example of such an account is shown in the next figure.  Although the actual load was 
reduced to zero in hour 13, the curtailment did not begin until hour 14.  The adjusted baseline 
was near zero during usual operating hours, and became substantially negative after the hours 
when load customarily dropped to zero. 
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Figure 5-28 
Adjustment to Last Two Hours for Account That Curtailed before Required Time 
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To avoid this type of problem, we defined the “true” load for curtailed cases as the unadjusted 
full-season daily degree-day model. 

5.6.2 Findings for Curtailed Accounts 

Errors in Baseline Estimation 

The displays for the curtailed accounts are shown in Appendix B.  With the true load in the 
absence of curtailment defined as indicated above, the results for the curtailed cases generally 
followed similar patterns to those seen for the uncurtailed cases, with the following differences. 

1. All the full-season weather models show very little bias and low variability.  This is 
because there is little difference among the models, as indicated by the uncurtailed 
results.  Thus, the relative errors, defined as the relative difference between a method and 
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the reference method, which is one of the full season models, are small.  For the model 
chosen as the reference (unadjusted D8), all the errors are necessarily 0. 

2. The unadjusted methods tend to show smaller biases and smaller Theil’s U than for the 
same account types with uncurtailed accounts.  This result makes sense given the 
similarity between the weather models and the averages, with a weather model defined as 
“truth.”  That is, the errors are reduced because part of the natural variability in actual 
loads is eliminated by defining truth as the result of the weather model.  

3. The adjustment to the last two hours, rather than looking like the best method in most 
cases, shows substantial negative bias, and large overall error magnitude. 

4. The adjustment to the third and fourth hours prior to curtailment generally has greater 
negative bias and worse overall error magnitude than for the same account type with 
uncurtailed accounts.  This result indicates that some of the “pre-event” curtailment 
effects are seen in these hours as well as in the immediate last two hours. 

 
Thus, the methods that work best in the abstract case of accounts that were not actually subject to 
a curtailment process can be very problematic in practice.  The recommendations in Section 6 
address this problem. 

Errors in Estimating Demand Reduction 

In addition to looking at errors relative to estimated actual loads, we also looked at errors relative 
to the estimated load reduction, as noted in Section 4.  These results are also included in 
Appendix B. 
 
In terms of program operations, the important question is how far off the estimated reduction is 
from the customer’s actual load shed.  While the magnitudes are greater, the qualitative patterns 
of errors relative to reduction amounts are similar to those for errors relative to load levels.  Very 
roughly, the medians and Theil’s U statistics for errors relative to estimated reductions are about 
three times as large as the errors relative to estimated load.  This relationship corresponds to 
reductions being on the order of one-third of total load.  Of course, for an individual account and 
hour the reduction may be anywhere from a small fraction to 100 percent of the load. 
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6 FINDINGS AND RECOMMENDATIONS 
This study has examined methods of calculating customer baseline loads for the purpose of 
estimating peak  load reductions from demand response programs.  The examination began by 
defining a vocabulary of method features as a basis for describing and comparing alternative 
methods.  Using this foundation, the study has considered:  

• qualitative issues related to calculation methods that are of concern to stakeholders 

• conceptual pros and cons of different method features in terms of these issues 

• quantitative performance tests related to accuracy and bias for a range of methods 
combining various features. 

 
In this section, we review the issues that are important for baseline calculation methodologies.  
We then summarize the advantages and disadvantages of different method features in terms of 
both qualitative considerations and the quantitative results of the performance tests conducted.  
We provide further detail on the quantitative test results for different types of customer accounts.  
Finally, taking into account both the qualitative and quantitative findings, we offer general 
recommendations for baseline calculation methods for different types of accounts and conditions, 
and provide guidance on choosing among methods.   
 

6.1 GENERAL FINDINGS 

Important considerations in defining a baseline calculation method include: 

• simplicity of calculation 

• minimizing burden on participants and operators, in terms of costs, ease of 
understanding, and ease of operation 

• limiting the potential for gaming 

• limiting the potential for distortion if load is curtailed early 

• ability to know the baseline immediately after a curtailment 

• ability to know the baseline before making a curtailment decision 

• minimizing method bias:  systematic tendency to over- or under-state 

• minimizing method variability:  tendency to wide swings in estimates. 
 
Specific concerns that have been addressed by developers of existing baseline methods for 
demand response programs include: 

• providing accurate baselines for weather-sensitive accounts 

• avoiding windfall credits for cool weather 
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• avoiding windfall credits for planned shut-downs. 
 
Advantages and disadvantages of key method features in terms of these concerns are 
summarized in the table below.  This table expands the qualitative summary provided in Section 
3 with findings from the test results presented in Section 5. 
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Table 6-1 
Advantages and Disadvantages of Key Baseline Method Features 

Based on Qualitative Considerations and Test Results 

 

Baseline Method Variant Pros Cons
Average Any Simple, easy to use and understand, 

low cost
Tends to understate baseline for weather-
sensitive loads, especially if unadjusted

High 5 of last 10 
days

Partial adjustment for weather-sensitive 
loads

Still tends to understate baseline for weather-
sensitive loads
Can allow windfall load reduction credit on cool 
days

Regression Any Provides baseline corresponding to 
particular weather conditions of 
curtailment day

More complex, harder to understand, higher 
cost

If observations don’t include conditions as 
extreme as the curtailment day, model estimate 
may be inaccurate
If account isn't weather-sensitive, may be less 
accurate than simpler methods

Full Season Adequate data and range of variation to 
yield accurate coefficients

Operating conditions from the period data are 
taken from may be different from curtailment 
day

Recent 10 days Operating conditions more likely to be 
similar to curtailment day

Model based on limited data may be inaccurate

Lag temperature/ 
degree-day

Tends to reduce bias for weather-
sensitive accounts

Tends to increase variability of baseline 
estimate.

Conditional Allows same general form and 
procedure to be used for weather-
sensitive and non-weather-sensitive 
accounts, without pre-screening.  
Doesn't add much error for non-weather-
sensitive accounts.

More complex.  May give less consistent results 
across events for an account, if weather terms 
are sometimes retained and sometimes not.

Adjustment to 
precurtailment hours

Any Simple, easy to use and understand, 
low cost

May be potential for gaming behavior during day-
of-curtailment adjustment period

Adjusts to weather and operating 
conditions of curtailment day

Appropriate pre-curtailment increase in load 
(e.g., pre-cooling) will result in overstated 
baseline

Limits potential for collecting windfall 
credits for planned shut-downs

Pre-curtailment decrease in load in response to 
curtailment request (e.g., long ramp-down, 
canceling a shift) will result in understated 
baseline

Additive May adjust well for load change that is 
constant throughout day (e.g., industrial 
processes)

May not be appropriate if load changes during 
curtailment period (ratio adjustment may be 
better suited)

Scalar May adjust well for load change that is 
function of exogenous factor throughout 
day (e.g., higher levels of occupancy)

May not be appropriate if the day-to-day load 
variation is constant over the day (additive 
adjustment may be better suited)

to last 2 hours 
before curtailment 
period

If load in these hours is unaffected by 
anticipated or initiated curtailment, 
provides best accuracy

If substantial curtailment is initiated in these 
hours, severely understates baselines

to 3rd and 4th hour 
before curtailment 
period

Less potential for understated baseline 
due to pre-curtailment-period demand 
response

More variability than adjustment to last 2 hours

Weather-Based Adjustment Any Explicitly takes into account weather 
conditions

Adjustment may not be known to customer until 
after curtailment period  (i.e., until after weather 
conditions are known for the day)

No opportunity for gaming as with 
adjustment to precurtailment hours

If no observations are available for extreme 
conditions, estimates used for adjustment may 
be outside range of model
Will badly predict load reductions if the buildings 
are dominated by internal loads
Less accurate than alternative adjustments or 
weather model for both weather-sensitive and 
non-weather-sensitive accounts
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Further details on the test results are provided below.  Recommendations based on both the 
practical design considerations and the test results are then presented. 
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6.2 FINDINGS FROM TESTS ON UNCURTAILED ACCOUNTS 

Test results for both weather-sensitive and non-weather-sensitive summer accounts for the best 
performing methods are summarized in Table 6-2.  Qualitative conclusions from the test findings 
for both summer and nonsummer are described below. 

6.2.1 Weather Models 

Summer Weather-Sensitive Accounts 

• For summer weather-sensitive accounts, best overall performance (low bias and low 
variability) is a weather model with adjustment. 

• Performance is not dramatically different for different models tested, except that the 
model with lagged degree-day term showed higher variability than the others.  

• The unadjusted lag model based on a full season of data had the lowest bias of any 
unadjusted method, about 0.2 percent.  But with adjustment the bias was higher than with 
almost any other method (+ 3 to 4 percent). 

• Simple models based on daily temperature or daily degree-days performed about as well 
as a model with hourly degree-days. 

• Adjusted averages can perform nearly as well as weather models, but tend to have either 
worse bias or worse variability or both. 

• Without adjustment, all the weather models except the full-season lag model still tend to 
understate the baseline, though not by as much as the unadjusted averages. 

• Both bias and variability are reduced by longer input data series. 

Summer Non-Weather-Sensitive Accounts 

• Use of a “conditional” weather model (that drops weather variables for an account if 
they’re not statistically significant or tend to have the wrong sign) doesn’t increase 
variability compared to using an average, and appears to reduce some potential for bias. 

• For high variability accounts, the lowest variability and bias is for the full season 
conditional weather models.  With less than a full season of data, many of the adjusted 
averages perform about as well.  However, the “high 5” (highest 5 of the last 10) has 
higher variability than the other averages. 

• Adjustment to the hours before curtailment is important for both averages and weather 
models. 
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Table 6-2 
Summary of Test Results for Summer Accounts 

Load Type Estimation
Data 
Selection Adjustment

Weather-Sensitive Weather Model last 10 add 1-2 -0.2% to 0.7% 5.8% to 7.4% 15.2% to 19.2%
Low Variability last 20 add 1-2 -0.3% to 1.1% 5.3% to 7.5% 15.5% to 22.3%

full season add 1-2 -0.2% to 2.9% 5.1% to 6.9% 14.7% to 19.2%

Average High 5 of 10 add 1-2 0.3% 5.6% 15.2%
last 10 add 1-2 -0.6% 5.6% 14.9%

Weather Model last 10 none -2.7% to -1.6% 8.1% to 10.7% 28.6% to 30.7%
last 20 none -3.3% to -0.7% 7.9% to 8.6% 23.4% to 28.2%
full season none -2.7% to 0.9% 6.6% to 8.2% 24.4% to 26.9%

Average High 5 of 10 none -4% 7% 25%
High 10 of 11 none -7% 8% 27%
last 10 none -9% 11% 29%

Average High 5 of 10 scalar THI 0.6% 5.8% 25.8%
add THI 0.4% 5.9% 26.0%

Average High 5 of 10 add 3-4 0.1% 7.3% 22.9%
last 10 add 3-4 -1.5% 7.2% 23.0%
last 20 add 3-4 -1.6% 6.6% 24.8%

Weather-Sensitive Weather Model last 10 add 1-2 -1.5% to 0.0% 12.8% to 15.7% 158.6% to 208.5%
High Variability last 20 add 1-2 -1.9% to 0.0% 11.4% to 13.8% 128.6% to 207.6%

full season add 1-2 -2.0% to 1.2% 10.3% to 14.1% 136.8% to 136.8%

Average High 5 of 10 add 1-2 0.6% 11.9% 283.4%
last 10 add 1-2 -1.1% 10.3% 158.6%

Weather Model last 10 none -11.6% to -8.4% 19.0% to 19.5% 272.0% to 272.0%
last 20 none -8.7% to -5.4% 21.6% to 23.3% 240.5% to 240.5%
full season none -7.7% to -1.5% 17.8% to 25.0% 264.5% to 264.5%

Average High 5 of 10 none -9.4% 23.1% 551.7%
High 10 of 11 none -21.4% 27.6% 331.2%
last 10 none -22.7% 28.9% 272.0%

Average High 5 of 10 scalar THI -3.9% 18.5% 546.7%
add THI -5.1% 20.1% 549.1%

Average High 5 of 10 add 3-4 3.4% 14.0% 325.4%
last 10 add 3-4 -1.7% 13.7% 222.0%
last 20 add 3-4 -2.4% 15.6% 217.2%

Median Relative Hourly 
Error

Median Relative Root-Mean-
Square Error

Extreme Relative Root-Mean-
Square Error
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Table 6-2 (cont) 
Summary of Test Results for Summer Accounts 

 

Load Type Estimation
Data 
Selection Adjustment

Nonweather-Sensitive Weather Model last 10 add 1-2 -0.8% to 0.8% 5.2% to 6.4% 21.0% to 45.5%
Low Variability last 20 add 1-2 -0.6% to 0.1% 5.1% to 5.9% 18.6% to 27.1%

full season add 1-2 -0.7% to 0.3% 5.0% to 5.6% 19.3% to 19.3%

Average High 5 of 10 add 1-2 0.1% 5.0% 21.4%
last 10 add 1-2 -0.7% 5.3% 20.2%

Weather Model last 10 none -0.8% to 1.1% 9.8% to 10.9% 29.5% to 51.1%
last 20 none -0.6% to 1.0% 8.8% to 9.0% 25.2% to 32.4%
full season none -0.8% to 0.4% 7.8% to 8.5% 26.2% to 26.2%

Average High 5 of 10 none 3% 8% 40%
High 10 of 11 none 0% 8% 39%
last 10 none -1.3% 9.5% 41.5%

Average High 5 of 10 scalar THI 3.0% 9.4% 40.0%
add THI 2.9% 9.4% 39.9%

Average High 5 of 10 add 3-4 0.6% 6.7% 27.6%
last 10 add 3-4 -1.5% 7.1% 31.9%
last 20 add 3-4 -1.1% 7.0% 25.3%

Non-Weather-Sensitive Weather Model last 10 add 1-2 -1.3% to -0.6% 20.9% to 23.3% 49.4% to 50.7%
High Variability last 20 add 1-2 -1.3% to -0.7% 21.7% to 23.2% 50.5% to 50.5%

full season add 1-2 -0.5% to -0.2% 23.1% to 24.1% 88.6% to 88.6%

Average High 5 of 10 add 1-2 2.3% 22.6% 58.8%
last 10 add 1-2 -1.0% 20.9% 49.4%

Weather Model last 10 none -5.6% to -4.0% 21.9% to 23.0% 56.2% to 62.4%
last 20 none -7.6% to -6.1% 24.4% to 27.7% 83.3% to 83.3%
full season none 2.5% to 3.5% 32.9% to 35.1% 260.0% to 260.0%

Average High 5 of 10 none 9.3% 23.4% 100.0%
High 10 of 11 none -2.7% 20.7% 62.3%
last 10 none -5.6% 21.9% 62.4%

Average High 5 of 10 scalar THI 6.6% 25.5% 84.4%
add THI 4.8% 28.9% 85.0%

Average High 5 of 10 add 3-4 5.8% 24.1% 70.5%
last 10 add 3-4 -2.2% 21.8% 51.2%
last 20 add 3-4 -1.9% 20.5% 55.5%

Median Relative Hourly 
Error

Median Relative Root-Mean-
Square Error

Extreme Relative Root-Mean-
Square Error
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Nonsummer Accounts 

Weather-Sensitive Accounts 

• Accurate weather modeling is more difficult than for summer accounts.  The performance 
of weather models is not clearly better than that of the averages. 

• For low-variability accounts, an additive adjustment with any of the averages except the 
“high 5 of 10”, and any of the models has a median relative error close to zero.   

• For high-variability accounts, the adjusted averages have median relative error close to 
zero, while the weather models show some negative bias.  The averages also show 
somewhat lower variability than the weather models. 

Nonsummer Non-Weather-sensitive 

• For nonsummer non-weather-sensitive accounts there is little difference across estimation 
methods and selection rules in either bias or variability.   

• For both weather models and averages, additive adjustment to the two hours before 
curtailment tends to produce the lowest bias and variability of any of the possible 
adjustments.  

• Unadjusted averages and weather models tend to understate load. 

6.2.2 Adjustments 

• Some kind of adjustment to hours before curtailment helps to reduce bias and variability 
even with weather models. 

• Additive adjustment to two hours before generally performed best of the adjustments 
tested, in terms of both bias and variability reduction. 

• Scalar adjustment to two hours before was often as good or better, but in some cases blew 
up and produced much higher variability. 

• PJM’s THI-based adjustment generally had worse variability than the other adjustments, 
and was not superior in bias reduction. 

6.2.3 Data Selection 

• Bias and variability of weather models is reduced by longer input data series, but not 
dramatically. 

• The increased variability with shorter input series is more noticeable for conditional 
weather models applied to non-weather-sensitive accounts, particularly high variability 
accounts. 
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• The different averages compared performed similarly in terms of bias and variability, 
except for those that select a subset of days based on high load.  For summer loads, the 
High 5 of 10 average reduces the otherwise negative bias.  For summer loads using 
additive adjustment, High 5 of 10 gives the lowest bias of any of the averages, for both 
weather-sensitive and non-weather-sensitive accounts, and comparable variability.  The 
10 of 11 average gives some bias reduction, but not as much.  For nonsummer loads, 
however, the High 5 of 10 average inflates an already positive bias.  The other averages 
perform better, and roughly comparably to each other, in terms of both bias and 
variability, for both weather-sensitive and non-weather-sensitive accounts. 
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6.3 FINDINGS FROM TESTS ON CURTAILED ACCOUNTS 

A key finding from testing curtailed accounts is the practical challenge of using adjustments to 
the hours just before curtailment.  For uncurtailed accounts, adjustment to the last two pre-
curtailment hours reduced both bias and variability for every estimation method and selection 
rule, except in some cases for the high 5 of 10 average.  In most cases, this adjustment had 
lowest bias and lowest variability.  This result makes senses because the hours closest to the 
curtailment period are likely to be most indicative of both weather and operating conditions for 
that day, in the absence of curtailment. 
 
However, many of the actual curtailed accounts indicated curtailment, often to close to zero load, 
by the start of the two hours prior to the official start of the curtailment period.  These are not 
cases of plant shut-down, since the earlier hours are at typical high loads.  Rather, the operations 
appeared to be curtailed rapidly after a curtailment notification.  In these cases, the adjustment to 
the two hours before the curtailment period produced very low, sometimes negative, baselines, 
with severe understatement of curtailment amounts.   
 
For this reason, the additive adjustment is not a practical choice for accounts that are likely to 
implement load reductions in this way.  As discussed in Section 3, this adjustment is also a 
concern because of the possibility that customers will deliberately boost load in the hours prior to 
curtailment to produce an artificially high baseline.  Pre-cooling the building, without intent to 
“game” the system, can produce a similar distortion.   
 
Thus, while the additive adjustment to the last two hours is very effective for accounts that will 
not change operations substantially outside of the curtailment period, this method has problems 
for other accounts.  A different method is needed for accounts whose operations outside of 
curtailment periods is substantially affected by a notification or anticipation of a curtailment 
event. 
 
Alternatives include the following: 

1. Adjust to the third and fourth hours prior to curtailment.  This approach reduces, but does 
not eliminate, the problem related to reductions before the start of the formal curtailment 
period, such as sending a shift home.  The adjustment to earlier hours also reduces the 
potential for manipulation of the baseline, if notification is typically less than three hours 
from curtailment start.  On the other hand, earlier hours are less indicative of what load 
would have been for the rest of the day absent curtailment.  Test results for averages on 
uncurtailed accounts found that the adjustment to hours –3 and –4 adds some negative 
bias, and increases the variability compared to the adjustment to hours –1 and –2.  For 
weather-sensitive accounts, if the adjustment to hours –3 and –4 is used, regression 
models will mostly eliminate the bias, but will also add additional variability unless at 
least a 20-day period is used for the regression. 

2. Use a full-season regression model without adjustment.  This method is essentially 
unbiased and has minimal variability for weather-sensitive accounts.  The practical 
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difficulty is waiting until a full season of data are available, or relying on a previous 
season.  In addition, if operating practices have changed since the previous season, or 
change within the current season, the full-season model may not be a good representation 
of load on the curtailment day. 

3. Use the “High 5 of 10” average with THI adjustment.  This adjustment is not dependent 
on actual behavior in the hours immediately before curtailment.  As a result, it is subject 
neither to manipulation by the customer nor to severe distortion due to curtailment in 
advance of the required time, nor to inflation due to pre-cooling.  This combination has 
variability no worse than that of unadjusted averages, and for low-variability weather-
sensitive accounts, it is essentially unbiased.  For non-weather-sensitive accounts, it 
produces some positive bias and increases variability compared to unadjusted averages.   

The THI adjustment for this analysis was based on a full season of load and weather data 
from the season in which the curtailment occurred.  Actual implementation of the THI 
adjustment by PJM requires the THI regression would be based on a full season of data 
from the previous year or a minimum of a month of data from the current season.  
Practical considerations are the following. 

• It either requires load history from the prior year or must rely on shorter data 
spans from the ongoing season. 

• Using previous year data, if the load pattern has changed it can produce erroneous 
results.  Using limited data from earlier in the summer, regression results may be 
forced to make predictions outside of the range of the data. 

• It involves an adjustment that is difficult to explain succinctly and may be 
difficult to understand.  
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6.4 RECOMMENDATIONS 

The choice of a baseline method needs to balance a number of practical considerations as well as 
prediction accuracy.  These considerations, listed at the beginning of this section, are: 

• simplicity of calculation 

• minimizing burden on participants and operators, in terms of costs, ease of 
understanding, and ease of operation 

• limiting the potential for gaming 

• limiting the potential for distortion if load is curtailed early 

• ability to know the baseline immediately after a curtailment 

• ability to know the baseline before making a curtailment decision 

• minimizing method bias:  systematic tendency to over- or under-state 

• minimizing method variability:  tendency to wide swings in estimates. 
 
Different methods are appropriate for different types of accounts, and according to the 
importance assigned to each of the above considerations.  In developing our recommendations, 
we did not attempt to score each method or feature with respect to each of these criteria or assign 
explicit weights to the criteria.  In general, our approach is  

1. allow for options that recognize different circumstances 

2. favor simplicity if the potential accuracy gains of greater complexity appear to be slight 

3. indicate alternatives and trade-offs with respect to the criteria. 

Adjustments 

For almost all basic methods, an additive adjustment to the two hours prior to curtailment can 
reduce both bias and variability.  The problems with this approach are the potential for gaming, 
and the potential for understatement of load reduction if a customer curtails prior to the formal 
curtailment period.  The additive adjustment to the last 2 hours should be considered as an option 
for accounts that are considered unlikely to be subject to either of these distortions. 

For weather-sensitive accounts, alternatives to this adjustment include: 

• PJM’s High-five average with THI adjustment 

• Adjust to the third and fourth hour prior to curtailment. 

• For summer loads, weather model using a full season of data, with no adjustment.   
 
In general, scalar and additive adjustments perform similarly well, except that scalar adjustments 
sometimes blow up resulting in higher variability.  If scalar adjustments are used, some 
procedure to avoid extreme adjustment ratios should be incorporated.  On the other hand, 
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additive adjustments can produce negative baselines; the baseline should be truncated at zero if 
additive adjustments are used. 

Weather Modeling 

If more complex methods are acceptable, weather models are recommended for summer 
weather-sensitive accounts.  Weather models may also be useful for winter weather-sensitive 
accounts, but are not as clearly superior to simple averages, particularly if adjustments to the 
current day are also used.  As noted in Section 4, weather models with a variable degree-day 
base would be expected to perform somewhat better than those tested in this study; that 
improved performance might justify the greater complexity. 
 
No single model structure offers a clear preference for all situations.  Models relying on daily 
temperature or degree-day variables appear to perform as well as those using hourly weather 
inputs.  However, these models are likely to behave less well on days when there are unusual 
changes in the weather, or in regions where such changes are likely.  Likewise, models 
incorporating humidity and/or lag degree-day variables did not perform better across the cases 
examined in this study, but these terms may be important for some regions and customer types. 
 
If weather models are used, screening criteria should be included to eliminate weather terms that 
are not statistically significant or physically meaningful for a particular account.  This screening 
can be done once, at the beginning of the curtailment season or at initial enrollment in a program, 
and may be based on a full season of data if available.  Without such screening, high variability 
can result for some accounts.  Use of such screening procedures can allow a single general 
procedure, including this screening, to be applied to all accounts, without pre-classifying the 
accounts by weather sensitivity.  Even if the weather modeling is restricted to accounts believed 
to be weather-sensitive, use of the screening procedure can still eliminate extreme anomalous 
results. 
 
Models based on a full season of data tend to be more reliable than those based on shorter 
periods.  However, waiting until the season has ended to determine baselines is impractical for 
most programs.  Models based on the previous 20 business days perform slightly better than 
those based on the previous 10.  In most cases, the difference is not dramatic, but reliance on 
only 10 days of data will increase the potential for anomalous events to skew results. 
 
An alternative to using an additive or scalar adjustment after applying the weather model is to 
include load at hours just before curtailment as predictors in the model.  This approach was not 
tested in the study but should be considered. 

Averages 

If simpler models are a priority, hourly averages with adjustment to the hours prior to curtailment 
can be used with good results even for weather-sensitive accounts.  For non-weather-sensitive 
accounts, averaging methods make more sense than weather models.  However, adjustment to 
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hours prior to curtailment, subject to the concerns discussed above, can improve method 
performance for both types of account.  With this adjustment, averages based on different 
selection rules (last 10, last 11, highest 10 of last 11, highest 5 of last 10, or last 20) tend to 
perform similarly.  For summer loads, the High 5 of 10 average with additive adjustment 
performed somewhat better than averages using other selection rules.  Averages based on a full 
season can do somewhat better, if this much delay in results is acceptable. 

Proposed Approaches by Account Type 

Offering Options 

A general recommendation is that baseline calculation protocols should provide for alternatives 
based on customer account types and operating practices.  One way to simplify the provision of 
options is to establish a default method, and allow certain deviations.   
 
The basis for the selection of method should be not just the business type, but also the load 
patterns evident in the data as well as the customer’s description of operating practices.  Thus, 
for example, a customer who indicates a desire to be able to cancel a shift in advance of the 
control period should have access to a baseline calculation method that is not distorted by this 
practice. 
 
At the same time, the program operator should have some discretion to bar customers from using 
an approach that they appear to have manipulated in the past.  Thus, if there is evidence that a 
particular customer tends to inflate load after notification, beyond what would reasonably be 
expected for pre-cooling, that customer might not be able to use a method that includes 
adjustment to the two pre-curtailment hours. 

A Practical Default Baseline Calculation Method 

A method that generally works well for a range of account types is the simple average of the last 
10 days, with additive adjustment to the two hours prior to the curtailment period.  This method 
can be recommended for both weather-sensitive and non-weather-sensitive accounts, with both 
low and high variability, for summer and nonsummer curtailments. 
 
This method is not recommended for accounts that tend to begin load curtailment substantially in 
advance of the formal curtailment period.  It is also not recommended for situations where the 
potential for gaming is a strong concern, whether across the program or for particular customers. 

Alternatives for Summer Weather-Sensitive Accounts 

For summer programs, practical alternatives for weather-sensitive accounts include the 
following: 

• unadjusted weather models.  Longer input time periods are preferable, particularly for 
high-variability accounts 

• the High 5 of 10 average with THI adjustment. 
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Simpler methods with less desirable but potentially acceptable performance include 

• Unadjusted averages, particularly the High 5 of 10 

• Averages or weather models adjusted to the third and fourth hour before curtailment. 

Alternatives for Summer Non-Weather-Sensitive Accounts 

For non-weather-sensitive summer accounts, the unadjusted High 10 of 11 average performs 
nearly as well as the recommended default, particularly for low-variability accounts.  Next best is 
the simple average of the last 10 days with additive adjustment to the third and fourth hours 
before curtailment. 
  
For low-variability accounts, unadjusted weather models, with weather terms retained only if 
indicated by the data, actually perform slightly better than the recommended default.  However, 
unlike the case for weather-sensitive accounts, these models perform better if based on shorter 
periods of data.  For high-variability accounts, unadjusted weather models tend to be worse than 
the unadjusted high 10 of 11 average.   

Alternatives for Nonsummer Accounts 

For nonsummer accounts, modeling is more challenging and there are fewer alternatives.  For 
weather-sensitive accounts, the High 5 of 10 average with THI adjustment can be used.  For low-
variability accounts, the unadjusted High 5 of 10 average appears to perform slightly better, but 
for high-variability accounts it is worse. 
 
For non-weather-sensitive nonsummer accounts, the unadjusted High 10 of 11 appears to be the 
best alternative.  Any of the averages with additive adjustment to the third and fourth hour before 
curtailment perform not quite as well. 

Summary of Recommended Methods and Alternatives 

The recommended methods, alternatives, and operational considerations for different account 
types are summarized in Table 6-3. 
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Table 6-3 
Recommended Methods and Alternatives 

 

Season
Weather 
Sensitivity Variability Estimation

Data 
Selection Adjustment Estimation Data Selection Adjustment

Summer
Weather-
Sensitive Low Average last 10 add 1-2

weather 
models any none
Average High 5 THI

Summer
Weather-
Sensitive High Average last 10 add 1-2

weather 
models longer is better none
Average High 5 of 10 THI

Summer
Non-Weather-
Sensitive Low Average last 10 add 1-2

weather 
models shorter is better none
Average High 10 of 11 none
Average last 10 add 3-4

Summer
Non-Weather-
Sensitive High Average last 10 add 1-2 Average High 10 of 11 none

Average last 10 add 3-4

Nonsummer 
Weather-
Sensitive Low Average last 10 add 1-2 Average High 5 of 10 none

Nonsummer 
Weather-
Sensitive High Average last 10 add 1-2 Average High 5 of 10 THI

Nonsummer 
Weather-
Sensitive Low Average last 10 add 1-2 Average High 10 of 11 none

Average last 10 add 3-4

Nonsummer 
Weather-
Sensitive High Average last 10 add 1-2 Average High 10 of 11 none

Average last 10 add 3-4

Recommended Default Recommended Alternatives
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6.5 AREAS FOR FUTURE DEVELOPMENT 

Reviewers of a draft of this report offered a number of valuable suggestions.  Many of these 
suggestions have been incorporated in the final version.  Others, while of considerable merit, 
were beyond the scope of what could be accomplished in this study. 
 
Most of the suggestions that could not be addressed were in the following categories: 

1. Test additional methods 

2. Examine results by finer categories of customer type  

3. Provide more explicit rules and clear-cut bases for choosing among alternatives, 
including methods for identifying gaming. 

 
These issues will be explored in further work by the IPMVP Technical Committee.  The 
committee will be building on this study to develop a DR baseline protocol that can be adopted 
as part of the IPMVP document.  The Protocol itself will include the establishment of consistent 
terminology, guidance on appropriate methods for different situations, and rationale for that 
guidance.  The technical analysis that forms a major portion of this report will not itself be part 
of the Protocol, but will be referenced as part of the rationale for the guidance. 
 
As part of the further work by the IPMVP, some additional methods may be tested.  Candidates 
for testing include: 

• ASHRAE load forecasting models 

• variable degree-day models 

• use of a single hour or two hours prior to curtailment as a flat baseline. 

The additional testing may also examine results by finer segments.  Customer type is not known 
for most of the data sets examined in this study.  However, customers can be classified by size, 
and possibly by other patterns in the load data. 
 
An IPMVP Protocol by its nature will offer options and guidance rather than being prescriptive.  
However, this Protocol can serve as the basis for establishing specific rules and procedures 
within a jurisdiction, and provide a common language for understanding these procedures.  
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A DESCRIPTION OF METHODS REVIEWED 
 
A.1 CA ISO SUMMER 2001 DRP – FIRST RFP BASELINE METHOD TYPE1 

Data Selection Criteria: 
Time Frame  Immediately preceding 10 business days. 
Exclusions  Control days. 
Extensions  None. 
 
Estimation Method:  Interval averages. 
 
Adjustment Methods:  None. 

A.2 CA ISO SUMMER 2001 DRP – SECOND RFP BASELINE METHOD TYPE1 

Data Selection Criteria: 
Time Frame  Top 10 of immediately preceding 11 business days. 
Exclusions  Control order or request days, days of involuntary service interruptions, single day 
with lowest event period usage. 
Extensions  None. 
  
Estimation Method:  Interval averages. 
 
Adjustment Methods:  None. 

A.3 CALIFORNIA MANUFACTURERS AND TECHNOLOGY ASSOCIATION (CMTA) 
PROPOSED OPTIONAL BINDING MANDATORY CURTAILMENT (OBMC) 
PLAN2 

Data Selection Criteria: 
Time Frame  Immediately preceding 10 business days. 
Exclusions  Control days. 
Extensions  None. 
  
Estimation Method:  Interval averages. 
 
                                                 
1 Second Request for Bids to Provide Demand Relief (Load) for Summer 2001, March 30, 2001, California 
Independent System Operator Corporation, http://www.caiso.com/docs/2001/03/30/2001033009195918940.pdf. 
2 CMTA's Proposed Program Details For OBMC Pilot Program (R.00-10-002) 
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Adjustment Methods:  Additive adjustment using hours h-1 through h-4. 

A.4 NY ISO 2001 DADRP/EDRP BASELINE METHOD3 

Data Selection Criteria: 
Time Frame   Top 5 of previous 10 business days, starting n-2. 
Exclusions  Before counting begins – Immediately preceding day (if weekday).   
 
AFTER ten previous weekdays identified – Exclude Emergency DR program days and days on 
which a Day-Ahead DR program bid was accepted.  Exclude all days not in top five of average 
event period usage. 
 
AFTER top 5 average usage days chosen – Exclude included day if found to have 4 consecutive 
hours within the hours of implementation that have usage less than 75% of the average of the top 
5 for each of those hours. 
 
Extensions   If fewer than 5 days are available after exclusions then eligible days are considered 
in reverse chronological order starting with day n-12 and with respect to all above exclusions.  
Only days within 30 days of the event may be considered.  If there are not five eligible days in 
the last 30 days, the baseline load is calculated as an average of those eligible days that do exist. 
 
Estimation Method:  Interval averages. 
 
Adjustment Methods:  None. 

A.5 NY ISO 2002 DADRP/EDRP BASELINE METHOD4 

Data Selection Criteria: 
Time Frame   Top 5 of previous 10 business days, starting n-2. 
Exclusions  Immediately preceding day (if weekday), Emergency DR program days, days on 
which Day-Ahead DR program bid was accepted and low usage days.  Days are added to the 10 
day basis incrementally.  The first weekday added (n-2, unless otherwise excluded) must have 
average daily event period usage greater than 25% of peak hourly load of the previous month, 
otherwise it is excluded as a low usage day.  Subsequent days added to the basis must have 
average daily event period usage e greater than 25% of the average event period usage of the 
days already included in the basis. 
 
Exclude all but 5 highest average daily event period usage days. 

                                                 
3 NYISO Day-Ahead Demand Response Program Manual.  Revised May 24,2001.  New York Independent System 
Operator. 
4 NYISO Day-Ahead Demand Response Program Manual.  Revised March 13, 2002.  New York Independent 
System Operator. 
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Extensions  Basis should include 10 days unless there are fewer than 10 eligible days in the last 
thirty days. 
 
Estimation Method:  Interval averages. 
 
Adjustment Methods:  Optional Scalar adjustment using hours h-3 and h-4.  Scalar is bound 
between .8 and 1.2. 

A.6 PJM ECONOMIC LOAD RESPONSE 20025 

Data Selection Criteria: 
Time Frame   Top 5 of previous 10 business days. 
Exclusions  Immediately preceding day (if weekday), PJM-declared control event day, days on 
which Day-Ahead DR program bid was accepted.   
 
AFTER ten day basis has been created based on the above exclusions low input days are 
removed.  Day is low input if average daily event usage is less than 75% of ten day event period 
usage.  Low input days are replaced and process repeated. 
 
Exclude all but 5 highest average daily event period usage days. 
   
Extensions  Basis should include 10 days unless there are fewer than 10 eligible days in the last 
thirty days. 
 
Estimation Method:  Interval averages. 
 
Adjustment Methods:  Optional Temperature-Humidity Index based (THI) scalar adjustment.  
A simple linear regression is fit with peak hour load as a function of the THI.  Using the 
estimated intercept and slope, load can be estimated with a THI value.  The adjustment uses an 
estimate of load based on the average control day peak hour THI and an estimate of load based 
on the baseline day peak hour average THI.  It is the ratio of the control day estimated load over 
the baseline day estimated load. 
 
To do the THI adjustment, a minimum of one month of load data from the present season is 
required.  If available a full previous season data set is used. 

A.7 PJM EMERGENCY LOAD RESPONSE 2001/20026 

Data Selection Criteria: 
Time Frame   Hour before. 

                                                 
5 PJM Economic Load Response Program .  Issued March 15th, 2002.  Fourth Revise Volume No. 1. 
6 PJM 2001-2002 Load Response Pilot Program. 
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Exclusions  None. 
Extensions  None. 
 
Estimation Method:  None. 

Adjustment Methods:  None. 

A.8 LBNL/KINNEY BASELINE METHOD TYPE7 

Data Selection Criteria: 
Time Frame  Previous ten days. 
Exclusions  Control days. 
Extensions  None. 
 
Estimation Method:  Explanatory model. 
Predictors   Average or maximum daily temperature. 
Time period Specificity  Hourly load data with daily temperature data. 
Estimation Criterion   OLS. 
Full Model Specification   
 

dhhdh TbaL += , 
 
where Ldh is hourly load from the ten previous non-controlled business days.  T is either average 
or maximum temperature.  ah and bh are estimated parameters.  Separate regression run for each 
hour.  
 
Adjustment Methods:  None. 

A.9 ISO NEW ENGLAND BASELINE METHOD TYPE8 

Data Selection Criteria: 
Time Frame  10 previous business days. 
Exclusions  Control days are excluded AFTER selection of 10 previous days. 
Shutdown days are days included in baseline average with 4 consecutive hours for which hourly 
load is either less than 75% or greater than 125% of the hourly baseline load for each hour. 
 
Extensions  If fewer than 7 days for average, days are considered in reverse chronological order 
until there are 7 eligible weekdays in the simple average. 
  
Estimation Method:  Interval averages. 

                                                 
7 Kinney, Saki, Lawrence Berkeley National Laboratory. Personal communication. 
8 DRAFT ISO-NE Load Response Program Manual. 05-07-2002. 
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Adjustment Methods:  Additive adjustment using hours h-1 and h-2.  

A.10 XENERGY WEATHER BASELINE METHOD TYPE 

Data Selection Criteria: 
Time Frame   Minimum of one previous month (flexible). 
Exclusions  Weekends and holidays, Control days. 
Extensions  None. 
 
Estimation Method:  Explanatory model. 
Predictors   Heating and cooling degree days. 
Time period Specificity   Hourly load, cooling degree days based on daily average. 
Estimation Criterion   OLS, R-squared optimized over cooling degree base choices. 
Full Model Specification    
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where Ldh = load, CDD  and HDD are cooling and heating degree days, respectively, D = Data 
time frame, a and b are estimated regression parameters. 
 
Adjustment Methods:  Additive adjustment using hours h-1 and h-2. 

A.11 NEXANT BASELINE METHOD TYPE 

Data Selection Criteria: 
Time Frame  Immediately preceding 10 business days. 
Exclusions  Control days. 
Extensions  None. 
 
Estimation Method:  Interval averages. 
 
Adjustment Methods:  Scalar adjustment using hour h-1. 

A.12 UTILITY A – MATCH DAY 

Data Selection Criteria: 
Time Frame  Previous Month. 
Match Criteria  Demand based (i.e. high demand days), or weather based (>75 degrees). 
Exclusions  Weekends and holidays, Control days. 
Extensions  If insufficient match days are found in previous month, match criteria is made more 
inclusive (i.e. high and medium demand days or >70 degrees). 
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Estimation Method:  Interval averages. 
 
Adjustment Methods:  Scalar adjustment using one hour between 8am and 11am. 

A.13 UTILITY B 

Data Selection Criteria: 
Time Frame  Previous five business days. 
Exclusions  Control days. 
Extensions   None. 
 
Estimation Method:  Interval averages. 
 
Adjustment Methods:  None. 

A.14 UTILITY C – REGRESSION-BASED 

Data Selection Criteria: 
Time Frame  Flexible. 
Exclusions  Control days. 
Extensions  None. 
 
Estimation Method:  Multiple explanatory models. 
Predictors  Weather Parameters. 
Time period Specificity   Hourly load, hourly weather parameters. 
Estimation Criterion  Unknown.  Model is a structural time series model. 
Full Model Specification  Actual specification is unknown.  The approach has two steps. First, 
mean hourly load over the event period is estimated with the structural time series model.  
Second, the Haar transform is used to estimate the load shape within the 8-hour event period 
conditional on average load. 
 
Adjustment Methods:  None. 

A.15 UTILITY D 

Data Selection Criteria: 
Time Frame  June through September. 
Exclusions  Weekends, control days. 
Extensions  None. 
 
Estimation Method:  Explanatory model. 
Predictors  Lagged dry bulb temperature, 5am to 10am average load. 
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Time period Specificity  Hourly load, hourly lagged dry bulb temperature. 
Estimation Criterion  OLS. 
Full Model Specification   

hhdhhdh LgDBcAMKbaL ++=  
 

where Ldh is hourly load, June through September, AMKd is the average load between 5am and 
10am for that day, and LgDBh is a lagged temperature measure.  ah, bh and ch are estimated 
parameters.  Separate regressions are estimated for each hour. 
 
Adjustment Methods:  None. 

A.16 UTILITY E 

Data Selection Criteria: 
Time Frame  Full year. 
Match day Criteria  Match ten day-pairs to the control day day-pair.  Control day day-pair 
consists of control day hours prior to event and the whole prior day.  Ten days with the lowest 
sum of square errors relative to the control day pair are included in baseline calculation. 
Exclusions  None. 
Extensions  None. 
 
Estimation Method:  Interval averages. 
 
Adjustment Methods:  Control day-pair loads are regressed on their baseline counterparts. 

Dqqqdq LbaL +=  
 
where Ldq is fifteen-minute interval load during the control day-pair period and LDq is the average 
fifteen-minute interval load over the baseline day-pairs.  aq and bq are estimated parameters.  If 
the regression explains 50% of the variation (R-squared > .5) then the fit values for the control 
period hours are used as the baseline. 

A.17 UTILITY F 

Data Selection Criteria: 
Time Frame  Previous two years. 
Match Criteria  Certain hot days. 
Exclusions  Anomalous loads. 
Extensions  None. 
 
Estimation Method:  Interval averages. 
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Adjustment Methods:  Scalar adjustment using hours h-1 and h-2. 
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Figure B-3 
95th Percentile Account Theil’s U  
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Figure B-5 
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Figure B-7 
Median Relative Hourly Error 
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Figure B-9 
95th Percentile Account Theil’s U  
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Figure B-11 
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Figure B-13 
Median Relative Hourly Error 
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Figure B-15 
95th Percentile Account Theil’s U  
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Figure B-17 
Median Account Theil’s U  
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Figure B-19 
Median Relative Hourly Error 
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Figure B-21 
95th Percentile Account Theil’s U  
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Figure B-22 
Median Relative Hourly Error 
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Figure B-23 
Median Account Theil’s U  

Nonsummer Curtailed Non-Weather-Sensitive High-Variability Accounts 
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Figure B-24 
95th Percentile Account Theil’s U  

Nonsummer Curtailed Non-Weather-Sensitive High-Variability Accounts 
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C GLOSSARY 

Additive adjustment:  An adjustment method by which a fixed amount is added to the 
provisional baseline load in each interval. 

 
Adjustment method:  An additive or scalar adjustment to a provisional baseline as the final step 

in a baseline calculation methodology. 
 
Averaging:  A baseline estimation method whereby the provisional baseline for each hour (or 

finer interval) of the day is the simple average, over all days used in the estimation, of the 
load at that hour. 

 
Baseline Calculation Methodology:  A set of procedures for calculating a CBL.  In this 

document, a baseline methodology is defined by an estimation method, a set of data selection 
criteria, and an adjustment method. 

 
Bias: Systematic tendency of an estimation to over- or under-state the true value.  Technically, 

the expected value of the difference between the estimate and the true value.  In this study, 
the median relative hourly error is used as the measure of bias. 

 
CA ISO:  The California ISO. 
 
CBL:  Customer baseline. 
 
Control period:  Curtailment period. 
 
Curtailed account:  In this study, an account that had one or more actual curtailment periods 

during the time span of the data available for the study. 
 
Curtailment period:  A period during which DRP participants would have been required or 

incented to reduce demand. 
 
Curtailment:  Demand response. 
 
Customer Baseline (CBL):  In a demand-response program, the load level for a particular 

customer for each interval of a curtailment period, compared to which demand reduction in 
each interval is calculated.  The customer’s demand reduction in each interval is calculated as 
the difference between the customer’s CBL and its metered load. 

 
Data selection criteria:  The rules and process for selecting the days and intervals that will be 

included in calculating the CBL. 
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Demand Reduction:  Demand response. 
 
Demand Response (DR):  Reducing demand in response to a curtailment notification or short-

term price signal.  Also, the magnitude of the reduction, in kW. 
 
Demand Response Program (DRP):  A program operated by an electric utility, ISO, energy 

service company, or retail energy supplier to encourage end-use customers to reduce their 
peak loads on short notice (under two to 24 hours) in exchange for some form of 
compensation. 

 
DR:  Demand response. 
 
Estimation method:  The calculations applied to a set of data to determine the CBL, after the 

selection of included and excluded data points, and before any adjustment is applied. 
 
Free Ridership:  Obtaining incentive payments for load reductions that would have taken place 

without the program. 
 
Gaming:  Altering behavior to manipulate a baseline to the advantage of the customer. 
 
High variability:  A characteristic of an account, indicating that the load at a given hour of the 

day exhibits high variation from one uncontrolled business day to the next. 
 
Independent System Operator:  The regional electric grid operator, particularly in markets that 

have been opened to retail electric competition. 
 
International Performance Measurement and Verification Protocol (IPMVP): A set of 

documents providing guidance on methods for quantifying the long-term results of energy 
efficiency projects.  Also, the organization responsible for the continued development of the 
concept of standardized verification methods, distribution of the documents, and providing 
guidance and training on the appropriate use of the documents. 

 
IOU:  Investor-Owned utility. 
 
IPMVP:  International Performance Measurement and Verification Protocol.  
 
ISO:  Independent System Operator. 
 
ISO-NE:  The New England ISO. 
 
Load type:  In this report, a classification of an account according to whether or not it is 

weather-sensitive and whether it has high or low variability. 
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Low-variability load:  A characteristic of an account, indicating that the load at a given hour of 
the day exhibits low variation from one uncontrolled business day to the next. 

 
M&V:  Measurement and verification. 
 
Measurement and Verification (M&V):  the procedures used to determine savings in programs 

where compensation is paid based on the achieved savings. 
 
Nonsummer:  The months October through May. 
 
Non-weather-sensitive:  A characteristic of an account, indicating that the load variations are 

not related to weather conditions. 
 
NYISO:  The New York ISO. 
 
PJM:  The Pennsylvania, New Jersey, Maryland ISO. 
 
Protocol:  A set of procedures for calculating savings. 
 
Relative Root-Mean-Square Error: In this study, another term for Theil’s U. 
 
Scalar adjustment:  An adjustment method by which the provisional baseline load in each 

interval is multiplied by a constant or scalar.   
 
Simple adjustment:  An additive or scalar adjustment, where the additive or scalar is calculated 

as the difference or ratio of the average provisional baseline to the average actual load for 
some period prior to the control period.  After simple adjustment, the average adjusted 
baseline matches the average actual load over the hours used to calculate the adjustment 
amount. 

 
Summer: The months June through September. 
 
Temperature-Humidity Index:  An index based on daily temperature and humidity, as an 

indicator of the intensity of cooling requirements on a given day. 
 
Theil’s U: A measure of the typical magnitude of error, relative to the typical actual value, 

calculated as the ratio of the root-mean-square error to the root-mean-square actual. 
 
THI:  Temperature-Humidity Index. 
 
Uncurtailed account:  In this study, an account that had no curtailment periods during the time 

span of the data available for the study. 
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Weather model: A baseline estimation method using a regression model with weather terms as 
predictors. 

 
Weather-based adjustment:  An additive or scalar adjustment, where the additive or scalar is 

calculated as the difference or ratio of load estimated using control-period weather conditions 
to load estimated using weather conditions for period used to calculate the provisional 
baseline.  Both load estimates use the same weather-based load model, fitted to data for a 
time period prior to either period used to produce the load estimates. 

 
Weather-sensitive:  A characteristic of an account, indicating that the load tends to increase or 

decrease according to weather conditions such as temperature and humidity. 
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