

Congestion revenue rights auction efficiency

Perry Servedio
Sr. Market Design Policy Developer

Straw proposal working group April 10, 2018

Certain partial funding approaches may disincentivize model gaming and highly speculative behavior in the auctions

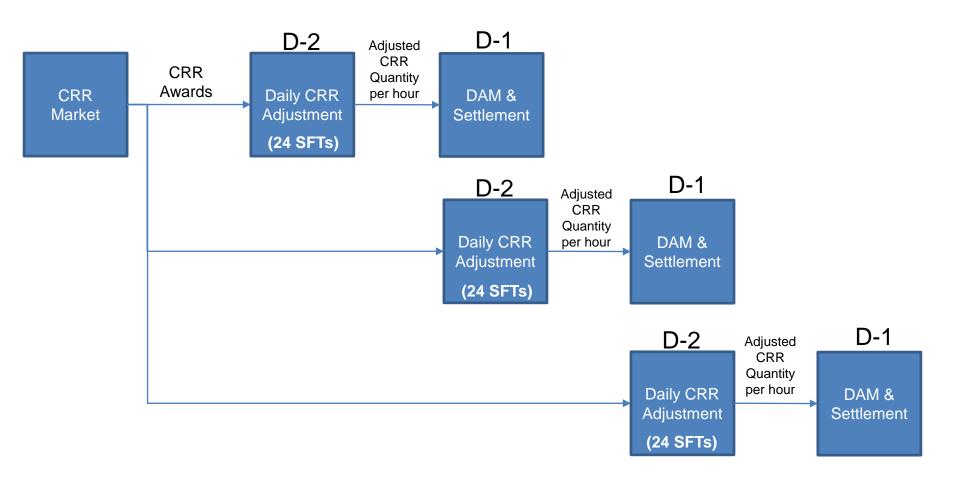
- Measured demand pays all shortfalls to fully fund auctioned congestion revenue rights
 - Measured demand fully funds auctioned congestion revenue rights
 - Holders of allocated rights on the same constraints as auctioned rights do not receive equivalent payouts because they are measured demand and pay uplift
- If all rights share shortfalls appropriately, all rights flowing on the same constraint receive an equivalent payout
- If certain constraints were mostly purchased on a speculative basis
 - Holders of rights purchased to game model differences would pay back their share of the shortfall
 - Holders of low-value highly speculative rights would pay back their share of the shortfall

De-rating congestion revenue rights ex ante versus ex post

- In ex ante approaches, the ISO de-rates congestion revenue rights prior to the day-ahead market
 - Shape the congestion revenue rights quantity to the hourly granularity
 - Allows market participants to adjust forward energy positions prior to day-ahead market to be consistent with their final supply delivery hedge
 - Potential incentives for higher bid-values depending on de-rate method
- In ex post approaches, the ISO charges congestion revenue rights holders for shortfalls after the day-ahead market
 - Shape the congestion revenue rights payouts to the hourly granularity
 - Payouts aligned with revenues collected in the day-ahead market
 - Potential to eliminate incentives to game model differences between the congestion revenue rights market and day-ahead market

De-rating congestion revenue rights ex ante versus ex post

- Under either ex ante or ex post approach, the ISO will not pay congestion revenue rights holders for the full quantity of the congestion revenue rights all the time
- Participants likely will lower their bid values in anticipation of lower payouts
- Are there any partial funding approaches that reduce the incentive for market participants to lower bid values in the auction?



De-rate CRR quantity prior to the day-ahead market based on bid value

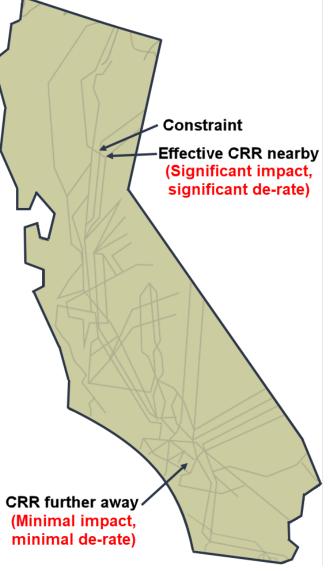
- One day prior to day-ahead market, re-run the simultaneous feasibility test using the most recent day-ahead model
 - Most accurate model
 - Allow participants the opportunity to react to the de-rate
- De-rate congestion revenue rights to hourly granularity based on available transmission and bid value
 - The ISO would de-rate lowest value congestion revenue rights first
 - Basing on bid values provides the incentive to not completely reduce bid values in auctions

CRRs shaped to the hour every day

Daily CRR adjustments cleared using simultaneous feasibility test

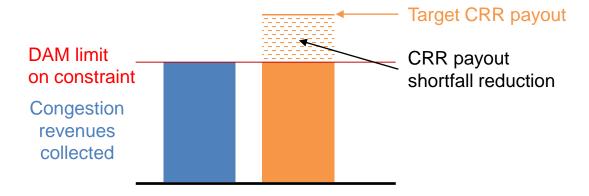
Perform daily CRR adjustment

- First use annual auction bids on each of the hourly 24 models
 - Cap each CRR's bid curve at the awarded quantities in the annual auction
 - De-rates determined by maximizing auction revenues and taking the difference between the adjusted quantity and the previously awarded quantity
 - Allocated CRRs can be inserted at high bid-value or market clearing price (priority determination)
- More capacity will still be available
 - Execute same process but with monthly auction bids and allocation nominations to further fill in the available transmission
- Resulting priority follows the order in which CRRs were released and bid-in values: (1) annual allocated, (2) annual auctioned, (3) monthly allocated, and (4) monthly auctioned



Adjust payments to CRRs based on effectiveness on

binding constraints


After the day-ahead market, calculate the revenue shortfall per constraint

 Reduce payments to only those congestion revenue rights effective on specific constraints that generated the revenue shortfall

Adjust payments to CRRs based on effectiveness on binding constraints

$$Imbalance^k = \lambda^k * \left(\sum_{i=1}^N -SF_i^k * MW_i^{IFM} - \sum_{j=1}^M MW_j^{CRR} * \left(SF_{src,j}^k - SF_{snk,j}^k \right) \right)$$

$$Factor^{k} = \alpha^{k} = min\left(1, \frac{Flow^{DAM,k}}{Flow^{CRR,k}}\right)$$

$$Adj.Payment_{j}^{k} = \alpha^{k} * \lambda^{k} * MW_{j}^{CRR} * (SF_{src,j}^{k} - SF_{snk,j}^{k})$$

Other approaches under consideration with potentially short implementation timelines

- Lower the percentage of system capacity released in the annual congestion revenue rights process
- DMM and Southern California Edison proposal to eliminate using the available transmission system in the auction
- Implement reserve prices
 - Point-to-point based on historical day-ahead market congestion between nodes
 - Data analysis on impact on auction revenue shortfall of lowpriced congestion revenue rights

THANK YOU

Stay connected

@California_ISO

Download ISO Today mobile app

Sign up for the Daily Briefing at www.caiso.com

