

Day-Ahead Market discussion

Megan Poage Sr. Market Design Policy Developer

George Angelidis Principal, Power Systems Technology Development

Market Surveillance Committee Meeting General Session June 7, 2019

Item	Time	Presenter
Defining the Problem Statement	10:10 – 10:30	Megan Poage
Market Formulations	10:30 – 11:15	George Angelidis
Deliverability	11:15 – 11:30	George Angelidis
Discussion	11:30 – 12:00	MSC

Day-Ahead Market Enhancements

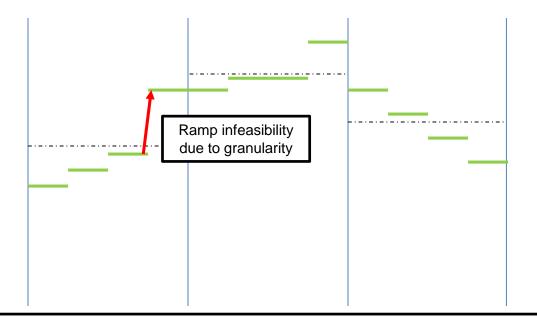
DEFINING THE PROBLEM STATEMENT

Megan Poage Sr. Market Design Policy Developer Market Design Policy

ISO PUBLIC

Previous stakeholder call announced cancellation of 15-minute scheduling

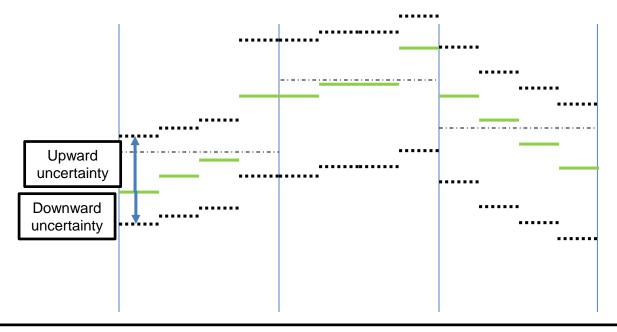
- ISO has ceased work on 15-minute scheduling granularity
 - Cost/benefit ratio minimized due to:
 - hourly unit commitment, and
 - uncertainty of scheduling 15-minute external resources
- DAME will proceed (without phases) for implementation in Fall 2021



DAME solution needs to address the following operational needs

- 1. RAMPING NEEDS Steep differences between 15-minute intervals (granularity differences) may result in 15-minute ramp infeasibilities due to mid-point to mid-point hourly schedules
- 2. NET LOAD UNCERTAINTY The need for dispatchable generation to meet changes in the net load forecast (deviations due to load and renewables)
- 3. DELIVERABILITY New product must be deliverable where it is needed

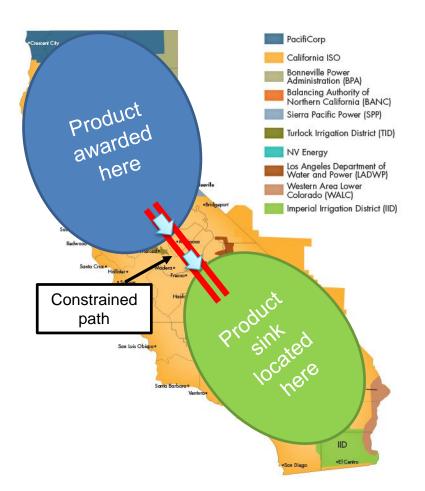
RAMPING NEEDS - Steep differences between 15-minute intervals (granularity differences) may result in 15-minute ramp infeasibility due to mid-point to mid-point hourly scheduling



Even assuming we have perfect knowledge, the market still produces a schedule that cannot meet a single 15-minute interval ramping need due to hourly scheduling granularity.

Page 6

NET LOAD UNCERTAINTY – The need for dispatchable generation to meet changes in the net load forecast (deviations due to load and renewables)



Even assuming we produce a 15-minute forecast in the day-ahead timeframe, there will be uncertainty in how much dispatchable generation is needed to meet net load.

Page 7

DELIVERABILITY – New product must be deliverable where it is needed

Even if the system-wide requirement is procured, product must be deliverable (export one region and import to another) where it is needed

Operations needs the ability to address the following in the day-ahead timeframe:

- 1. 15-minute ramp needs due to granularity differences
 - Currently not explicitly modeled
- 2. Uncertainty in how much dispatchable generation is needed to meet net load
 - Currently modeled approximately by RUC net short
- 3. Need to ensure product deliverability
 - Currently addressed at a BAA system level with net import/export constraints

Day-Ahead Market Enhancements

MARKET FORMULATIONS

George Angelidis Principal Power Systems Technology Development

ISO PUBLIC

Day-Ahead Market Enhancements Design Options

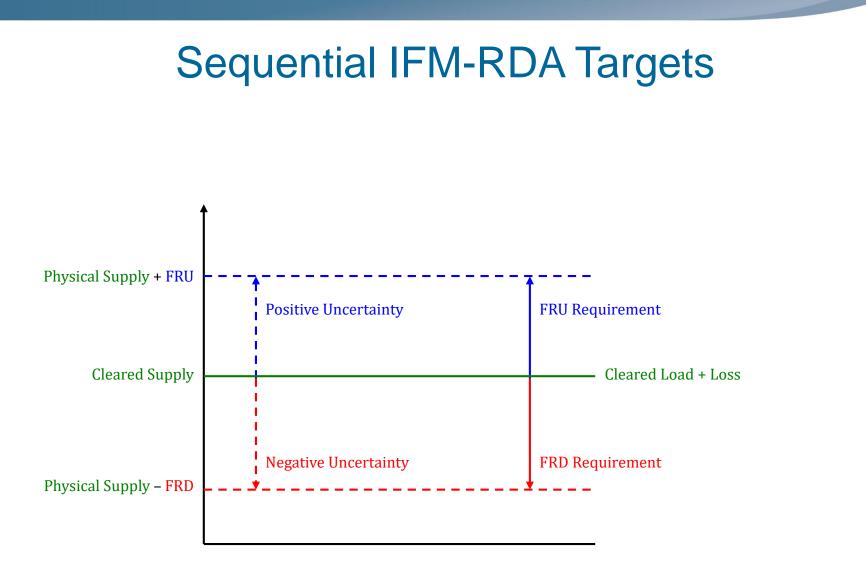
Sequential IFM-RDA

- 3 Passes: MPM, IFM, RDA (post-DAM tool)
- Hourly intervals
- Energy, AS, FRP
- Regional deliverability constraints
- Additional RDA unit commitment and Exceptional Dispatch

Integrated IFM-RUC

- 2 Passes: MPM, IFM-RUC
- Hourly intervals
- Energy, AS, FRP
- Regional deliverability constraints
- Reliability Capacity Up/Down (RCU/RCD) priced at FRP bids

FRP in Sequential IFM-RDA

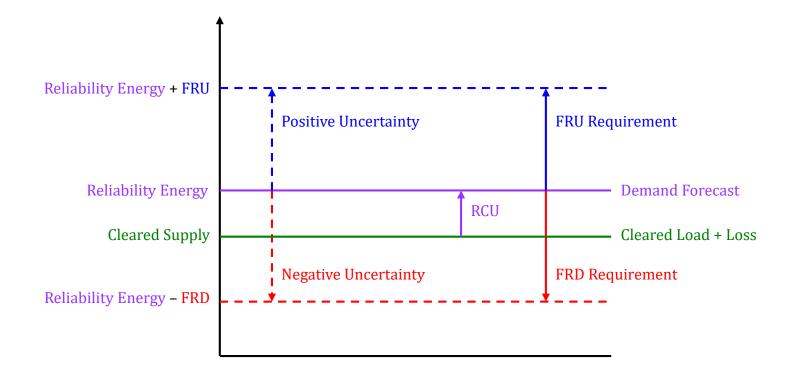

- Reserved up/down ramp capability between hourly day-ahead energy schedules
 - For granularity differences between DAME and FMM
 - For up/down uncertainty between physical/virtual supply schedules in DAME and the FMM demand forecast
- 15min product procured hourly in DAME
- Has a Must Offer Obligation for FMM
- Expires in FMM (no deviation to RTM FRP)

FRP in Integrated IFM-RUC

- Reserved up/down ramp capability between hourly reliability energy schedules
 - For granularity differences between DAME and FMM
 - For up/down uncertainty between the DAME demand forecast and the FMM demand forecast
 - 15min product procured hourly in DAME
- Has a Must Offer Obligation for FMM
- Expires in FMM (no deviation to RTM FRP)

🍣 California ISO

6/7/2019 Slide 14


Sequential IFM-RDA Constraints

$$\sum_{i} EN_{i,t} + \sum_{i} VS_{i,t} = \sum_{i} VD_{i,t} + \sum_{i} L_{i,t} + Loss_{t} \quad \lambda_{t}$$
$$\sum_{i} FRU_{i,t} \ge FRUR_{t} \qquad \rho_{t}$$
$$\sum_{i} FRD_{i,t} \ge FRDR_{t} \qquad \sigma_{t}$$

6/7/2019 Slide 15

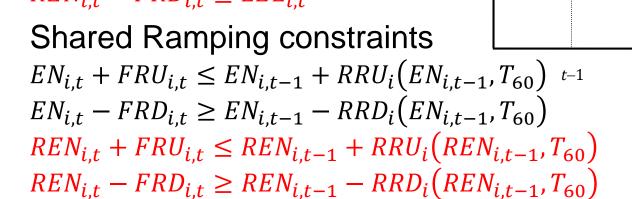
Integrated IFM-RUC Targets

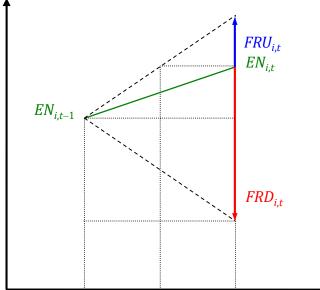
Integrated IFM-RUC Constraints

$$\sum_{i} EN_{i,t} + \sum_{i} VS_{i,t} = \sum_{i} VD_{i,t} + \sum_{i} L_{i,t} + Loss_{t} \quad \lambda_{t}$$
$$\sum_{i} REN_{i,t} = \sum_{i} (EN_{i,t} + RCU_{i,t} - RCD_{i,t}) = D_{t} \quad \xi_{t}$$
$$\sum_{i} FRU_{i,t} \ge FRUR_{t} \qquad \rho_{t}$$
$$\sum_{i} FRD_{i,t} \ge FRDR_{t} \qquad \sigma_{t}$$

6/7/2019 Slide 17

Integrated IFM-RUC Objective Function


- Unit Commitment costs
 - Start-Up, Minimum Load, State Transition costs
- Incremental energy costs for Energy schedules
- Ancillary Services costs at AS bids
- Flexible Ramp Up/Down costs at FRP bids $\sum_{t} \sum_{i} (FRU_{i,t} FRUP_{i,t} + FRD_{i,t} FRDP_{i,t})$
- Reliability Capacity Up/Down costs at FRP bids $\sum_{t} \sum_{i} (RCU_{i,t} FRUP_{i,t} + RCD_{i,t} FRDP_{i,t})$ $REN_{i,t} EN_{i,t} \leq RCU_{i,t}$ $EN_{i,t} REN_{i,t} \leq RCD_{i,t}$



Integrated IFM-RUC Capacity and shared ramping constraints

MW

- FRU/FRD feasible with both Energy/Reliability schedules
- Capacity Constraints $EN_{i,t} + FRU_{i,t} \leq UEL_{i,t}$ $EN_{i,t} - FRD_{i,t} \geq LEL_{i,t}$ $REN_{i,t} + FRU_{i,t} \leq UEL_{i,t}$ $REN_{i,t} - FRD_{i,t} \geq LEL_{i,t}$

t

Sequential/Integrated IFM-RUC Settlement

- Supply
 - $-EN_{i,t} \lambda_t, t = 1, 2, \dots, T_D$
 - $-VS_{i,t} \lambda_t, t = 1, 2, ..., T_D$
- Demand
 - $\bullet \quad +VD_{i,t} \ \lambda_t, t = 1, 2, \dots, T_D$
 - $\bullet \quad +L_{i,t} \ \lambda_t, t = 1, 2, \dots, T_D$
- FRP
 - $-FRU_{i,t} \rho_t, t = 1, 2, \dots, T_D$
 - $-FRD_{i,t} \sigma_t, t = 1, 2, \dots, T_D$
- Reliability Energy
 - $-REN_{i,t} \xi_t = -(EN_{i,t} + RCU_{i,t} RCD_{i,t}) \xi_t, t = 1, 2, ..., T_D$
- Marginal loss over-collection (to measured demand)
- Congestion revenue (to CRRs)

Day-Ahead Market Enhancements

DELIVERABILITY CONSTRAINT

George Angelidis Principal Power Systems Technology Development

ISO PUBLIC

Regional requirements will ensure deliverability for the new day-ahead product

- Regional requirements to distribute a portion of the overall requirement across each balancing authority area
 - Similar to ancillary services, this approach will provide sufficient confidence that the new product can be dispatched in subsequent intervals
- Establish upward and downward constraints for each region to insure that day-ahead AS and the new product are deliverable
 - Includes consideration for import/export simultaneous regional transfer capability

Day-Ahead market formulation and procurement of the new day-ahead product ensures deliverability

- Day-ahead market will co-optimize procurement of energy, AS and new product
- Constraints modeled to ensure deliverability between regions
- Minimizes costs associated with procurement of the new day-ahead product

Sequential IFM-RDA Regional Deliverability Constraints

$$\begin{split} \max & \left(0, \sum_{i \in S_r} (EN_{i,t} - L_{i,t}) + \sum_{j \in S_r} (EN_{j,t} - L_{j,t}) - Loss_{r,t} \right) + \\ & \max & \left(0, \sum_{i \in S_r} ASU_{i,t} - ASUR_{r,t} \right) + \\ & \max & \left(0, \sum_{i \in S_r} FRU_{i,t} - FRUR_{r,t}, FRDR_{r,t} - \sum_{i \in S_r} FRD_{i,t} \right) \leq NEL_{r,t} \\ & \max & \left(0, \sum_{i \in S_r} (L_{i,t} - EN_{i,t}) + \sum_{j \in S_r} (L_{j,t} - EN_{j,t}) + Loss_{r,t} \right) + \\ & \max & \left(0, \sum_{i \in S_r} RD_{i,t} - RDR_{r,t}, FRUR_{r,t} - \sum_{i \in S_r} FRU_{i,t} \right) \leq NIL_{r,t} \\ & \max & \left(0, \sum_{i \in S_r} FRD_{i,t} - FRDR_{r,t}, FRUR_{r,t} - \sum_{i \in S_r} FRU_{i,t} \right) \leq NIL_{r,t} \end{split}$$

Integrated IFM-RUC Regional Deliverability Constraints

$$\begin{aligned} \max \left(0, \sum_{i \in S_r} REN_{i,t} - D_{r,t} \right) + \\ \max \left(0, \sum_{i \in S_r} ASU_{i,t} - ASUR_{r,t} \right) + \\ \max \left(0, \sum_{i \in S_r} FRU_{i,t} - FRUR_{r,t}, FRDR_{r,t} - \sum_{i \in S_r} FRD_{i,t} \right) \leq NEL_{r,t} \\ \max \left(0, D_{r,t} - \sum_{i \in S_r} REN_{i,t} \right) + \\ \max \left(0, \sum_{i \in S_r} RD_{i,t} - RDR_{r,t} \right) + \\ \max \left(0, \sum_{i \in S_r} FRD_{i,t} - FRDR_{r,t}, FRUR_{r,t} - \sum_{i \in S_r} FRU_{i,t} \right) \leq NIL_{r,t} \end{aligned} \right\}, \forall r > 0 \land t = 1, \dots, T_D$$

6/7/2019

Slide 25

Day-Ahead Market Enhancements

DISCUSSION

The ISO is seeking input on the following:

- Sequential IFM & RDA
 - PROs
 - CONs
- Integrated IFM & RUC
 - PROs
 - CONs
- Other items for consideration

