CAISO Frequency Response Study

Stakeholder Conference

GE Energy

Nicholas W. Miller Miaolei Shao Sundar Venkataraman

December 13, 2011

CAISO

Mark Rothleder Clyde Loutan Irina Green

Outline

- Study Objectives
- Development of Study Database and Performance Metrics
- Frequency Response of Base Cases
- Frequency Response of High Renewable Penetration Cases
- Factors Affecting Frequency Response
- Mitigation Measures
- Conclusions

Frequency Response study

Concerns

- Frequency response would be lower due to lower inertia on the system
- Renewable resources replacing primary frequency control reserves
- Frequency decline following a large generator trip could trigger under-frequency load shedding relays
- Ability of the system to ride through faults without shedding load

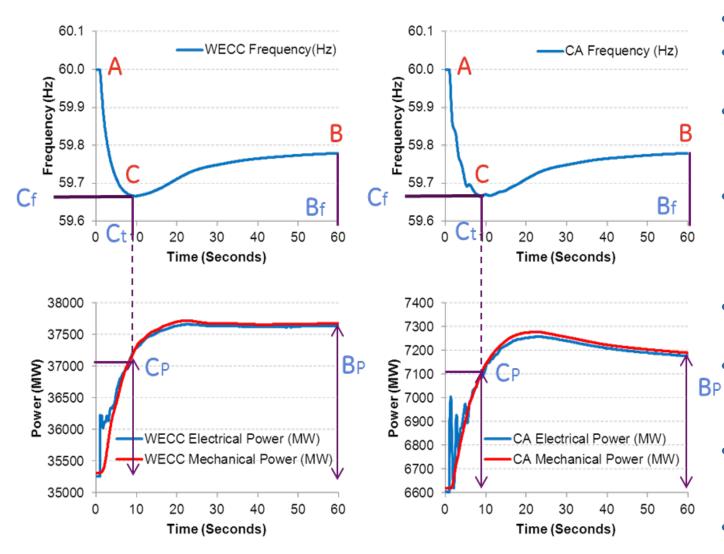
Study Objectives

- Frequecny response to large generator outages under a variety of system conditions
 - Spring and winter load conditions
- The impact of unit commitment on frequency response
- The impact of generator output level on governor response
 - Headroom or unloaded synchronized capacity
 - Speed of governor response
 - Number of generators with governors
 - Governor withdrawal
- Potential mitigation measures

Outline

- Study Objectives
- Development of Study Database and Performance Metrics
- Frequency Response of Base Cases
- Frequency Response of High Renewable Penetration Cases
- Factors Affecting Frequency Response
- Mitigation Measures
- Conclusions

Study Base Case


This presentation focuses on the first two cases

	WECC Load (MW)	WECC Wind Power (MW)	WECC Solar Power (MW)
Winter Low Load – High CAISO Wind	91300	13341	2550
Weekend Morning – High CAISO Wind and Solar	110798	12720	6810
Winter Off Peak – High Wind	97447	13414	2556
Spring Peak - High Hydro and Wind	140167	9904	2571

Frequency Performance Metrics

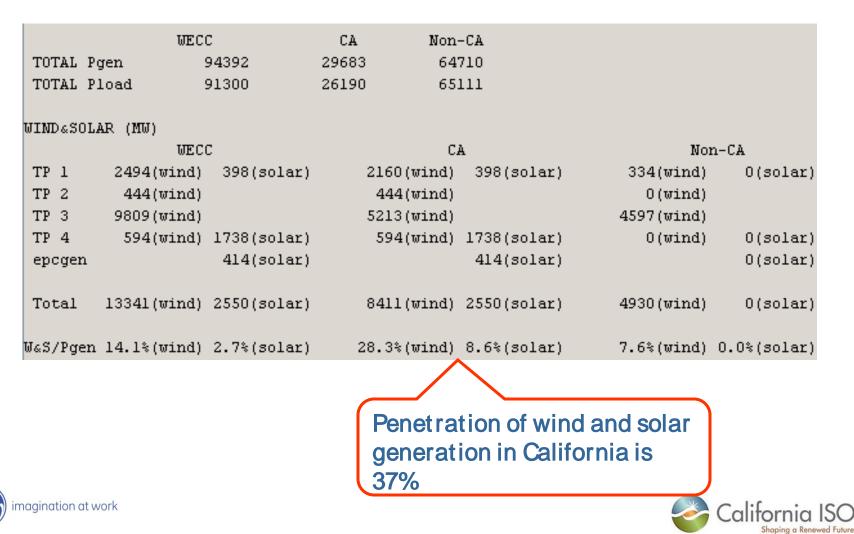
magination at work

- Frequency Nadir (Cf)
- Frequency Nadir Time (Ct)

- LBNL Nadir-Based Frequency Response (MW Loss/Δf_c*0.1)
 - GE-CAISO Nadir-Based Frequency Response (Δ MW/Δfc *0.1)
- Settling Frequency (Bf)
- NERC Frequency
 Response (MW
 Loss/Δfb*0.1)
- GE-CAISO Settling-Based Frequency Response
- (Δ MW/Δf_b*0.1)

Key to Case Summary Metrics

GR Pgen (MW)	Power generation of units with governor response
GR MWCAP (MW)	Power generation capability of units with governor response
GR Headroom (MW)	Headroom of units with governor response
BL Pgen (MW)	Power generation of units base loaded
NG Pgen (MW)	Power generation of units without governor
Wind Pgen (MW)	Power generation of wind
Solar Pgen (MW)	Power generation of solar
MW Capability = GR MWCAP + BL Pgen + NG Pgen + Wind Pgen + Solar Pgen	MW capability of all online generation units
CU Pgen (MW) (GR + BL + NG)	Power generation of conventional units
Total Pgen (MW)	System generation
Total Pload (MW)	System load
Wind Pgen/Total Pgen	Ratio of wind power to system generation
Solar Pgen/Total Pgen	Ratio of solar power to system generation
Kt = GR MWCAP/(GR MWCAP + BL Pgen + NG Pgen + Wind Pgen + Solar Pgen)	The ratio between governor response (GR) and other conventional units
GR Pgen/CU Pgen	Ratio of power generation of units with governor response to power generation of conventional units
GR Pgen/Total Pgen	Ratio of power generation of units with governor response to total system generation
GR Headroom/CU Pgen	Ratio of Headroom of units with governor response to power generation of conventional units
GR Headroom/Total Pgen	Ratio of Headroom of units with governor response to total system generation


Generation Summary for Winter Low Load – High CAISO Wind Base Case

	W	WECC		CA		n-CA
		# of Units		# of Units		# of Units
GR Pgen (MW)	35253	513	6602	122	28652	391
GR MWCAP (MW)	48993		10576		38417	
GR Headroom (MW)	13740		3974		9765	
BL Pgen (MW)	32085	319	11223	138	20862	181
NG Pgen (MW)	10849	332	2617	99	8232	233
Wind Pgen (MW)	13341		8411		4930	
Solar Pgen (MW)	2550		2550		0	
MW Capability	107818		35377		72441	
CU Pgen (MW) (GR + BL + NG)	78187	1164	20442	359	57746	805
Total Pgen (MW)	94392		29683		64710	
Total Pload (MW)	91300		26190		65111	
Wind Pgen/Total Pgen	14.1%		28.3%		7.6%	
Solar Pgen/Total Pgen	2.7%		8.6%		0.0%	
Kt	45.4%		29.9%		53.0%	
GR Pgen/CU Pgen	45.1%				49.6%	
GR Pgen/Total Pgen	37.3%		22.2%		44.3%	
GR Headroom/CU Pgen	17.6%		19.4%		16.9%	
GR Headroom/Total Pgen	14.6%		13.4%		15.1%	

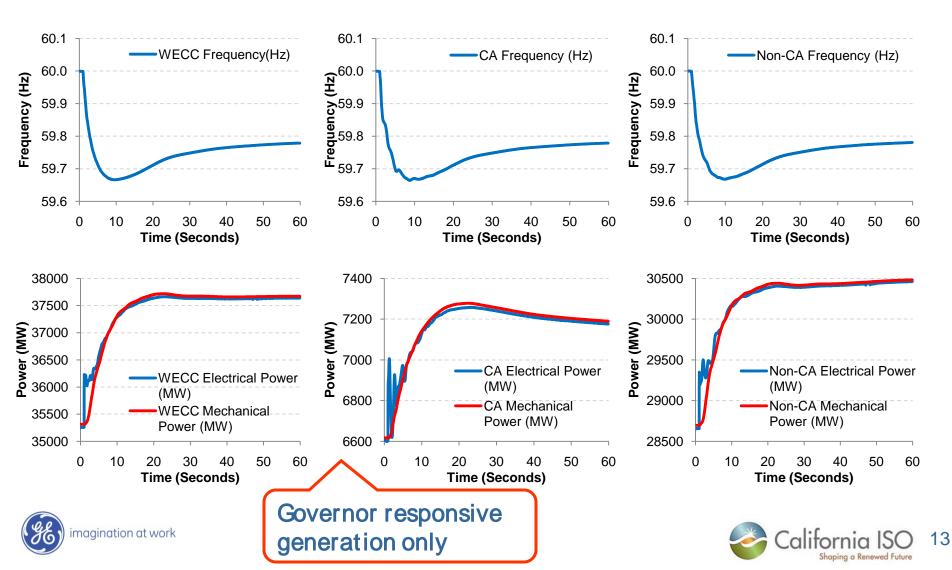
Wind and Solar Power Summary for Winter Low Load – High CAISO Wind Base Case

0 10

Generation Summary for Weekend Morning – High CAISO Wind and Solar Base Case

	W	WECC		СА		on-CA
		# of Units		# of Units		# of Units
GR Pgen (MW)	48529	808	5514	127	43015	681
GR MWCAP (MW)	65984		9785		56199	
GR Headroom (MW)	17455		4271		13184	
BL Pgen (MW)	35116	381	9477	155	25639	226
NG Pgen (MW)	10972	460	1757	121	9215	339
Wind Pgen (MW)	12720		8645		3386	
Solar Pgen (MW)	6810		6666		144	
MW Capability	131602		36330		94583	
CU Pgen (MW) (GR + BL + NG)	94617	1649	16748	403	77869	1246
Total Pgen (MW)	114775		30525		84250	
Total Load (MW)	110798		35155		75643	
Wind Pgen/Total Pgen	11.1%		28.3%		4.0%	
Solar Pgen/Total Pgen	5.9%		21.8%		0.2%	
Kt	50.1%		26.9%		59.4%	
GR Pgen/CU Pgen	51.3%	49.0%	32.9%	31.5%	55.2%	54.7%
GR Pgen/Total Pgen	42.3%		18.1%		51.1%	
GR Headroom/CU Pgen	18.4%		25.5%		16.9%	
GR Headroom/Total Pgen	15.2%		14.0%		15.6%	

Penetration of wind and solar generation in California is 50%


Outline

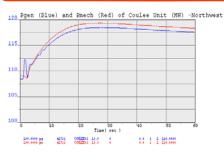
- Study Objectives
- Development of Study Database and Performance Metrics
- Frequency Response of Base Cases
- Frequency Response of High Renewable Penetration Cases
- Factors Affecting Frequency Response
- Mitigation Measures
- Conclusions

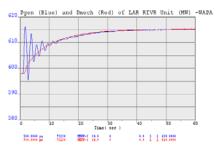
Frequency and Governor Response to Loss of Two Palo Verde Units

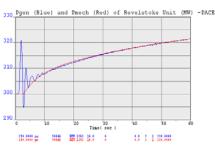
Winter Low Load – High CAISO Wind Base Case

Performance Matrix for Loss of Two Palo Verde Units

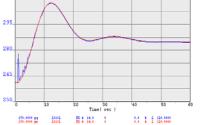
Winter Low Load - High CAISO Wind Base Case

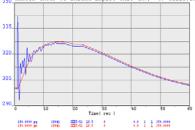

	WECC	СА	Non-CA
Frequency Nadir (Hz)	59.67	59.66	59.67
Frequency Nadir Time (Seconds)	9.8	8.7	9.9
LBNL-Nadir Based Frequency Response (MW/0.1Hz)	806	801	810
GE-CAISO Nadir Based Frequency Response (MW/0.1Hz)	641	154	479
Percent of Total (%)		24.0	74.7
Settling Frequency (Hz)	59.78	59.78	59.78
NERC Frequency Response (MW/0.1Hz)	1218	1217	1226
GE-CAISO Settling Based Frequency Response (MW/0.1Hz)	968	234	726
Percent of Total (%)		24.2	75.0




Governor Response and Grid Flow

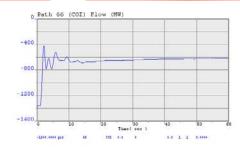
electric and mechanical power of selected machines

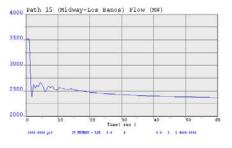




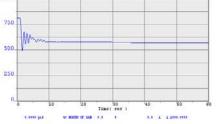


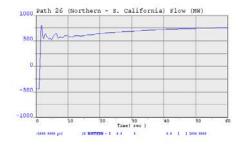
310 Pgen (Blue) and Emech (Red) of Reid Gardner Unit (MW) -NEVEDA 350 dPmech (Red) of Inland-Empire Unit (MW) -S. California

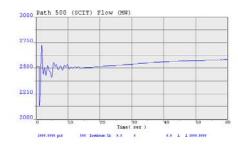




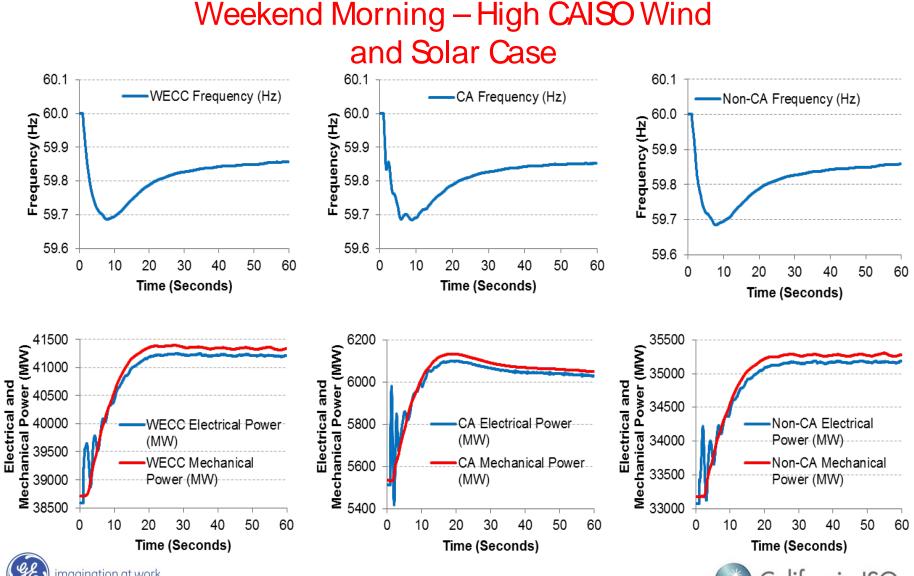
Power flow of selected key interfaces







1000 Path 43 (North of San Onofre) Flow (NW)



Frequency and Governor Response to Loss of Two Palo Verde Units

imagination at work

16

Shaping a Renewed Future

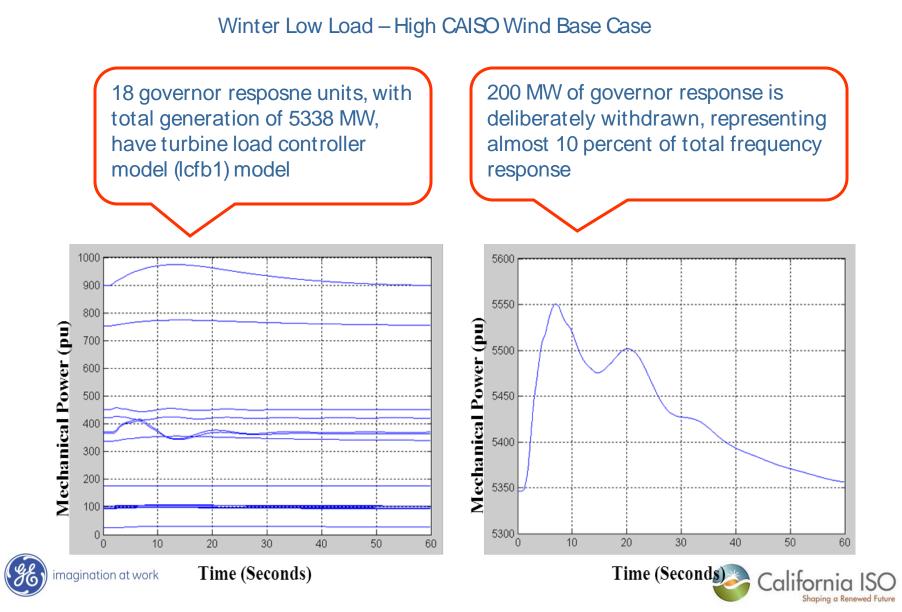
Performance Matrix for Loss of Two Palo Verde Units

Weekend Morning - High CAISO Wind and Solar Case

	WECC	CA	Non-CA
Frequency Nadir (Hz)	59.69	59.68	59.68
Frequency Nadir Time (Seconds)	8.0	8.8	7.8
LBNL-Nadir Based Frequency Response (MW/0.1Hz)	858	852	853
GE-CAISO Nadir Based Frequency Response (MW/0.1Hz)	658	134	503
Percent of Total (%)		20.0	76.0
Settling Frequency (Hz)	59.86	59.85	59.86
NERC Frequency Response (MW/0.1Hz)	1878	1824	1893
GE-CAISO Settling Based Frequency Response (MW/0.1Hz)	1440	287	1116
Percent of Total (%)		20.0	78.0

287 MW/0.1Hz is comfortably above the proposed target of 205 MW/0.1Hz

Governor Response Discussion - Timing of Governor Response


22983 IV GEN3 Pm (MW) Pmax-P(0) Maximum Governor Response (MW) 22262 PEN_T1 Pm (MW) Total Peak Response: 3252 MW 29209 BLY1ST1 Pm (MW) 40365 DWOR 3 Pm (MW) Time of Maximum Power (Seconds) Units still increasing Units reach peak response before output after 1 minute frequency nadir

Winter Low Load – High CAISO Wind Base Case



Governor Response Discussion - Governor Withdrawal with Load Control Response

19

Single Palo Verde Unit Trip Event (1345 MW) - Response of California Generation, Load and COI Flow

Outline

- Study Objectives
- Development of Study Database and Performance Metrics
- Frequency Response of Base Cases
- Frequency Response of Higher Renewable Penetration Cases
- Factors Affecting Frequency Response
- Mitigation Measures
- Conclusions

Generation Summary for Winter Low Load – High CAISO Wind Base Case

See this slide before

	WECC		CA		No	n-CA	
		# of Units		# of Units		# of Units	
GR Pgen (MW)	35353	513	6602	122	28652	391	
GR MWCAP (MW)	48993		10576		38417		
GR Headroom (MW)	13640		3974		9765		
BL Pgen (MW)	32085	319	11223	138	20862	181	
NG Pgen (MW)	10849	332	2617	99	8232	233	
Wind Pgen (MW)	13341		8411		4930		
Solar Pgen (MW)	2550		2550		0		
GR MWCAP + BL Pgen + NG Pgen + Wind Pgen CU Pgen (MW) (GR + BL + NG) Total Pgen (MW) Total Pload (MW)	105268 78287 94392 91300	1164	32827 20442 29683 26190	359	OU	nd generat tside of Ca elatively lo	lifornia
Wind Pgen/Total Pgen	14.1%		28.3%		7.6%		
Solar Pgen/Total Pgen	2.7%		8.6%		0.0%		
GR MWCAP/(GR MWCAP + BL Pgen + NG Pgen + Wind Pgen) - Kt	46.5%		32.2%		53.0%		
GR Pgen/CU Pgen	45.2%	44.1%	32.3%	34.0%	49.6%	48.6%	
GR Pgen/Total Pgen	37.5%		22.2%		44.3%		
GR Headroom/CU Pgen	17.4%		19.4%		16.9%		
GR Headroom/Total Pgen	14.5%		13.4%		15.1%		

Shaping a Renewed Future

Re-dispatch Methodology

WWSISstudy's 2/3-1/3 "rule" - for every 3 MW of additional wind production, there is on average a 2 MW reduction in thermal unit commitment and a 1 MW reduction in thermal unit dispatch.

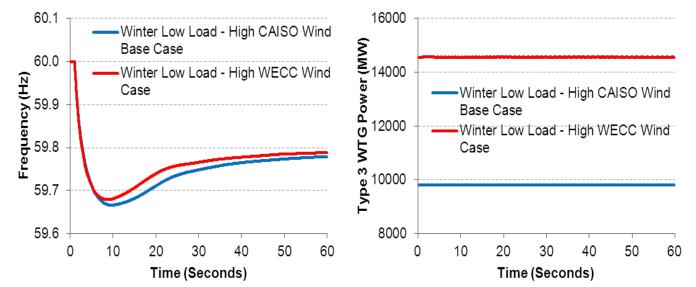
The selection of conventional thermal units to be replaced by WTG is based on MAPS results in the WWSIS study - the least annual operating time.

50 conventional thermal units, with total power generation of **4754** MW and total MVA rating of 7888 MVA, were selected to be replaced by WTGs. 418 conventional thermal units (machines with MVA rating greater than 40 MVA), with total power generation of 67166 MW and total MVA rating of 94009 MVA, were selected to modify MVA rating and MWCAP.

The replacement and re-dispatch results in a net decrease of 3169 MVA of committed units and a net increase of 1585 MW unloaded generation. Note that the increase in headroom is 1211 MW, since some units downwardly dispatched machines do not have governors.

Generation Summary for Winter Low Load – High WECC Wind Case

	w	ECC		CA	No	n-CA	
		# of Units		# of Units		# of Units	
GR Pgen (MW)	33586	496	6602	122	26984	374	
GR MWCAP (MW)	48536		10946		37590		
GR Headroom (MW)	14950		4344		10606		
BL Pgen (MW)	30171	298	11223	138	18948	160	
NG Pgen (MW)	9678	320	2617	99	7060	221	
Wind Pgen (MW)	18094		8411		9684		
Solar Pgen (MW)	2550		2550		0		
MW Capability	109029		35747		73282		
CU Pgen (MW) (GR + BL + NG)	73435	1114	20442	359	52992	755	
Total Pgen (MW)	94392		29683		64710	Increa	sed from
Total Pload (MW)	91300		26190		65111		
						/.0% t	o 15% .
Wind Pgen/Total Pgen	19.2%		28.3%		15.0%		
Solar Pgen/Total Pgen	2.7%		8.6%		0.0%		
Kt	44.5%		30.6%		51.3%		
GR Pgen/CU Pgen	45.7%	44.5%	32.3%	34.0%	50.9%	49.5%	
GR Pgen/Total Pgen	35.6%		22.2%		41.7%		
GR Headroom/CU Pgen	20.4%		21.3%		20.0%		
GR Headroom/Total Pgen	15.8%		14.6%		16.4%		


Comparison of Wind and Solar Power Summary

	TOTAL TOTAL	-	C 94392 91300	29683 6	n-CA 4710 5111		
	WIND&S()LAR (MW) WEC			CA	No	n-CA
Winter Low Load –	TP 1 TP 2 TP 3	2494(wind) 444(wind) 9809(wind)	398(solar)	2160 (wind 444 (wind 5213 (wind) 398(solar)	334(wind) 0(wind) 4597(wind)	O(solar)
High CAISO Wind Base Case	TP 4 epcger	594(wind)	1738(solar) 414(solar)		1738(solar) 414(solar)	0(wind)	O(solar) O(solar)
	Total	13341(wind)	2550(solar)	8411(wind	2550(solar)	4930(wind)	O(solar)
	W&S/Pge	en 14.1%(wind)	2.7%(solar)	28.3%(wind	8.6%(solar)	7.6%(wind)	0.0%(solar)
	TOTAL TOTAL	-	C 94392 91300	29683 64	1-CA 1710 5111		
	TOTAL	Pgen Pload DLAR (MW)	94392 91300	29683 64 26190 63	1710 5111	Nor	1-CA
Winter Low Load – High WECC Wind Case	TOTAL	Pgen Pload	94392 91300 C 398(solar)	29683 64 26190 63	1710 5111 CA 398(solar)	Nor 334(wind) 0(wind) 9350(wind)	n-CA O(solar)
	TOTAL WIND&S TP 1 TP 2	Pgen Pload DLAR (MW) 2494(wind) 444(wind) 14563(wind) 594(wind)	94392 91300 C 398(solar)	29683 64 26190 65 (2160(wind) 444(wind) 5213(wind)	1710 5111 CA 398(solar)	334(wind) 0(wind)	
High WECC Wind	TOTAL WIND&S TP 1 TP 2 TP 3 TP 4	Pgen Pload DLAR (MW) 2494(wind) 444(wind) 14563(wind) 594(wind)	94392 91300 C 398(solar) 1738(solar)	29683 64 26190 63 (2160 (wind) 444 (wind) 5213 (wind) 594 (wind)	1710 5111 CA 398(solar) 1738(solar)	334(wind) 0(wind) 9350(wind)	O(solar) O(solar)

25

shaping a Kenewed Future

Comparison of Impact of Increasing Levels of Wind on Frequency Performance to Loss of Two Palo Verde Units

More wind has better frequency response.

The rate-ofchange-offrequency (ROCOF) is nearly same.

Renewable penetration alone gives little insight.

Headroom and Kt are better metrics of anticipated performance.

	Winter Low Load – High CAISO Wind Base Case			Winter Lo	w Load – Hi Wind Case	gh WECC
	WECC	CA	Non-CA	WECC	CA	Non-CA
Frequency Nadir (Hz)	59.67	59.66	59.67	59.68	59.68	59.68
Frequency Nadir Time (Seconds)	9.8	8.7	9.9	9.1	8.5	9.3
LBNL-Nadir Based Frequency Response (MW/0.1Hz)	806	801	810	839	834	836
GE-CAISO Nadir Based Frequency Response (MW/0.1Hz)	641	154	479	675	176	500
Percent of Total (%)		24.0	74.7		26.1	74.1
Settling Frequency (Hz)	59.78	59.78	59.78	59.79	59.79	59.79
NERC Frequency Response (MW/0.1Hz)	1218	1217	1226	1272	1272	1271
GE-CAISO Settling Based Frequency Response (MW/0.1Hz)	968	234	726	1024	269	760
Gertensiontional(%)*		24.2	75.0		26.3	74.2

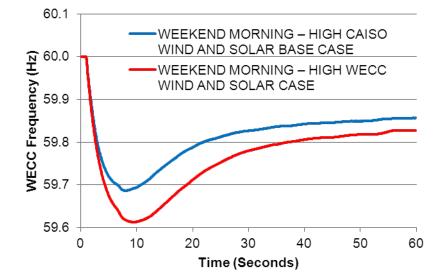
Generation Summary for Weekend Morning – High WECC Wind and Solar Case

	W	WECC		CA		n-CA
		# of Units		# of Units		# of Units
GR Pgen (MW)	38590	678	5514	127	33075	551
GR MWCAP (MW)	51587		9785		41802	
GR Headroom (MW)	12997		4271		8727	
BL Pgen (MW)	37384	431	9478	155	27906	276
NG Pgen (MW)	9603	453	1757	121	7845	332
Wind Pgen (MW)	21762		8646		12428	
Solar Pgen (MW)	6810		6667		144	
MW Capability	127146		36333		90125	
CU Pgen (MW) (GR + BL + NG)	85577	1562	16749	403	68826	1159
Total Pgen (MW)	114775		30525		84250	
Total Load (MW)	110798		35155		75643	
Wind Pgen/Total Pgen	19.0%		28.3%		14.8%	
Solar Pgen/Total Pgen	5.9%		21.8%		0.2%	
Kt	40.6%		26.9%		46.4%	
GR Pgen/CU Pgen	45.1%	43.4%	32.9%	31.5%	48.1%	47.5%
GR Pgen/Total Pgen	33.6%		18.1%		39.3%	
GR Headroom/CU Pgen	15.2%		25.5%		12.7%	
GR Headroom/Total Pgen	11.3%		14.0%		10.4%	

Comparison of Wind and Solar Power Summary

	TOTAL P(TOTAL P)	-	C 14775 10787	CA 30525 35152	Non-CA 84250 75635		
Weekend Morning – High CAISO Wind and Solar Base Case	WIND&SOL TP 1 TP 2 TP 3 TP 4 epcgen Total W&S/Pgen	WEC 3219(wind) 990(wind) 7917(wind) 594(wind)	398(solar) 4360(solar) 2052(solar) 6810(solar)	8645 (t	vind)	938 (wind) 0 (wind) 2448 (wind) 0 (wind) 3386 (wind)	n-CA O(solar) 40(solar) 103(solar) 144(solar) 0.2%(solar)
	TOTAL PO TOTAL PI	load 1.	C 14775 10787	CA 30525 35152	Non-CA 84250 75635		
Weekend Morning – High WECC Wind and Solar Case	WIND&SOLA TP 1 TP 2 TP 3 TP 4 epcgen	WEC 3219(wind) 990(wind) 16959(wind)	398(solar) 4360(solar) 2052(solar)	2281 (τ 301 (τ 5469 (τ 594 (τ	vind)	938(wind) 0(wind) 11489(wind) 0(wind)	n-CA O(solar) 40(solar) 103(solar)
imagination at work	Total W&S/Pgen	21762(wind) 19.0%(wind)			jind) 6666(solar) jind)21.8%(solar)		144(solar) 0.2%(solar)

Comparison of Impact of Increasing Levels of Wind on Frequency Performance to Loss of Two Palo Verde Units


More wind has worse but acceptable frequency response.

California's frequency response improves (from 287 to 311 MW/0.1 Hz – well above the 205 MW/0.1Hz target).

The fractional contribution in California increases greatly, from 20% to 27%.

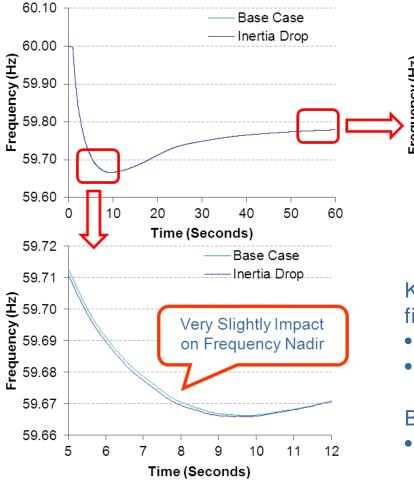
The behavior of resources outside of California has impact on the California response.

imagination at work

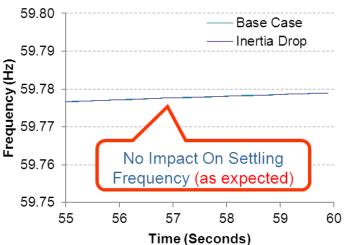
	Weekend Morning – High CAISO Wind and Solar Base Case			Weekend Morning – High WECC Wind and Solar Case			
	WECC	CA	Non-CA	WECC	CA	Non-CA	
Frequency Nadir (Hz)	59.69	59.68	59.68	59.61	59.61	59.61	
Frequency Nadir Time (Seconds)	8.0	8.8	7.8	9.7	9.9	9.1	
LBNL-Nadir Based Frequency Response (MW/0.1Hz)	858	852	853	695	684	697	
GE-CAISO Nadir Based Frequency Response (MW/0.1Hz)	658	134	503	515	140	354	
Percent of Total (%)		20.0	76.0		27.0	69.0	
Settling Frequency (Hz)	59.86	59.85	59.86	59.83	59.82	59.83	
NERC Frequency Response (MW/0.1Hz)	1878	1824	1893	1565	1520	1578	
GE-CAISO Settling Based Frequency Response (MW/0.1Hz)	1440	287	1116	1158	311	802	
Percent of Total (%)		20.0	78.0		27.0	69.0	29

Outline

- Study Objectives
- Development of Study Database and Performance Metrics
- Frequency Response of Base Cases
- Frequency Response of High Renewable
- Factors Affecting Frequency Response
- Mitigation Measures
- Conclusions


Factors Affecting Frequency Response

	Impact on Frequency Nadir	Impact on Settling Frequency
Reduced Inertia	Worse, sooner	No impact
Reduced Headroom	Small impact	Worse
Reduced Count of Governors Enabled	Small impact	Worse
More Governor Withdrawal	Small impact	Worse
Wind Inertial Control	Improve	Small impact
Wind Frequency Droop (Governor-Like Control)	Improve	Improve



Factors Degrading Frequency Response – Reduced Inertia

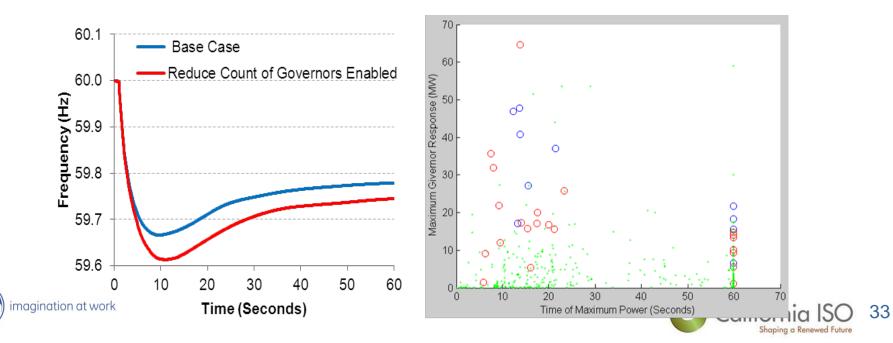
The impact of loss of inertia for 1993 MW is nearly invisible.

Keep all other factors impacting frequency response fixed

- same Kt and headroom
- Wind and Solar are held constant

Baseload units that contribute inertia

- 14 base load units, with total MVA rating of 1993 MVA and dispatch of 324 MW, were de-committed.
- 2 other base load units, with total MVA rating of 1762 MVA and dispatch of 591 MW, were selected to dispatched up 324 MW.


Factors Degrading Frequency Response – Fewer Governors in Operation

Keep all other factors impacting frequency response fixed

Governor Response (GR) units

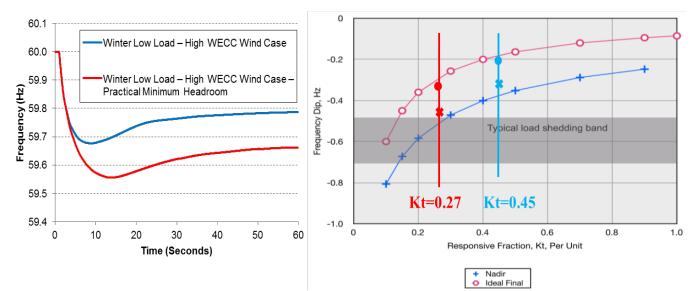
- 25 GR units, with total dispatch of 3144 MW and rating (MWCAP) of 5189 MW for a total of 2045 MW headroom, were selected to dispatch up 2045 MW and then were set as base load.
- Another 11 GR units, with total dispatch of 3034MW and rating (MWCAP) of 4165 MW were selected to dispatch down 2045 MW.

Reduce the count of generators providing response by 25, while holding headroom fixed.

Factors Degrading Frequency Response – Reduced Headroom

- Small Change in Headroom
- Practical Minimum Headroom
- Extreme minimum Headroom

Reduce Headroom - Practical Minimum Headroom


		WECC		СА		Non-CA	
			# of Units		# of Units		# of Units
GR Pgen (MW)		18942	284	5045	92	13897	192
GR MWCAP (MW)		27057		8169		18888	
GR Headroom (MW)	13640	8115	3974	3124	9765	4991	
BL Pgen (MW)		44815	510	12780	168	32035	342
NG Pgen (MW)		9678	320	2617	99	7060	221
Wind Pgen (MW)		18094		8411		9684	
Solar Pgen (MW)		2550		2550		0	
MW Capability		102194		34527		67667	
CU Pgen (MW) (GR + BL + NG)		73435	1114	20442	359	52992	755
Total Pgen (MW)		94392		29683		64710	
Total Load (MW)		91300		26190		65111	
Wind Pgen/Total Pgen		19.2%		28.3%		15.0%	
Solar Pgen/Total Pgen		2.7%		8.6%		0.0%	
Kt		26.5%		23.7%		27.9%	
GR Pgen/CU Pgen		25.8%	25.5%	24.7%	25.6%	26.2%	25.4%
GR Pgen/Total Pgen		20.1%		17.0%		21.5%	
GR Headroom/CU Pgen		11.1%		15.3%		9.4%	
GR Headroom/Total Pgen		8.6%		10.5%		7.7%	

Condition in this case was considered to be challenging and might occur relatively infrequently.

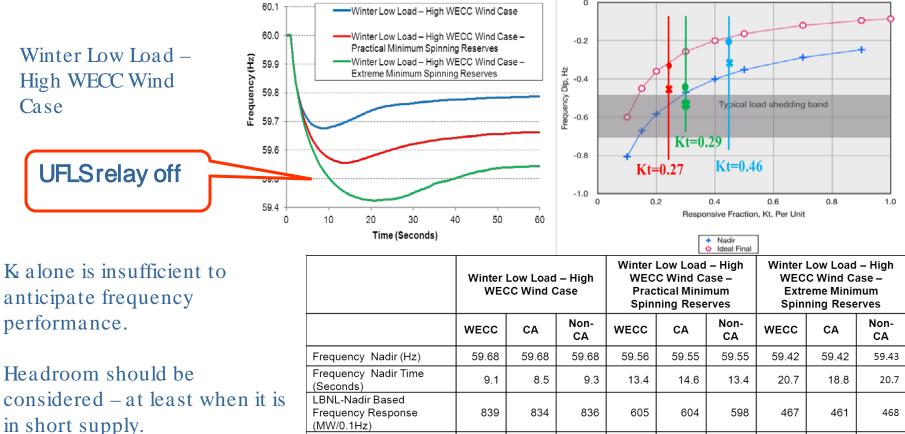
Reduce Headroom - Practical Minimum Headroom

	Winter Low Load – High WECC Wind Case			Winter Low Load – High WECC Wind Case – Practical Minimum Spinning Reserves			
	WECC	СА	Non-CA	WECC	СА	Non-CA	
Frequency Nadir (Hz)	59.68	59.68	59.68	59.56	59.55	59.55	
Frequency Nadir Time (Seconds)	9.1	8.5	9.3	13.4	14.6	13.4	
LBNL-Nadir Based Frequency Response (MW/0.1Hz)	839	834	836	605	604	598	
GE-CAISO Nadir Based Frequency Response (MW/0.1Hz)	675	176	500	464	171	295	
Percent of Total (%)		26.1	74.1		36.9	63.6	
Settling Frequency (Hz)	59.79	59.79	59.79	59.66	59.66	59.66	
NERC Frequency Response (MW/0.1Hz)	1272	1272	1271	794	795	791	
GE-CAISO Settling Based Frequency Response (MW/0.1Hz)	1024	269	760	609	224	396	
Percent of Total (%)		26.3	74.2		36.8	65.0	

36

tornia

Shaping a Renewed Future

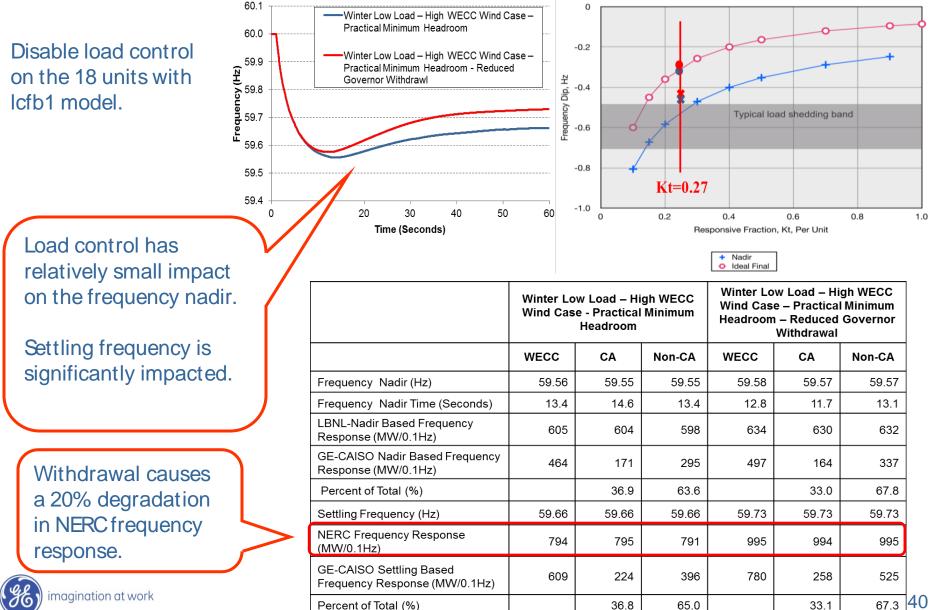

Generation Summary for Winter Low Load – High WECC Wind Case – Extreme Minimum Headroom

		WECC			CA	Non-CA		
			# of Units		# of Units		# of Units	
GR Pgen (MW)		23913	284	7018	92	16895	192	
GR MWCAP (MW)		_27057		8169		18888		
GR Headroom (MW)	13640	3144	3974	1151	9765	1993		
BL Pgen (MW)		39676	510	11439	168	28238	342	
NG Pgen (MW)		9678	320	2617	99	7060	221	
Wind Pgen (MW)		18094		8411		9684		
Solar Pgen (MW)		2550		2550		0		
MW Capability		97055		33186		63870		
CU Pgen (MW) (GR + BL + NG)		73267	1114	21074	359	52193	755	
Total Pgen (MW)		94225		30315		63910		
Total Pload (MW)		91301		26190		65111		
Wind Pgen/Total Pgen		19.2%		27.7%		15.2%		
Solar Pgen/Total Pgen		2.7%		8.4%		0.0%		
Kt		27.9%		24.6%		29.6%		
GR Pgen/CU Pgen		32.6%	25.5%	33.3%	25.6%	32.4%	25.4%	
GR Pgen/Total Pgen		25.4%		23.2%		26.4%		
GR Headroom/CU Pgen		4.3%		5.5%		3.8%		
GR Headroom/Total Pgen		3.3%		3.8%		3.1%		

Impact of Extreme Minimum Headroom and Governor Participation (Kt) on Frequency Performance

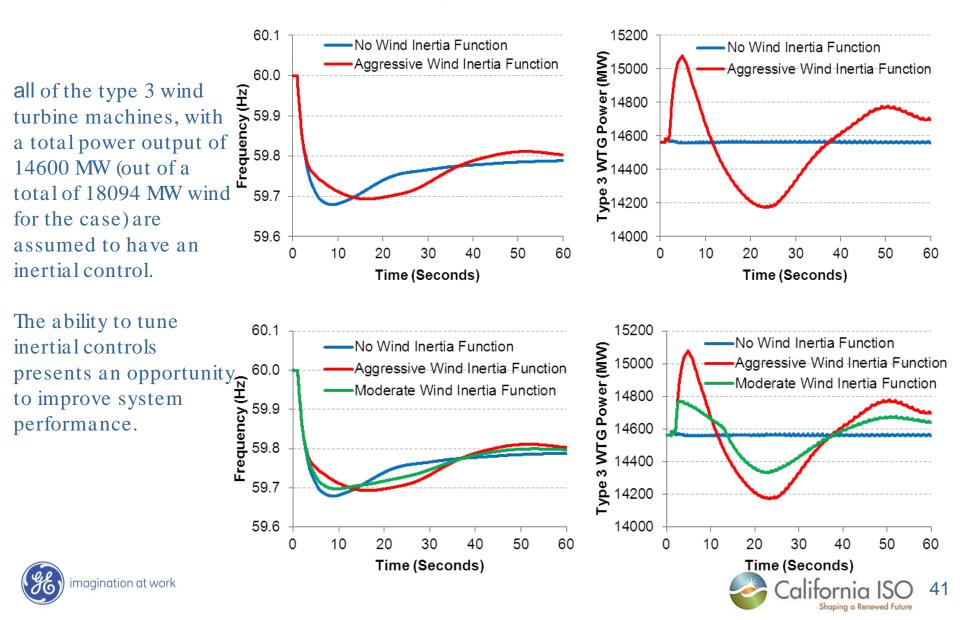
Time or time window for which settling frequency is measured becomes quite important.

imagination at work


Time (Seconds)						 Nadir Ideal Final]		
	1	Low Load CC Wind C	•				Winter Low Load – High WECC Wind Case – Extreme Minimum Spinning Reserves		
	WECC	СА	Non- CA	WECC	СА	Non- CA	WECC	СА	Non- CA
Frequency Nadir (Hz)	59.68	59.68	59.68	59.56	59.55	59.55	59.42	59.42	59.43
Frequency Nadir Time (Seconds)	9.1	8.5	9.3	13.4	14.6	13.4	20.7	18.8	20.7
LBNL-Nadir Based Frequency Response (MW/0.1Hz)	839	834	836	605	604	598	467	461	468
GE-CAISO Nadir Based Frequency Response (MW/0.1Hz)	675	176	500	464	171	295	336	118	213
Percent of Total (%)		26.1	74.1		36.9	63.6		35.1	63.3
Settling Frequency (Hz)	59.79	59.79	59.79	59.66	59.66	59.66	59.54	59.55	59.56
NERC Frequency Response (MW/0.1Hz)	1272	1272	1271	794	795	791	590	592	606
GE-CAISO Settling Based Frequency Response (MW/0.1Hz)	1024	269	760	609	224	396	424	152	275
Percent of Total (%)		26.3	74.2		36.8	65.0		35.8	64.9

Outline

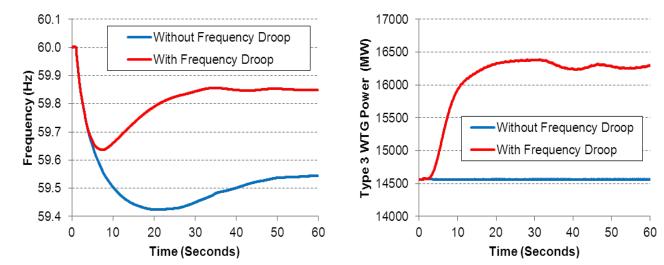
- Study Objectives
- Development of Study Database and Performance Metrics
- Frequency Response of Base Cases
- Frequency Response of High Renewable Penetration Cases
- Factors Affecting Frequency Response
- Mitigation Measures
 - Reduced Governor Withdrawal
 - Inertial Response From Wind Plants
 - Governor Response (Frequency Droop) from Wind Plants
 - Load Control/Fast Energy Storage
- Conclusions



Mitigation Measures – Reduced Governor Withdrawal

Mitigation Measures – Inertial Response From Wind Plant

Winter Low Load – High WECC Wind case

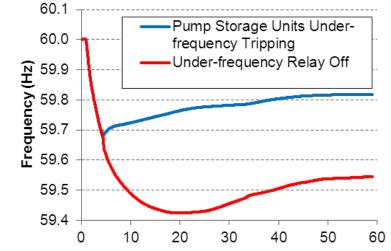


Mitigation Measures – Governor Response (Frequency Droop) from Wind Plants Winter Low Load – High WECC Wind Case – Extreme Minimum Spinning Reserves

Approximately 41% of all the WTGs in WECC are provided with standard 5% droop, 36mHz deadband governors. This condition adds a total of 1812 MW of headroom.

Primary frequency response from wind generation has the potential to greatly improve system frequency performance of the entire WECC grid.

The California contribution to frequency response goes from an unacceptable 152 MW/0.1 Hz to a healthy 258 MW/0.1 Hz.



		w Load – Hi e – Extreme Headroom	- 1	Winter Low Load – High WECC Wind Case – Extreme Minimum Headroom – Frequency Droop				
	WECC	СА	Non-CA	WECC	СА	Non-CA		
Frequency Nadir (Hz)	59.42	59.42	59.43	59.64	59.63	59.63		
Frequency Nadir Time (Seconds)	20.7	18.8	20.7	7.4	8.3	7.2		
LBNL-Nadir Based Frequency Response (MW/0.1Hz)	467	461	468	739	736	727		
GE-CAISO Nadir Based Frequency Response (MW/0.1Hz)	336	118	213	538	106	415		
Percent of Total (%)		35.1	63.3		19.3	77.5		
Settling Frequency (Hz)	59.54	59.55	59.56	59.85	59.85	59.85		
NERC Frequency Response (MW/0 1Hz)	590	592	606	1787	1794	1793		
GE-CAISO Settling Based Frequency Response (MW/0.1Hz)	424	152	275	1301	258	1036		
Percent of Total (%)		35.8	64.9		19.8	79.6		

Mitigation Measures – Load Control/Fast Energy Storage

Raised the tripping threshold of pumps and pumped storage hydro plants to 59.7 Hz.

Tripping of 1379 MW of pump motor load immediately arrests the frequency decline.

Time (Seconds)

		w Load – Hi e – Extreme Headroom	-	Winter Low Load – High WECC Wind Case – Extreme Minimum Headroom – Pump Storage Units Under- frequency Tripping				
	WECC	СА	Non-CA	WECC	CA	Non-CA		
Frequency Nadir (Hz)	59.42	59.42	59.43	59.68	59.68	59.68		
Frequency Nadir Time (Seconds)	20.7	18.8	20.7	4.6	4.6	4.6		
LBNL-Nadir Based Frequency Response (MW/0.1Hz)	467	461	468	847	843	844		
GE-CAISO Nadir Based Frequency Response (MW/0.1Hz)	336	118	213	349	301	46		
Percent of Total (%)		35.1	63.3		86.2	13.1		
Settling Frequency (Hz)	59.54	59.55	59.56	59.82	59.82	59.82		
NERC Frequency Response (MW/0.1Hz)	590	592	606	1471	1475	1474		
GE-CAISO Settling Based Frequency Response (MW/0.1Hz)	424	152	275	607	527	81		
Percent of Total (%)		35.8	64.9		86.8	13.3		

imagination at work

Outline

- Study Objectives
- Development of Study Database and Performance Metrics
- Frequency Response of Base Cases
- Frequency Response of High Renewable Penetration Cases
- Factors Affecting Frequency Response
- Mitigation Measures
- Conclusions

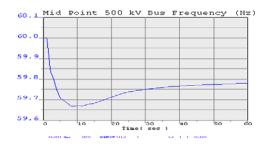
Conclusions

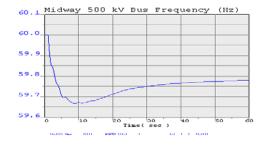
- Frequency Response is not in crisis for California
- Secondary reserves need to be adequate.
- No UFLS action in the Base Case Simulations
- Renewable penetration outside of California is important
- California's response generally meets its FRO depending on system conditions.
- Kt is a good primary metric
- Kt alone does not give all the necessary information...headroom is important
- Speed of primary response is important
- Governor Withdrawal has a detrimental impact on frequency response
- Impact of reduced System Inertia on initial rate-of-change-of-frequency does not appear to be important.
- Inertial controls from Wind Generation help
- Results are largely consistent with LBNL predictions
- Participation of renewables in providing frequency response is beneficial
- Load control can be used to improve frequency response
- Fast acting Energy Storage will provide significant benefits
- Market mechanisms will likely be necessary to assure adequate frequency response in future and under all operating conditions

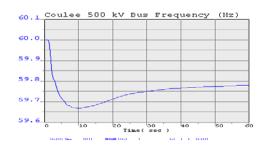
THANK YOU

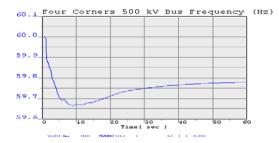
nicholas.miller@ge.com

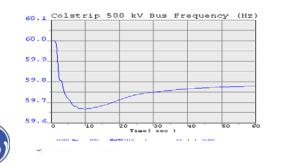

Additional Results and Materials

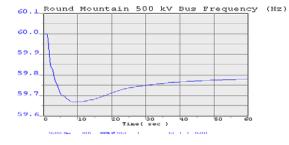


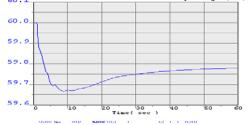

Frequency Behavior – Selected 500 kV Bus

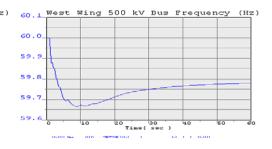


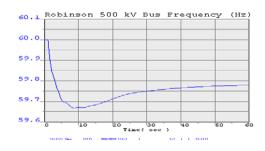


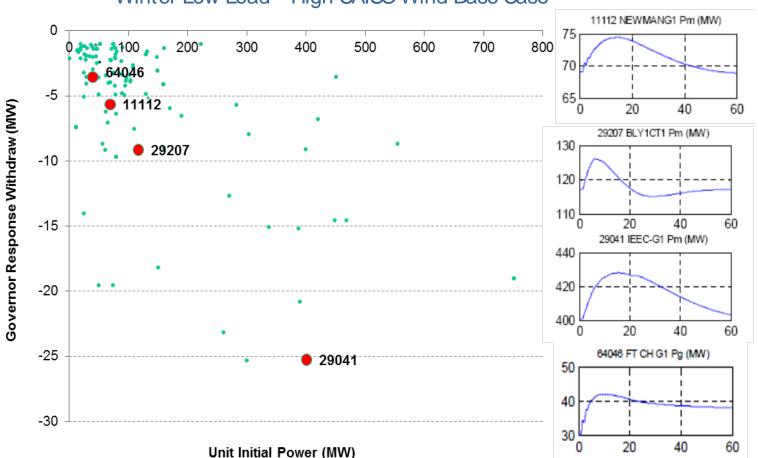











60.1 El Dorado 500 kV Bus Frequency (Hz)


Governor Response Discussion - Governor Withdrawal

Winter Low Load - High CAISO Wind Base Case

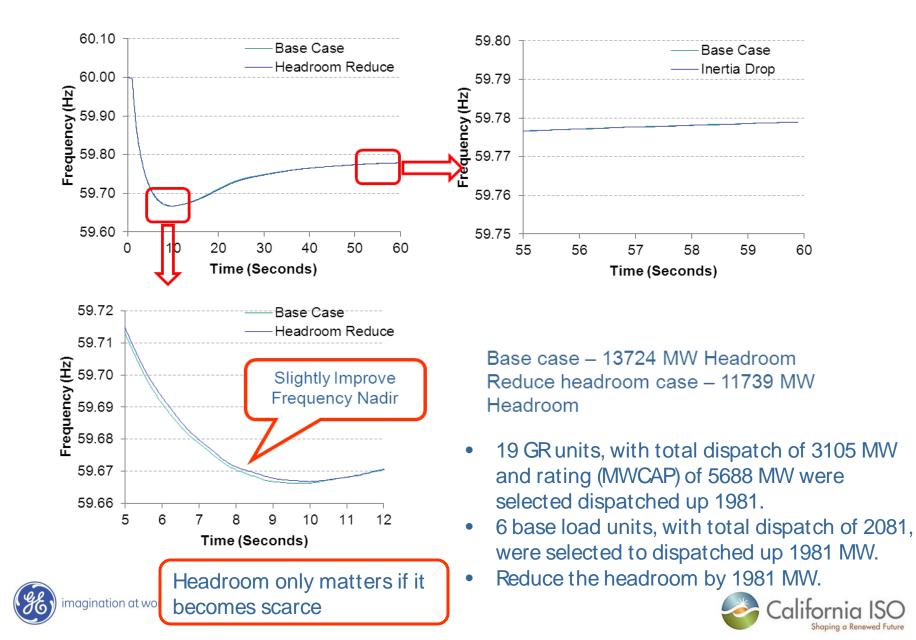
"Withdrawal" - any machine that is producing less power at 60 seconds than it did at any point earlier in the simulation "Withdrawal Power" - the difference between the peak post-disturbance output, and the output at the end of the simulation

Single Palo Verde Unit Trip Event (1345 MW) - Load Voltage and Frequency Response

31100.0000 pvm

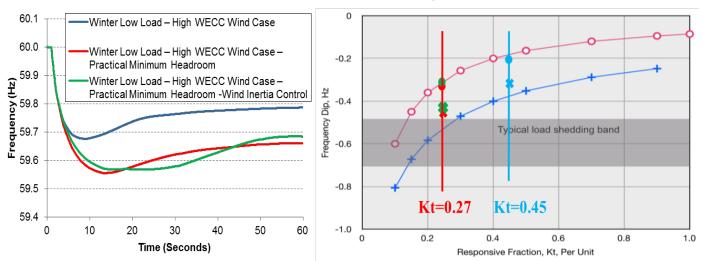
10000

123T_TAP 46.0 0 0.0 1 131400.0000 79000.0000 pump


10000

123T_TAP 46.0

0


0.0 1 179800.0000

Reduce Headroom - Small Change in Headroom

Mitigation Measures – Inertial Response From Wind Plant

High WECC Wind Case - Practical Minimum Spinning Reserves

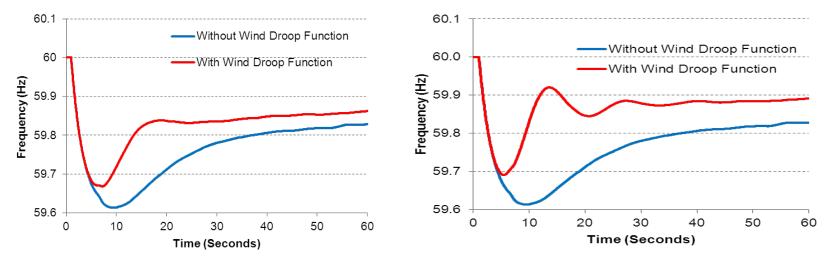
Frequency nadir and settling frequency are improved.

Inertia control has relatively little benefit for system that have limited headroom.

	Winter Low Load – High WECC Wind Case			WEC Prac	Low Load C Wind C tical Minii Headroom	ase – mum	Winter Low Load – High WECC Wind Case – Practical Minimum Headroom – Wind Inertia Control		
	WECC	CA	Non- CA	WECC	СА	Non- CA	WECC	CA	Non- CA
Frequency Nadir (Hz)	59.68	59.68	59.68	59.56	59.55	59.55	59.57	59.57	59.57
Frequency Nadir Time (Seconds)	9.1	8.5	9.3	13.4	14.6	13.4	15.6	14.9	16.0
LBNL-Nadir Based Frequency Response (MW/0.1Hz)	839	834	836	605	604	598	622	621	626
GE-CAISO Nadir Based Frequency Response (MW/0.1Hz)	675	176	500	464	171	295	490	167	323
Percent of Total (%)		26.1	74.1		36.9	63.6		34.1	65.9
Settling Frequency (Hz)	59.79	59.79	59.79	59.66	59.66	59.66	59.68	59.68	59.68
NERC Frequency Response (MW/0.1Hz)	1272	1272	1271	794	795	791	853	853	841
GE-CAISO Settling Based Frequency Response (MW/0.1Hz)	1024	269	760	609	224	396	672	230	434
Percent of Total (%)		26.3	74.2		36.8	65.0		34.2	64.6

Mitigation Measures – Inertial Response From Wind Plant

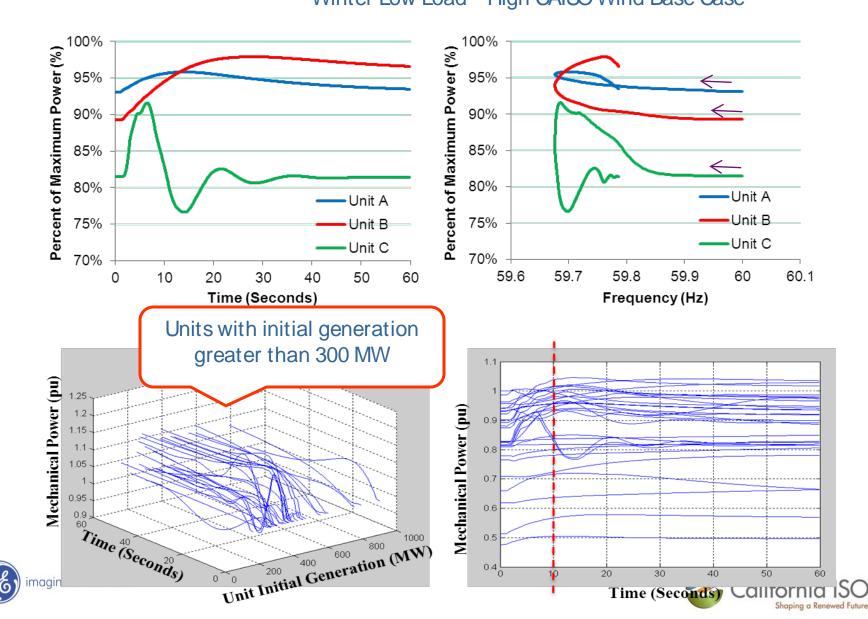
Weekend Morning - High WECC Wind and Solar Case


60.1

Without Wind Inertia Control 60.0 Inertial controls can give a WECC Frequency (Hz) With Wind Inertia Control significant benefit in terms 59.9 of improving margin above UFLS, even for 59.8 stressed conditions. 59.7 59.6 0 10 20 30 40 50 60 Time (Seconds) Roughly 20% Weekend Morning – High WECC Weekend Morning – High WECC Wind and Solar Case Wind and Solar Case Wind Inertia WECC CA Non-CA WECC CA Non-CA Frequency Nadir (Hz) 59.65 59.61 59.61 59.61 59.65 59.65 Frequency Nadir Time (Seconds) 9.7 18.5 16.9 18.5 9.9 9.1 LBNL-Nadir Based Frequency 695 684 697 762 761 763 Response (MW/0.1Hz) **GE-CAISO** Nadir Based Frequency 515 354 639 152 140 484 Response (MW/0.1Hz) Percent of Total (%) 27.0 69.0 23.8 75.7 Settling Frequency (Hz) 59.83 59.82 59.83 59.86 59.85 59.86 NERC Frequency Response 1565 1520 1578 1845 1910 1941 (MW/0.1Hz)**GE-CAISO Settling Based** 1158 311 802 1601 369 1232 Frequency Response (MW/0.1Hz) magination at work Percent of Total (%) 26.9 69.3 23.0 77.0

improvement in the nadir-based frequency response metric

Mitigation Measures – Governor Response (Frequency Droop) from Wind Plants


Weekend Morning - High WECC Wind and Solar Case

	Weekend Morning – High WECC Wind and Solar Case			Weekend Morning – High WECC Wind and Solar Case – Frequency Droop			Weekend Morning – High WECC Wind and Solar Case – Frequency Droop		
	WECC	СА	Non-CA	WECC	СА	Non-CA	WECC	СА	Non-CA
Frequency Nadir (Hz)	59.61	59.61	59.61	59.67	59.65	59.67	59.69	59.67	59.67
Frequency Nadir Time (Seconds)	9.7	9.9	9.1	7.2	5.7	7.2	5.4	5.6	5.6
LBNL-Nadir Based Frequency Response (MW/0.1Hz)	695	684	697	810	770	815	870	813	838
GE-CAISO Nadir Based Frequency Response (MW/0.1Hz)	515	140	354	629	99	519	536	104	423
Percent of Total (%)		27.0	59		15.7	82.5		19.4	78.9
Settling Frequency (Hz)	59.83	59.82	59.83	59.86	59.86	59.86	59.89	59.89	59.89
NERC Frequency Response (MW/0.1Hz)	1565	1520	1578	1947	1881	1921	2471	2365	2365
GE-CAISO Settling Based Frequency Response (MW/0.1Hz)	1158	311	802	1510	243	1257	1522	302	1232
Percent of Total (%)		27.0	69.0		16.1	83.3		19.8	81.0

Governor Response Discussion - Comparison of Response Winter Low Load – High CAISO Wind Base Case

