

Market Performance Report July 2019

October 9, 2019

ISO Market Quality and Renewable Integration

CAISO 250 Outcropping Way Folsom, California 95630 (916) 351-4400

Executive Summary¹

The market performance in July 2019 is summarized below.

CAISO area performance,

- Peak loads for ISO area generally increased in July compared with June due to higher temperatures.
- Across the integrated forward market (IFM), fifteen-minute market (FMM) and real-time market (RTD), SDGE prices were elevated in late July due to transmission congestion.
- Congestion rents for interties declined to \$3 million from \$4.50 million in June. Majority of the congestion rents in July accrued on NOB (63 percent) intertie and Malin500 (32 percent) intertie.
- In the congestion revenue rights (CRR) market, the balancing account for July had a surplus of approximately \$8.39 million, which was allocated to measured demand.
- The monthly average ancillary service cost to load inched down to \$0.50/MWh from \$0.71/MWh in June. There were 14 scarcity events this month.
- The cleared virtual supply was well above cleared demand in much of July. The profits from convergence bidding skidded to -\$0.24 million from \$10.65 million in June.
- The bid cost recovery edged up to \$12.21 million from \$11.81 million in June.
- The real-time energy offset cost increased to \$1.93 million in July from -\$1.58 million in June. The real-time congestion offset rose to \$3.98 million from -\$1.05 million in June.
- The volume of exceptional dispatch increased to 289,236 MWh from 119,100 MWh in June. The main contributors to the monthly volume were load forecast uncertainty and load pull. The monthly average of total exceptional dispatch volume as a percentage of load percentage was 1.25 percent, increasing from 0.59 percent in June.

¹ This report contains the highlights of the reporting period. For a more detailed explanation of the technical characteristics of the metrics included in this report please download the Market Performance Metric Catalog, which is available on the CAISO web site at http://www.caiso.com/market/Pages/ReportsBulletins/Default.aspx.

Energy Imbalance market (EIM) performance,

- In the FMM and RTD, the ELAP prices for NEVP were elevated in July due to limited transfer, renewable deviation, upward load forecast adjustment, or generation outage.
- The monthly average prices in FMM for EIM entities (AZPS, BANCSMUD, PWRX, IPCO, NEVP, PACE, PACW, PGE and PSEI) were \$28.74, \$28.85, \$24.28, \$24.65, \$34.89, \$24.42, \$23.26, \$23.59, and \$23.08 respectively.
- The monthly average prices in RTD for EIM entities (AZPS, BANCSMUD, PWRX, IPCO, NEVP, PACE, PACW, PGE and PSEI) were \$31.42, \$29.26, \$23.69, \$25.83, \$41.32, \$26.17, \$22.62, \$22.72, and \$22.37 respectively.
- Bid cost recovery, real-time imbalance energy offset, and real-rime congestion offset costs for EIM entities (AZPS, BANCSMUD, PWRX, IPCO, NEVP, PACE, PACW, PGE and PSEI) were \$0.72 million, -\$2.60 million and -\$1.26 million respectively.

TABLE OF CONTENTS

Market Characteristics 5 Loads 5 Resource Adequacy Available Incentive Mechanism 6 Direct Market Performance Metrics 7 Energy 7 Day-Ahead Prices 7 Real-Time Prices 7 Congestion 11 Congestion Rents on Interties 11 Congestion Revenue Rights 12 Ancillary Services 15 IFM (Day-Ahead) Average Price 15 Ancillary Service Cost to Load 16 Scarcity Events 16 Convergence Bidding 17 Renewable Generation Curtailment 18
Resource Adequacy Available Incentive Mechanism. 6 Direct Market Performance Metrics. 7 Energy. 7 Day-Ahead Prices. 7 Real-Time Prices. 7 Congestion 11 Congestion Rents on Interties. 11 Congestion Revenue Rights. 12 Ancillary Services. 15 IFM (Day-Ahead) Average Price. 15 Ancillary Service Cost to Load. 16 Scarcity Events. 16 Convergence Bidding. 17 Renewable Generation Curtailment 18
Direct Market Performance Metrics.7Energy.7Day-Ahead Prices.7Real-Time Prices .7Congestion .11Congestion Rents on Interties.11Congestion Revenue Rights.12Ancillary Services15IFM (Day-Ahead) Average Price.15Ancillary Service Cost to Load16Scarcity Events16Convergence Bidding17Renewable Generation Curtailment18
Energy7Day-Ahead Prices7Real-Time Prices7Congestion11Congestion Rents on Interties11Congestion Revenue Rights12Ancillary Services15IFM (Day-Ahead) Average Price15Ancillary Service Cost to Load16Scarcity Events16Convergence Bidding17Renewable Generation Curtailment18
Day-Ahead Prices7Real-Time Prices7Congestion11Congestion Rents on Interties11Congestion Revenue Rights12Ancillary Services15IFM (Day-Ahead) Average Price15Ancillary Service Cost to Load16Scarcity Events16Convergence Bidding17Renewable Generation Curtailment18
Day-Ahead Prices7Real-Time Prices7Congestion11Congestion Rents on Interties11Congestion Revenue Rights12Ancillary Services15IFM (Day-Ahead) Average Price15Ancillary Service Cost to Load16Scarcity Events16Convergence Bidding17Renewable Generation Curtailment18
Congestion11Congestion Rents on Interties11Congestion Revenue Rights12Ancillary Services15IFM (Day-Ahead) Average Price15Ancillary Service Cost to Load16Scarcity Events16Convergence Bidding17Renewable Generation Curtailment18
Congestion Rents on Interties.11Congestion Revenue Rights.12Ancillary Services15IFM (Day-Ahead) Average Price.15Ancillary Service Cost to Load16Scarcity Events16Convergence Bidding17Renewable Generation Curtailment18
Congestion Revenue Rights.12Ancillary Services15IFM (Day-Ahead) Average Price.15Ancillary Service Cost to Load16Scarcity Events16Convergence Bidding17Renewable Generation Curtailment18
Ancillary Services 15 IFM (Day-Ahead) Average Price 15 Ancillary Service Cost to Load 16 Scarcity Events 16 Convergence Bidding 17 Renewable Generation Curtailment 18
Ancillary Services 15 IFM (Day-Ahead) Average Price 15 Ancillary Service Cost to Load 16 Scarcity Events 16 Convergence Bidding 17 Renewable Generation Curtailment 18
Ancillary Service Cost to Load
Ancillary Service Cost to Load
Scarcity Events
Renewable Generation Curtailment18
Renewable Generation Curtailment18
Flexible Ramping Product
Flexible Ramping Product Payment
Indirect Market Performance Metrics
Bid Cost Recovery21
Real-time Imbalance Offset Costs
Market Software Metrics
Market Disruption
Manual Market Adjustment
Exceptional Dispatch
Energy Imbalance Market

Market Characteristics

Loads

Peak loads for ISO area increased generally in July compared with June due to higher temperatures, exceeding 40,000 MW for 6 days.

Figure 1: System Peak Load

Resource Adequacy Available Incentive Mechanism

Resource Adequacy Availability Incentive Mechanism (RAAIM) was activated on November 1, 2016 to track the performance of Resource Adequacy (RA) Resources. RAAIM is used to determine the availability of resources providing local and/or system Resource Adequacy Capacity and Flexible RA Capacity each month and then assess the resultant Availability Incentive Payments and Non-Availability Charges through the CAISO's settlements process. Table 1 below shows the monthly average actual availability, total non-availability charge, and total availability incentive payment. Starting from May 2018, the ISO reports the system RA average actual availability and flexible RA average actual availability separately.

	Total Non-	-			
	availability Charge	Total Availability Incentive Payment	Average Actual Availability	Flexible Average Actual Availability	System Average Actual Availability
Jan18	\$921,031	-\$921,031	97.67%	Actual Availability	Actual Availability
Feb18	\$1,945,971	-\$1,796,764	95.83%		
Mar18	\$3,151,376		93.27%		
Apr18	\$2,913,679		93.01%		
May18	\$5,621,558			92.79%	91.75%
Jun18	\$4,750,039			95.08%	92.79%
Jul 18	\$2,707,179	-\$2,892,873		94.56%	96.58%
Aug18	\$3,916,827	-\$2,812,434		91.29%	96.91%
Sep18	\$1,438,373	-\$3,186,317		98.08%	97.38%
Oct18	\$2,446,741	-\$2,253,949		95.33%	96.34%
Nov18	\$1,476,915	-\$2,025,955		97.27%	96.95%
Dec18	\$1,352,580	-\$2,092,658		97.68%	96.77%
Jan19	\$1,430,981	-\$1,430,981		98.25%	96.70%
Feb19	\$1,845,678	-\$1,836,610		95.76%	97.27%
Mar19	\$2,343,144	-\$2,163,512		96.57%	95.25%
Apr19	\$3,787,853	-\$2,033,788		93.77%	93.53%
May19	\$2,826,675	-\$2,854,841		93.31%	97.33%
Jun19	\$3,331,178	-\$2,083,184		92.66%	96.62%
Jul19	\$1,654,591	-\$2,044,110		97.02%	97.00%

Table 1: Resource Adequacy Availability and Payment

Direct Market Performance Metrics

Energy

Day-Ahead Prices

Figure 2 shows daily prices of four default load aggregate points (DLAPs). Table 2 below lists the binding constraints along with the associated DLAP locations and the dates when the binding constraints resulted in relatively high or low DLAP prices. All four DLAP prices were elevated on July 23-25 due to high demand.

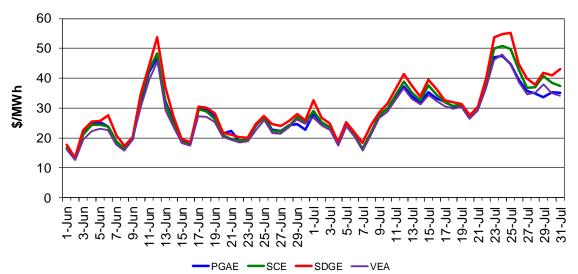


Figure 2: Day-Ahead Simple Average LAP Prices (All Hours)

Table 2: Day-Ahead T	ransmission Constraints
----------------------	-------------------------

DLAP	Date	Transmission Constraint
SDGE	July 23	SWEETWTR-MIGUELTP-69 kV line
SDGE	July 24, 25	EAGLROCK-GOULD-230 kV line

Real-Time Prices

FMM daily prices of the four DLAPs are shown in Figure 3. Table 3 lists the binding constraints along with the associated DLAP locations and the dates when the binding constraints resulted in relatively high or low DLAP prices.

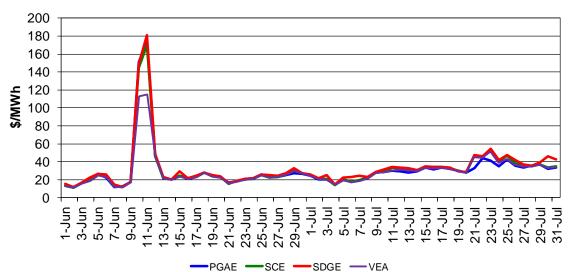


Figure 3: FMM Simple Average LAP Prices (All Hours)

Table 3: FMN	I Transmission	Constraints
--------------	----------------	-------------

DLAP	Date	Transmission Constraint
PGAE	July 21, 22, 24	MIDWAY-VINCENT-500 kV line
SDGE	July 30	MIGUEL-MIGUEL 230-500 kV XF
SDGE	July 31	OMS-7333672-ML_BK80_NG

Figure 4 below shows the daily frequency of positive price spikes and negative prices by price range for the default LAPs in the FMM. The cumulative frequency of prices above \$250/MWh decreased to 0.03 percent in July from 1.02 percent in June. The cumulative frequency of negative prices declined to 0.64 percent in July from 2.52 percent in June.

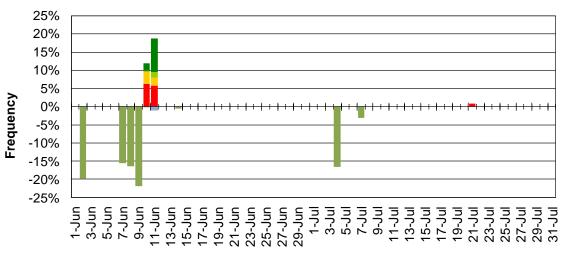


Figure 4: Daily Frequency of FMM LAP Positive Price Spikes and Negative Prices

■ <=-\$250 ■\$(-100, -250] ■\$(-40, -100] ■\$(-20, -40] ■\$(0, -20] ■\$[250, 500) ■\$[500, 750) ■\$[750, 1000) ■>=\$1000

RTD daily prices of the four DLAPs are shown in Figure 5. Table 4 lists the binding constraints along with the associated DLAP locations and the dates when the binding constraints resulted in relatively high or low DLAP prices.

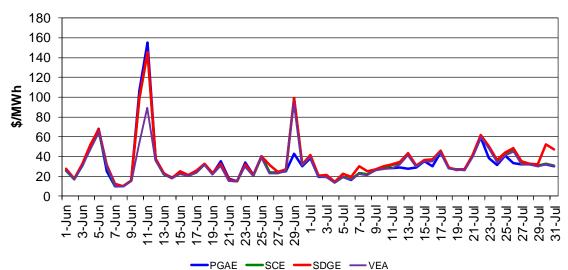


Figure 5: RTD Simple Average LAP Prices (All Hours)

Table 4: RTD Transmission Constraints

DLAP	Date	Transmission Constraint
PGAE	July 13	MIDWAY-VINCENT 500 kV line
SDGE	July 30	MIGUEL-MIGUEL 230-500 kV XF
SDGE	July 31	OMS-7333672-ML_BK80_NG

Figure 6 below shows the daily frequency of positive price spikes and negative prices by price range for the default LAPs in RTD. The cumulative frequency of prices above \$250/MWh decreased to 0.48 percent in July from 1.68 percent in June. The cumulative frequency of negative prices fell to 0.63 percent in July from 3.34 percent in June.

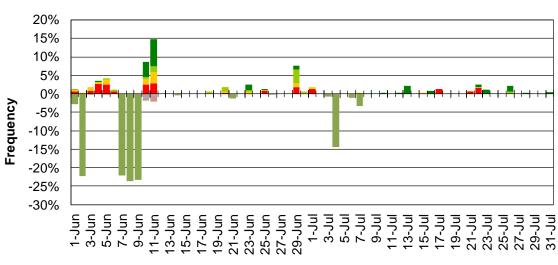


Figure 6: Daily Frequency of RTD LAP Positive Price Spikes and Negative Price

■ <=-\$250 ■\$(-100, -250] ■\$(-40, -100] ■\$(-20, -40] ■\$(0, -20] ■\$[250, 500) ■\$[500, 750) ■\$[750, 1000) ■>=\$1000

Congestion

Congestion Rents on Interties

Figure 7 below illustrates the daily integrated forward market congestion rents by interties. The cumulative total congestion rent for interties in July declined to \$3 million from \$4.50 million in June. Majority of the congestion rents in July accrued on NOB (63 percent) intertie and Malin500 (32 percent) intertie.

The congestion rent on NOB increased to \$1.64 million in July from \$0.61 million in June. The congestion rent on Malin500 dropped to \$0.96 million in July from \$3.84 million in June.

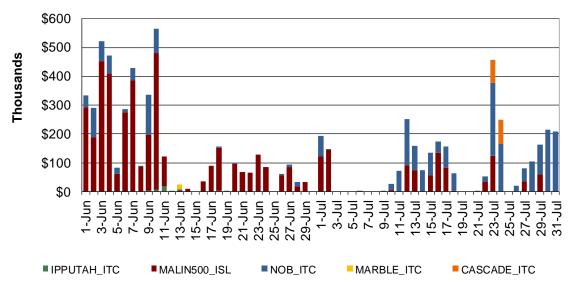


Figure 7: IFM Congestion Rents by Interties (Import)

Average Congestion Cost per Load Served

This metric quantifies the average congestion cost for serving one megawatt of load in the ISO system. Figure 8 shows the daily and monthly averages for the day-ahead and real-time markets respectively.

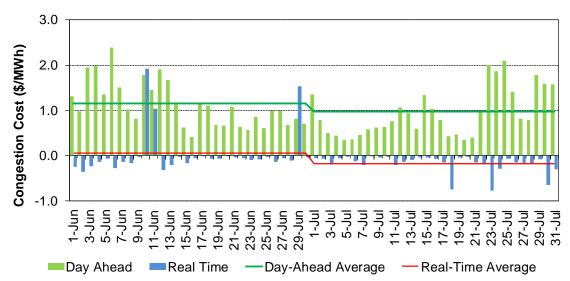


Figure 8: Average Congestion Cost per Megawatt of Served Load

The average congestion cost per MWh of load served in the integrated forward market slipped to \$0.98/MWh in July from \$1.15/MWh in June. The average congestion cost per load served in the real-time market decreased to -\$0.18/MWh in July from \$0.06/MWh in June.

Congestion Revenue Rights

Congestion revenue rights auction efficiency 1B became in effect on January 1, 2019. It includes key changes related to the congestion revenue rights settlements process:

- Targeted reduction of congestion revenue rights payouts on a constraint by constraint basis.
- Distribute congestion revenues to the extent that CAISO collected the requisite revenue on the constraint over the month. That is, implement a pro-rata funding for CRRs.
- Allow surpluses on one constraint in one hour to offset deficits on the same constraint in another hour over the course of the month.
- Only distribute surpluses to congestion revenue rights if the surplus is collected on a constraint that the congestion revenue right accrued a deficit, and only up to the full target payment value of the congestion revenue right.
- Distribute remaining surplus revenue at the end of the month, which are associated with constraints that collect more surplus over the month than deficits, to measured demand.

Figure 9 illustrates the CRR notional value in the corresponding month for the various transmission elements that experienced congestion during the month. CRR notional value is calculated as the product of CRR implied flow and constraint shadow price in each hour per constraint and CRR.

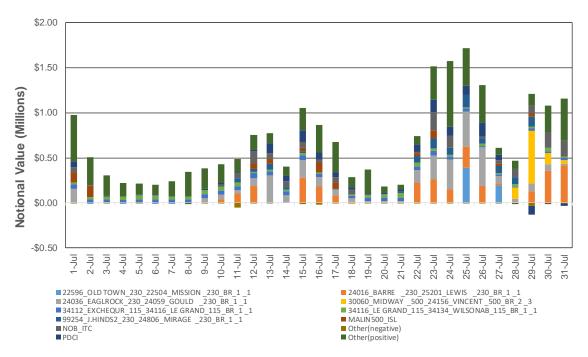


Figure 9: Daily CRR Notional Value by Transmission Element

Figure 10 illustrates the daily CRR offset value in the corresponding month for the transmission elements that experienced congestion during the month.

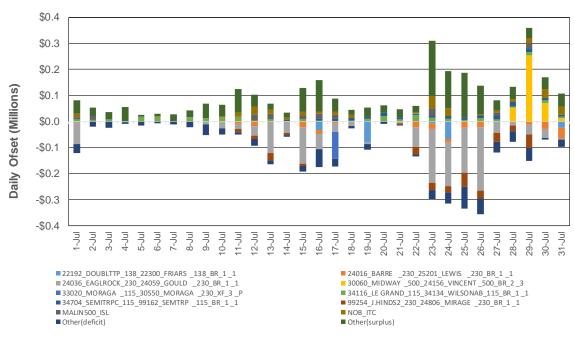
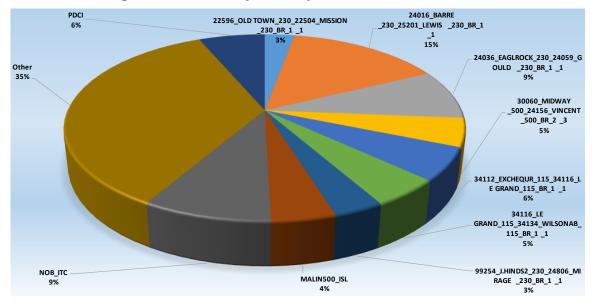



Figure 10: Daily CRR Offset Value by Transmission Element

CRR offset value is the difference between the revenue collected from the dayahead congestion and CRR notional value. It is also calculated in each hour per constraint and CRR. A positive CRR offset value represents surplus and a negative CRR offset value represents shortfall.

The shares of the CRR payment on various congested transmission elements for the reporting period are shown in Figure 11 and the monthly summary for CRR revenue adequacy is provided in Table 5.

Figure 11: CRR Payment by Transmission Element

Net monthly balancing surplus in July was \$3.19 million. The auction revenues credited to the balancing account for July were \$5.20 million. As a result, the balancing account for July had a surplus of approximately \$8.39 million, which was allocated to measured demand.

Row	Description	Formula	Amount
1	CRR Notional Value		\$20,890,129
2	CRR Deficit		-\$3,233,209
3	CRR Settlement Rule		-\$57,316
4	CRR Adjusted Payment		\$17,599,604
5	CRR Surplus		\$3,017,665
6	Monthly Auction Revenue		\$2,679,329
7	Annual Auction Revenue		\$2,520,946
8	CRR Daily Balancing Account		\$5,372,794
9	Net Monthly Balancing Surplus	row 5 + row 8 - (row 6 + row 7)	\$3,190,184
10	Allocation to Measured Demand	row 6 + row 7 + row9	\$8,390,459

Table 5: CRR Revenue Adequacy Statistics

Ancillary Services

IFM (Day-Ahead) Average Price

Table 6 shows the monthly IFM average ancillary service procurements and the monthly average prices. In July the monthly average procurement increased for regulation up, spinning and non-spinning reserves.

Table 6: IFM (Day-Ahead) Monthly Average Ancillary Service Procurement

	Average Procurred				Average Price			
	Reg Up	Reg Dn	Spinning	Non-Spinning	Reg Up	Reg Dn	Spinning	Non-Spinning
Jul-19	334	390	907	908	\$9.51	\$8.53	\$5.75	\$1.01
Jun-19	330	410	883	884	\$12.44	\$10.92	\$6.72	\$0.41
Percent Change	1.25%	-4.95%	2.72%	2.64%	-23.53%	-21.86%	-14.38%	145.15%

The monthly average prices decreased for regulation up, regulation down, and spinning reserve in July. Figure 12 shows the daily IFM average ancillary service prices.

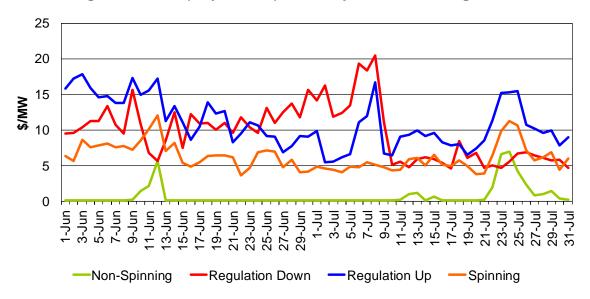


Figure 12: IFM (Day-Ahead) Ancillary Service Average Price

Ancillary Service Cost to Load

The monthly average cost to load inched down to \$0.50/MWh in July from \$0.71/MWh in June.

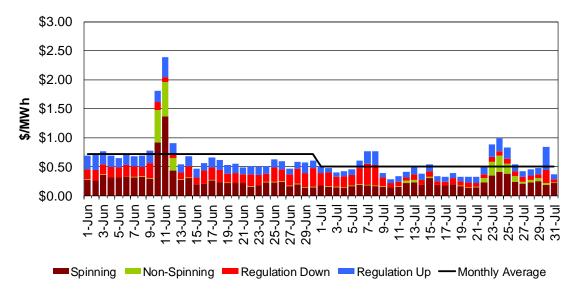
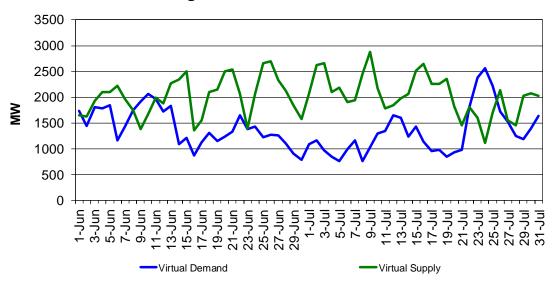


Figure 13: System (Day-Ahead and Real-Time) Average Cost to Load


Scarcity Events

The ancillary services scarcity pricing mechanism is triggered when the ISO is not able to procure the target quantity of one or more ancillary services in the IFM and real-time market runs. The scarcity events in July are shown in the table below.

Date	Hour	Interval	Ancillary	Degion	Shortfall	Percentage of
	Ending	Interval	Service	Region	(MW)	Requirement
July 6	14	2	Regulation Down	SP26_EXP	0.09	0.09%
July 6	14	4	Regulation Down	SP26_EXP	0.09	0.09%
July 9	1	2	Regulation Down	SP26_EXP	0.03	0.03%
July 9	1	3	Regulation Down	SP26_EXP	0.03	0.03%
July 9	10	2	Regulation Down	SP26_EXP	1.43	1.38%
July 9	10	4	Regulation Down	SP26_EXP	1.43	1.38%
July 9	11	3	Regulation Down	SP26_EXP	0.45	0.43%
July 16	11	1	Regulation Down	NP26_EXP	0.1	0.08%
July 16	11	2	Regulation Down	NP26_EXP	0.1	0.08%
July 18	4	3	Regulation Down	SP26_EXP	1.16	1.12%
July 18	12	2	Regulation Down	SP26_EXP	0.17	0.16%
July 18	13	3	Regulation Down	SP26_EXP	0.25	0.24%
July 18	15	3	Regulation Down	SP26_EXP	0.41	0.39%
July 18	23	2	Regulation Down	SP26_EXP	3.29	3.23%

Convergence Bidding

Figure 14 below shows the daily average volume of cleared virtual bids in IFM for virtual supply and virtual demand. The cleared virtual supply was well above cleared demand in much of July.

Convergence bidding tends to cause the day-ahead market and real-time market prices to move closer together, or "converge". Figure 15 shows the energy prices (namely the energy component of the LMP) in IFM, hour ahead scheduling process (HASP), FMM, and RTD.

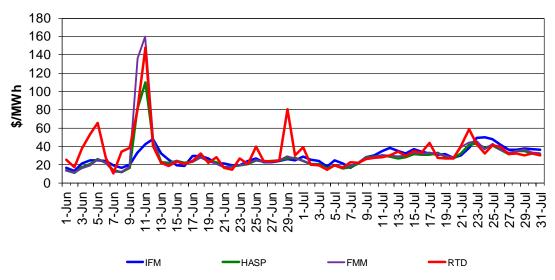
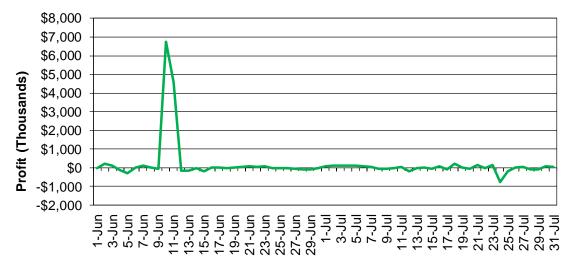



Figure 15: IFM, HASP, FMM, and RTD Prices

Figure 16 shows the profits that convergence bidders receive from convergence bidding. The total profits from convergence bidding in July skidded to -\$0.24 million from \$10.65 million in June.

Renewable Generation Curtailment

Figure 17 below shows the monthly wind and solar VERs (variable energy resource) curtailment due to system wide condition or local congestion in RTD. Figure 18 shows the monthly wind and solar VERs (variable energy resource) curtailment by resource type in RTD. Economic curtailment is defined as the resource's dispatch upper limit minus its RTD schedule when the resource has an economic bid. Dispatch upper limit is the maximum level the resource can be dispatched to when various factors are take into account such as forecast, maximum economic bid, generation outage, and ramping capacity. Self-schedule curtailment is defined as the resource's self-schedule minus its RTD schedule. When a VER resource is exceptionally dispatched, then exceptional dispatch curtailment is defined as the dispatch upper limit minus the exceptional dispatch value.

As Figure 17 and Figure 18 below show, the renewable curtailment continued to decline in July. The majority of the curtailment was solar.

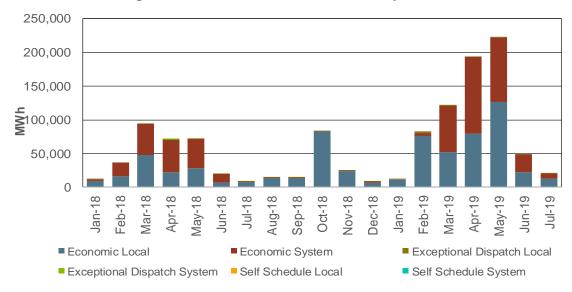
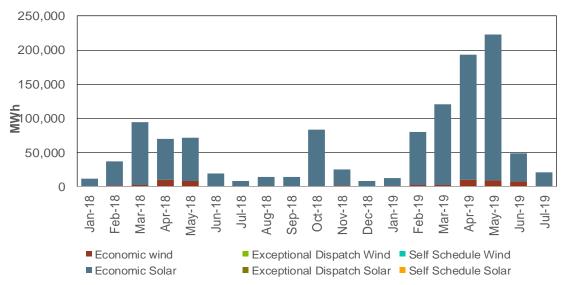



Figure 17: Renewable Curtailment by Reason

Flexible Ramping Product

On November 1, 2016 the ISO implemented two market products in the 15minute and 5-minute markets: Flexible Ramping Up and Flexible Ramping Down uncertainty awards. These products provide additional upward and downward flexible ramping capability to account for uncertainty due to demand and renewable forecasting errors. In addition, the existing flexible ramping sufficiency test was extended to ensure feasible ramping capacity for real-time interchange schedules.

Flexible Ramping Product Payment

Figure 19 shows the flexible ramping up and down uncertainty payments. Flexible ramping up uncertainty payment fell to \$46,878 in July from \$0.22 million in June. Flexible ramping down uncertainty payment decreased to \$260 in July from \$6,133 in June.

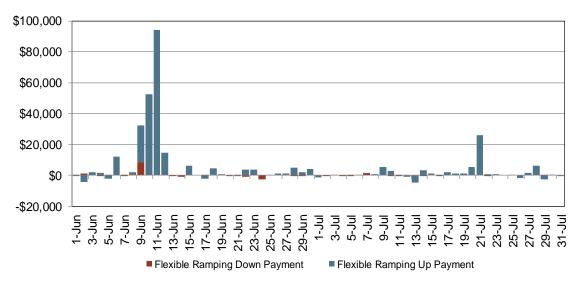


Figure 19: Flexible Ramping Up/down Uncertainty Payment

Figure 20 shows the flexible ramping forecast payment. Flexible ramping forecast payment inched up to \$25,337 this month from 23,448 observed in June.

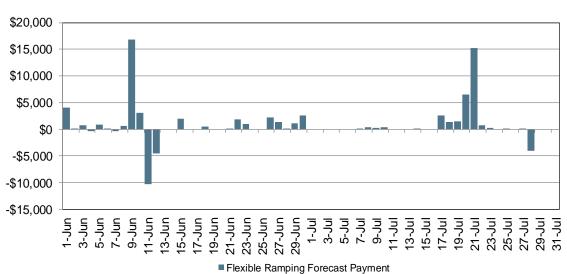


Figure 20: Flexible Ramping Forecast Payment

Indirect Market Performance Metrics

Bid Cost Recovery

Figure 21 shows the daily uplift costs due to exceptional dispatch payments. The monthly uplift costs in July increased to \$4.07 million from \$3.51 million in June. High uplift costs occurred on July 22-24, 26, 28-29, driven by the exceptional dispatches issued for load forecast uncertainty.

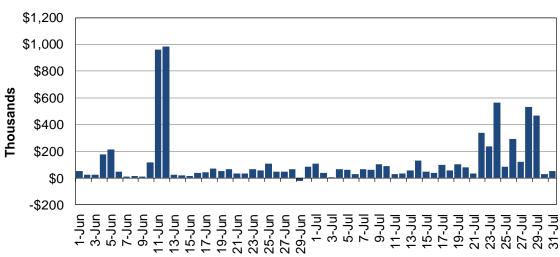


Figure 21: Exceptional Dispatch Uplift Costs

Figure 22 shows the allocation of bid cost recovery payment in the IFM, residual unit commitment (RUC) and RTM markets. The total bid cost recovery for July edged up to \$12.21 million from \$11.81 million in June. Out of the total monthly bid cost recovery payment for the three markets in July, the IFM market contributed 36 percent, RTM contributed 47 percent, and RUC contributed 17 percent of the total bid cost recovery payment.

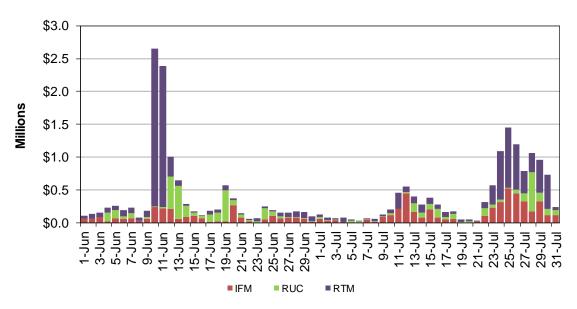


Figure 22: Bid Cost Recovery Allocation

Figure 23 and Figure 24 show the daily and monthly BCR cost by local capacity requirement area (LCR) respectively.

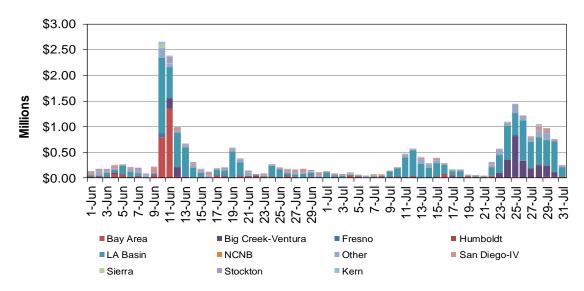


Figure 23: Bid Cost Recovery Allocation by LCR

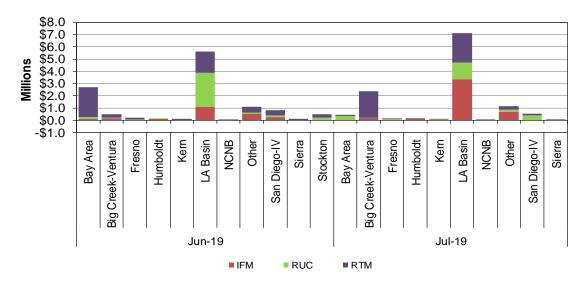


Figure 24: Monthly Bid Cost Recovery Allocation by LCR

Figure 25 and Figure 26 show the daily and monthly BCR cost by utility distribution company (UDC) respectively.

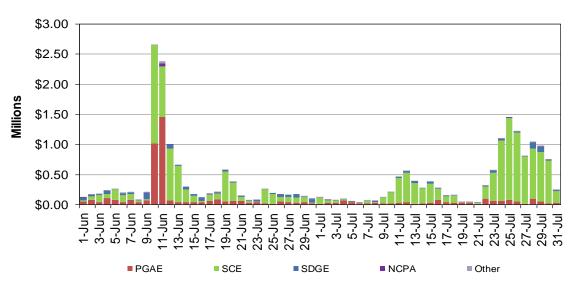


Figure 25: Bid Cost Recovery Allocation by UDC

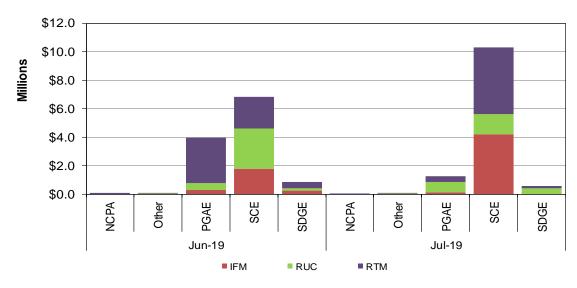


Figure 26: Monthly Bid Cost Recovery Allocation by UDC

Figure 27 shows the cost related to BCR by cost type in RUC.

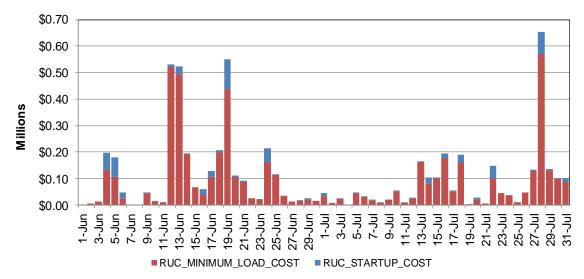


Figure 28 and Figure 29 show the daily and monthly cost related to BCR by type and LCR in RUC respectively.

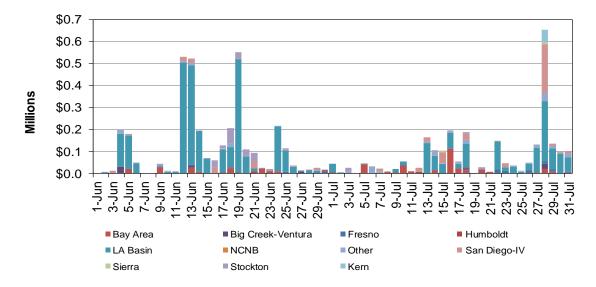


Figure 28: Cost in RUC by LCR

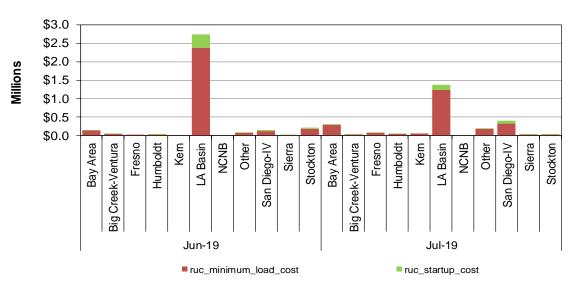


Figure 29: Monthly Cost in RUC by LCR

Figure 30 and Figure 31 show the daily and monthly cost related to BCR by type and UDC in RUC respectively.

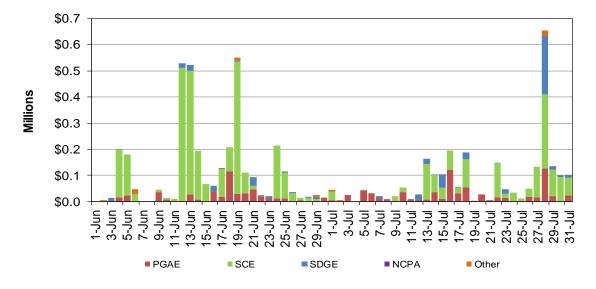


Figure 30: Cost in RUC by UDC

Figure 31: Monthly Cost in RUC by UDC

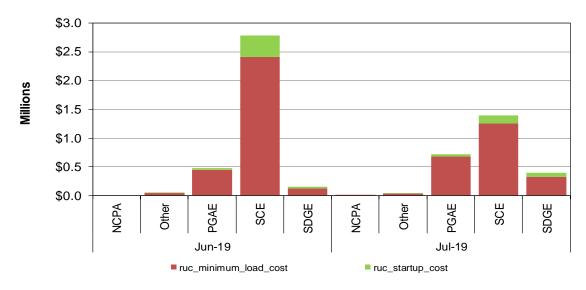


Figure 32 shows the cost related to BCR in real time by cost type. Minimum load cost contributed largely to the real time cost this month.

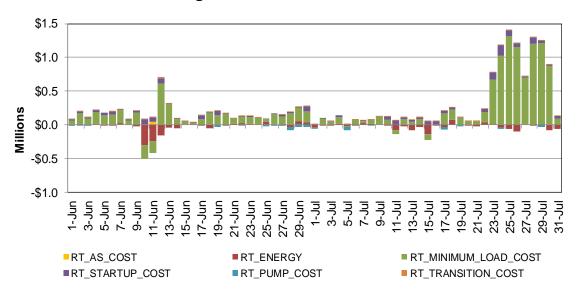


Figure 32: Cost in Real Time

Figure 33 and Figure 34 show the daily and monthly cost related to BCR by type and LCR in real time respectively.

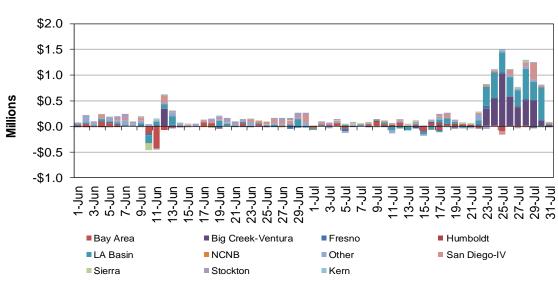


Figure 33: Cost in Real Time by LCR

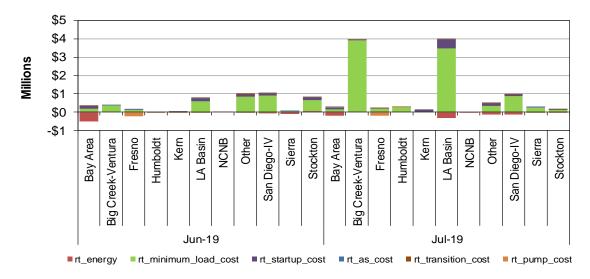


Figure 34: Monthly Cost in Real Time by LCR

Figure 35 and Figure 36 show the daily and monthly cost related to BCR by type and UDC in Real Time respectively.



Figure 35: Cost in Real Time by UDC

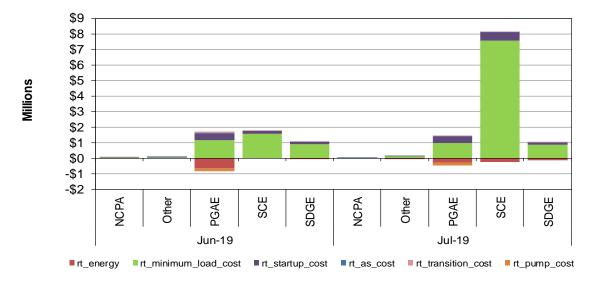


Figure 36: Monthly Cost in Real Time by UDC

Figure 37 shows the cost related to BCR in IFM by cost type.

Figure 37: Cost in IFM

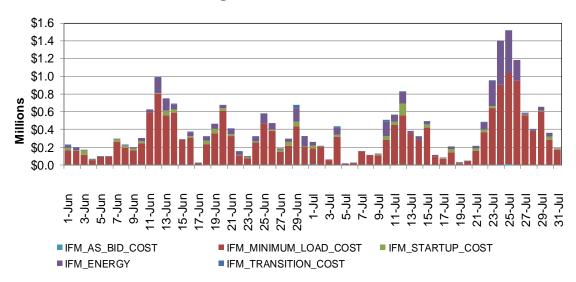


Figure 38 and Figure 39 show the daily and monthly cost related to BCR by type and location in IFM respectively.

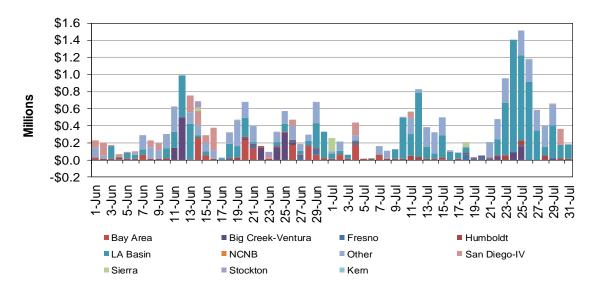


Figure 38: Cost in IFM by LCR

Figure 39: Monthly Cost in IFM by LCR

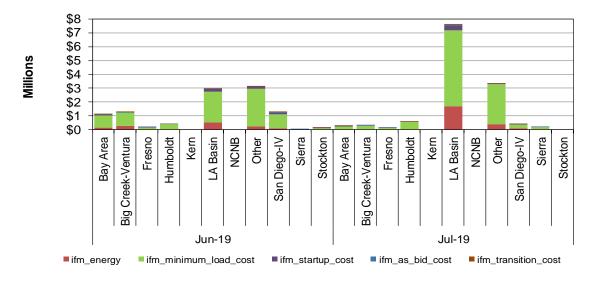


Figure 40 and Figure 41 show the daily and monthly cost related to BCR by type and UDC in IFM respectively.

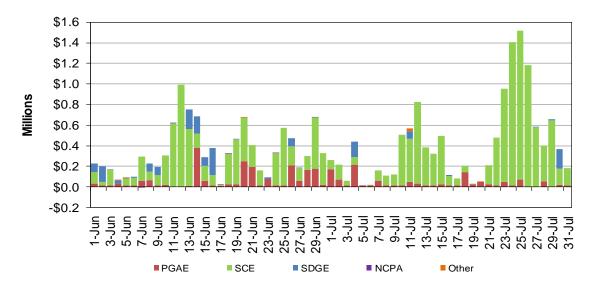
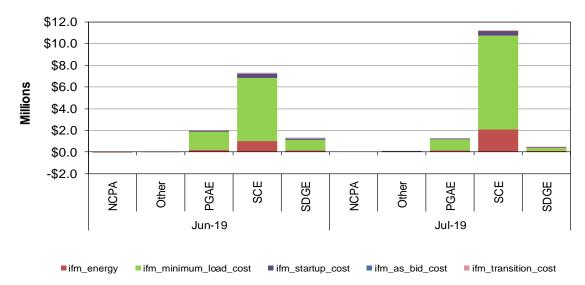



Figure 40: Cost in IFM by UDC

Figure 41: Monthly Cost in IFM by UDC

Real-time Imbalance Offset Costs

Figure 42 shows the daily real-time energy and congestion imbalance offset costs. Real-time energy offset cost increased to \$1.93 million in July from -\$1.58 million in June. Real-time congestion offset in July cost rose to \$3.98 million from -\$1.05 million in June.

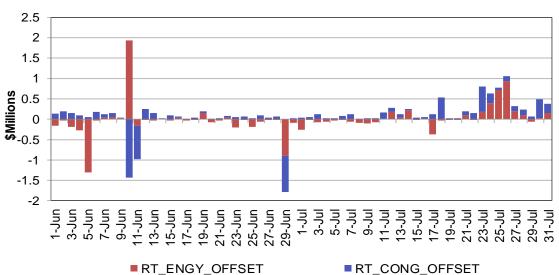


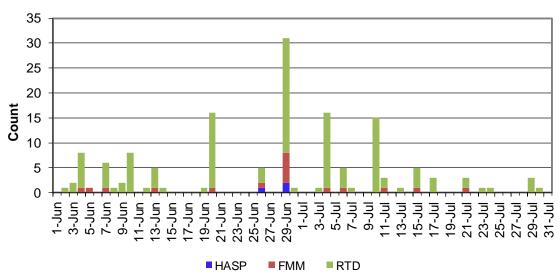
Figure 42: Real-Time Energy and Congestion Imbalance Offset

Market Software Metrics

Market performance can be confounded by software issues, which vary in severity levels with the failure of a market run being the most severe.

Market Disruption

A market disruption is an action or event that causes a failure of an ISO market, related to system operation issues or system emergencies.² Pursuant to section 7.7.15 of the ISO tariff, the ISO can take one or more of a number of specified actions to prevent a market disruption, or to minimize the extent of a market disruption.


Table 7 lists the number of market disruptions and the number of times that the ISO removed bids (including self-schedules) in any of the following markets in this month. The ISO markets include IFM, RUC, FMM and RTD processes

Type of CAISO Market	Market Disruption or Reportable	Removal of Bids (including Self-Schedules)
Day-Ahead		
IFM	0	0
RUC	0	0
Real-Time		
FMM Interval 1	3	0
FMM Interval 2	0	0
FMM Interval 3	1	0
FMM Interval 4	1	0
Real-Time Dispatch	54	0

Table 7: Summary of Market Disruption

Figure 43 shows the frequency of IFM, HASP (FMM interval 2), FMM (intervals 1, 3 and 4), and RTD failures. There were a total of 59 market disruptions this month. On July 3, there were one FMM and eight RTD disruptions due to application issue. There were also seven other RTD disruptions on that day due to broadcast not being successful. On July 10, there were 11 RTD disruptions when RTD results were blocked and previous solution was used. There were also four other RTD disruptions on that day due to application issue.

² These system operation issues or system emergencies are referred to in Sections 7.6 and 7.7, respectively, of the ISO tariff.

Figure 43: Frequency of Market Disruption

Manual Market Adjustment

Exceptional Dispatch

Figure 44 shows the daily volume of exceptional dispatches, broken out by market type: real-time incremental dispatch and real-time decremental dispatch. The real-time exceptional dispatches are among one of the following types: a unit commitment at physical minimum; an incremental dispatch above the day-ahead schedule and a decremental dispatch below the day-ahead schedule.

The total volume of exceptional dispatch in July increased to 289,236 MWh from 119,100 MWh in June. High volume of exceptional dispatch on July 22-29 was largely due to load forecast uncertainty.

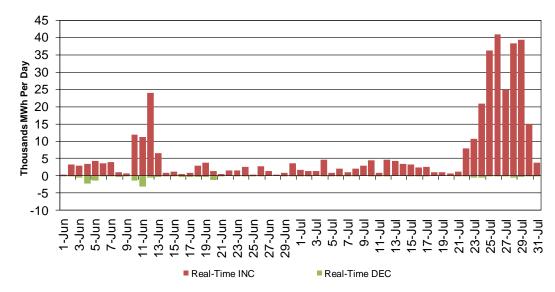


Figure 44: Total Exceptional Dispatch Volume (MWh) by Market Type

Figure 45 shows the volume of the exceptional dispatch broken out by reason.³ The majority of the exceptional dispatch volumes in July were driven by software limitation (10 percent), load pull (18 percent), and load forecast uncertainty (43 percent).

³ For details regarding the reasons for exceptional dispatch please read the white paper at this link: <u>http://www.caiso.com/1c89/1c89d76950e00.html</u>.

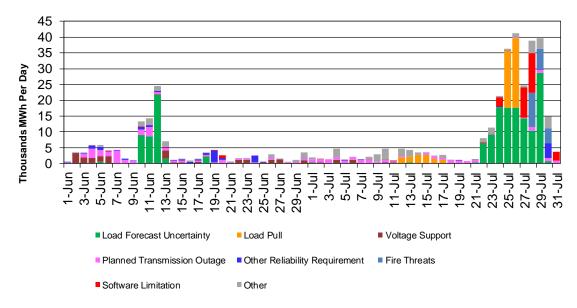


Figure 45: Total Exceptional Dispatch Volume (MWh) by Reason

Figure 46 shows the total exceptional dispatch volume as a percent of load, along with the monthly average. The monthly average percentage was 1.25 percent in July, increasing from 0.59 percent in June.

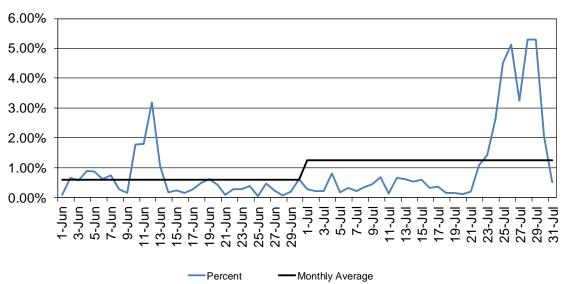


Figure 46: Total Exceptional Dispatch as Percent of Load

Energy Imbalance Market

On November 1, 2014, the California Independent System Operator Corporation (ISO) and Portland-based PacifiCorp fully activated the Energy Imbalance Market (EIM). This real-time market is the first of its kind in the West. EIM covers six western states: California, Oregon, Washington, Utah, Idaho and Wyoming.

On December 1, 2015, NV Energy, the Nevada-based utility successfully began participating in the western Energy Imbalance Market (EIM). On October 1, 2016, Phoenix-based Arizona Public Service (AZPS) and Puget Sound Energy (PSEI) of Washington State successfully began full participation in the western Energy Imbalance Market.

On October 1, 2017, Portland General Electric Company (PGE) became the fifth western utility to successfully begin full participation in the western Energy Imbalance Market (EIM). PGE joins Arizona Public Service, Puget Sound Energy, NV Energy, PacifiCorp and the ISO, together serving over 38 million consumers in eight states: California, Arizona, Oregon, Washington, Utah, Idaho, Wyoming and Nevada.

On April 4, 2018, Boise-based Idaho Power and Powerex of Vancouver, British Columbia successfully entered the western Energy Imbalance Market (EIM) today, allowing the ISO's real-time power market to serve energy imbalances occurring within about 55 percent of the electric load in the Western Interconnection. The eight western EIM participants serve more than 42 million consumers in the power grid stretching from the border with Canada south to Arizona, and eastward to Wyoming.

On April 3, 2019, Sacramento Municipal Utility District (SMUD), part of the Balancing Authority of Northern California (BANC), successfully began full participation in the Western EIM, becoming the first publicly owned agency to be an EIM entity in the Western EIM.

From July 23 to July 3, 2019, there was a planned market disruption for NEVP due to internal transmission congestion. NEVP did not participate in the EIM during this time period while EIM transfers were locked and administrative pricing rule was in effect for NEVP area.

Figure 47 shows daily simple average ELAP prices for PacifiCorp east (PACE), PacifiCorp West (PACW), NV Energy (NEVP), Arizona Public Service (AZPS), Puget Sound Energy (PSEI), Portland General Electric Company (PGE), Idaho Power (IPCO), Powerex (BCHA), and Sacramento Municipal Utility District (BANCSMUD), for all hours in FMM. On July 22-23, 28 and 30, NEVP prices were elevated due to limited transfer, renewable deviation, upward load forecast adjustment, or generation outage.

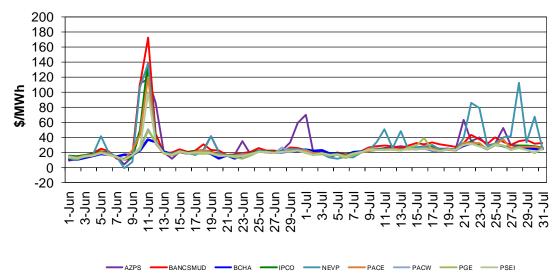


Figure 47: EIM Simple Average LAP Prices (All Hours) in FMM

Figure 48 shows daily simple average ELAP prices for PACE, PACW, NEVP, AZPS, PSEI, PGE, IPCO, BCHA, and BANCSMUD for all hours in RTD. The prices were generally quiet in this month. On July 13, 22, 28 and 30, NEVP prices spiked due to limited transfer, renewable deviation, upward load forecast adjustment, or generation derate.

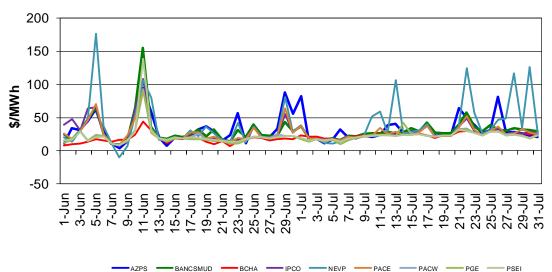


Figure 48: EIM Simple Average LAP Prices (All Hours) in RTD

Figure 49 shows the daily price frequency for prices above \$250/MWh and negative prices in FMM for PACE, PACW, NEVP, AZPS, PSEI, PGE, IPCO, BCHA, and BANCSMUD. The cumulative frequency of prices above \$250/MWh decreased to 0.23 percent in July from 0.43 percent in June. The cumulative

frequency of negative prices declined to 0.21 percent in July from 1.74 percent in June.

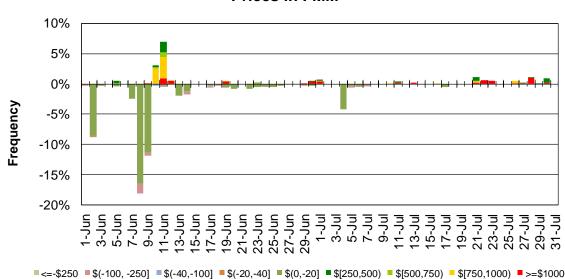


Figure 49: Daily Frequency of EIM LAP Positive Price Spikes and Negative Prices in FMM

Figure 50 shows the daily price frequency for prices above \$250/MWh and negative prices in RTD for PACE, PACW, NEVP, AZPS, PSEI, PGE, IPCOBCHA, and BANCSMUD. The cumulative frequency of prices above \$250/MWh fell to 0.46 percent in July from 1.02 from in June. The cumulative frequency of negative prices slipped to 0.41 percent in July from 3.41 percent in June.

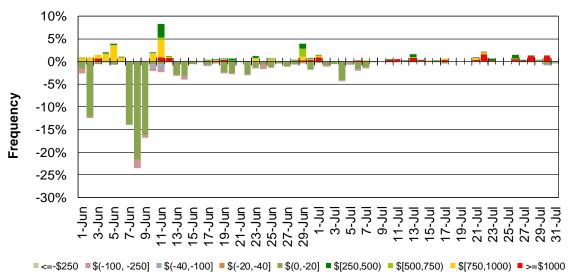


Figure 51 shows daily real-time imbalance energy offset cost (RTIEO) for PACE, PACW, NEVP, AZPS, PSEI, PGE, IPCO, BCHA, and BANCSMUD respectively. Total RTIEO inched up to -\$2.60 million in July from -\$2.92 million in June.

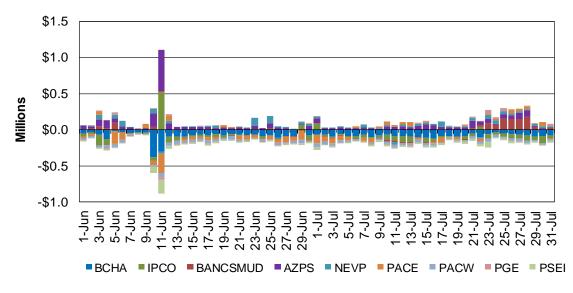


Figure 51: EIM Real-Time Imbalance Energy Offset by Area

Figure 52 shows daily real-time congestion offset cost (RTCO) for PACE, PACW, NEVP, AZPS, PSEI, PGE, IPCO, BCHA, and BANCSMUD respectively. Total RTCO increased to -\$1.26 million in July from -\$3.42 million in June.

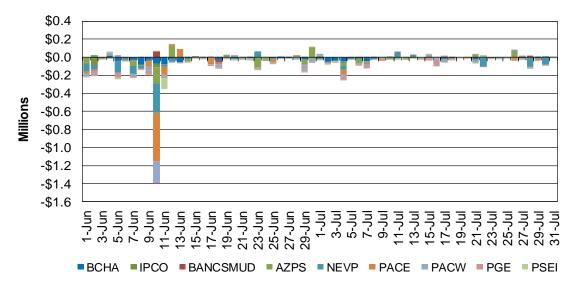


Figure 53 shows daily bid cost recovery for PACE, PACW, NEVP, AZPS, PSEI, PGE, IPCO, BCHA, and BANCSMUD respectively. Total BCR declined to \$0.72 million in July from \$1.07 million in June.

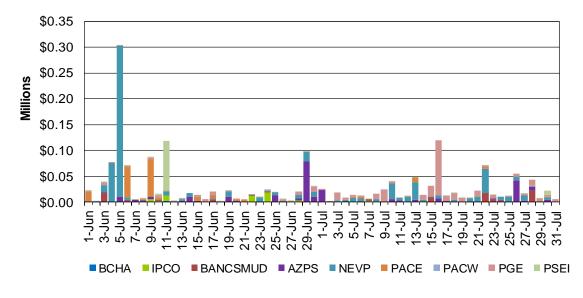


Figure 53: EIM Bid Cost Recovery by Area

Figure 54 shows the flexible ramping up uncertainty payment for PACE, PACW, NEVP, AZPS, PSEI, PGE, IPCO, BCHA, and BANCSMUD respectively. Total flexible ramping up uncertainty payment in July decreased to \$42,623 from \$54,267 in June.

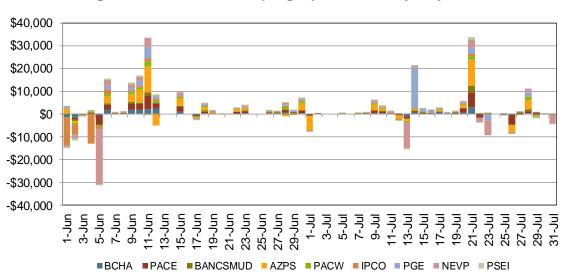


Figure 54: Flexible Ramping Up Uncertainty Payment

Figure 55 shows the flexible ramping down uncertainty payment for PACE, PACW, NEVP, AZPS, PSEI, PGE, IPCO, BCHA, and BANCSMUD respectively. Total flexible ramping down uncertainty payment in July increased to \$1,286 from -\$14,686 in June.

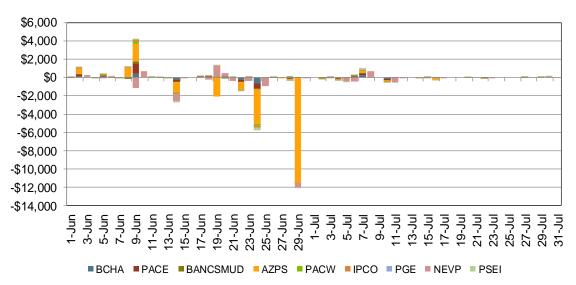


Figure 55: Flexible Ramping Down Uncertainty Payment

Figure 56 shows the flexible ramping forecast payment for PACE, PACW, NEVP, AZPS, PSEI, PGE, IPCO, BCHA, and BANCSMUD respectively. Total forecast payment in July rose to \$23,459 from -\$129,762 in June.

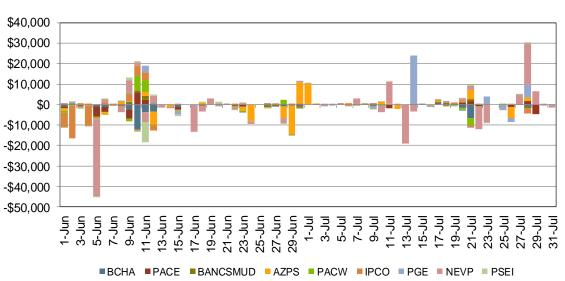


Figure 56: Flexible Ramping Forecast Payment

The ISO's Energy Imbalance Market Business Practice Manual⁴ describes the methodology for determining whether an EIM participating resource is dispatched to support transfers to serve California load. The methodology ensures that the dispatch considers the combined energy and associated marginal greenhouse gas (GHG) compliance cost based on submitted bids⁵.

The EIM dispatches to support transfers into the ISO were documented in Figure 57 and Table 8 below.

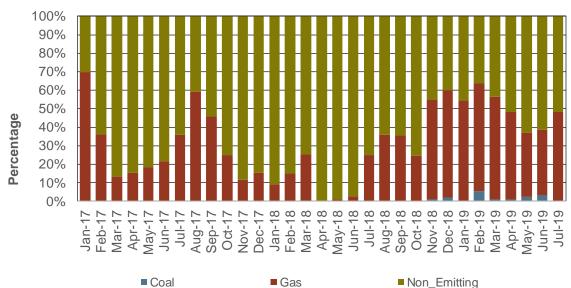


Figure 57: Percentage of EIM Transfer into ISO by Fuel Type

⁴ See the Energy Imbalance Market Business Practice Manual for a description of the methodology for making this determination, which begins on page 42 -- http://bpmcm.caiso.com/Pages/BPMDetails.aspx?BPM=Energy Imbalance Market.

⁵ A submitted bid may reflect that a resource is not available to support EIM transfers to California.

Month	Coal (%)	Gas (%)	Non-Emitting (%)	Total
Jan-17	0.00%	69.88%	30.12%	100%
Feb-17	0.00%	36.42%	63.58%	100%
Mar-17	0.00%	13.37%	86.63%	100%
Apr-17	0.00%	15.47%	84.53%	100%
May-17	0.00%	18.47%	81.53%	100%
Jun-17	0.00%	21.42%	78.58%	100%
Jul-17	0.00%	36.08%	63.92%	100%
Aug-17	0.00%	59.20%	40.80%	100%
Sep-17	0.00%	45.94%	54.06%	100%
Oct-17	0.00%	24.85%	75.15%	100%
Nov-17	0.00%	11.57%	88.43%	100%
Dec-17	0.00%	15.36%	84.64%	100%
Jan-18	0.00%	9.12%	90.88%	100%
Feb-18	0.00%	15.20%	84.80%	100%
Mar-18	0.16%	25.00%	74.84%	100%
Apr-18	0.00%	0.14%	99.86%	100%
May-18	0.00%	1.09%	98.91%	100%
Jun-18	0.00%	2.89%	97.11%	100%
Jul-18	0.00%	25.04%	74.96%	100%
Aug-18	0.00%	35.87%	64.13%	100%
Sep-18	0.00%	35.50%	64.50%	100%
Oct-18	0.00%	24.51%	75.49%	100%
Nov-18	1.16%	53.81%	45.03%	100%
Dec-18	2.00%	57.77%	40.23%	100%
Jan-19	0.46%	53.87%	45.67%	100%
Feb-19	5.60%	58.13%	36.28%	100%
Mar-19	1.07%	55.40%	43.52%	100%
Apr-19	1.15%	47.18%	51.67%	100%
May-19	2.22%	34.75%	63.03%	100%
Jun-19	3.47%	35.32%	61.21%	100%
Jul-19	0.49%	47.74%	51.77%	100%

Table 8: EIM Transfer into ISO by Fuel Type