

Local Market Power Mitigation Under Convergence Bidding

Eric Hildebrandt, Ph.D.

Department of Market Monitoring

Market Surveillance Committee Meeting September 18, 2009

Local Market Power Mitigation under Nodal Convergence Bidding

- How to modify LMPM in IFM w/virtual supply/demand bids?
- Is LMPM necessary in RUC under convergence bidding?
- Previous DMM documents/references:
 - DMM Comments and Recommendations on Convergence Bidding Design Options, presentation at MSC/ Stakeholder Meeting, August 10, 2007.
 - Convergence Bidding: DMM Recommendations, November 2007.
 - Attachment A: Examples of Convergence Bidding and Local Market Power Mitigation (November 2007).

Local Market Power Mitigation under Nodal Convergence Bidding

- Mitigation of virtual supply bids under LMPM provisions appears to be infeasible/highly problematic
 - No cost basis for setting Default Energy Bids (DEBs) for virtual bids
 - Approach based on previously submitted bids or market prices would highly problematic:
 - Could be circumvented, and/or
 - Would defeat concept of virtual bidding (bidding based on system/market expectations, risk mitigation, etc.)
- How to treat virtual bids in pre-IFM LMPM mitigation
 - Include virtual supply/demand (like other ISOs)?
 - Physical demand vs. demand forecast only?
 - Other Options:
 - Exclude virtual supply, but include virtual demand?
 - Another option may be to run pre-IFM AC run with bids for physical resources mitigated above their dispatch level in CC run.

Pre-IFM Local Market Power Mitigation Range of Options

	Forecast Load	Physical Load Bids	Physical Supply Bids	Virtual Load Bids	Virtual Supply Bids
Current	✓		✓		
FERC Requirement (Release II)		✓	✓		
Option 1 (Initial proposal)		√	✓	√	✓
Option 2	✓		✓		
Option 3	√		✓	√	✓
Option 4 (SCE recommendation)		✓	✓	√	
Option 5?		√	√ (subject to mitigation)	√	✓

Illustrative Examples of Nodal Virtual Bidding Issues and Concerns

- Base Case
- Example 1: Virtual demand bidding by generators
- Example 2: Virtual supply bidding by generators/other participants
- Example 3: Real time uninstructed deviations

Note: All examples previously presented DMM documents listed on p.2

Slide 7

Generator's Net Revenues Base Case (no virtual bids)

Day Ahead Market

Unit	MW	DEB	MCP	Net
1	200	\$15	\$65	\$10,000
2	200	\$25	\$65	\$8,000
3	200	\$35	\$65	\$6,000
4	200	\$45	\$65	\$4,000
5	200	\$55	\$65	\$2,000
6	100	\$65	\$65	\$0
7	0	\$75	\$65	\$0
	1,100			\$30,000

Example 2: Virtual Supply Bids by Generators

- Virtual <u>supply</u> bids by generators (or other participants) might also be used to circumvent LMPM
- This problem may be mitigated by:
 - Lower priced virtual supply bids from traders
 - Excluding virtual supply bids in pre-IFM LMPM runs
 - Since this would also create divergence in IFM vs. RT price, it may also be mitigated by authority to limit/suspend VB by participants whose bidding contributes to an unwarranted divergence of IFM and RT prices (e.g. as under MISO tariff)

Example 2a: Virtual Supply Bid by Generator

Example 2b: Virtual Supply Bid by Generator Demand (based on CAISO Forecast)

Example 2c: Virtual Supply Bid by Generator

Note: Additional demand not met in IFM is met in RTM. In this example, assume this demand with DEB \$65, so that RTM MCP = \$65.

Example 2a: Generator's Net Revenues With Virtual Supply Bid by Generator

Day Ahead Market

Unit	MW	DEB	MCP	Net
1	200	\$15	\$135	\$24,000
2	200	\$25	\$135	\$22,000
3	200	\$35	\$135	\$20,000
4	200	\$45	\$135	\$18,000
5	200	\$55	\$135	\$16,000
6	0	\$65	\$135	\$0
7	0	\$75	\$135	\$0
	1,000			\$100,000

		DA	RT	
	MW	MCP	MCP	Net
Virtual Supply	25	\$135	\$65	\$1,750

Total \$101,750

Example 2b: With Lower Priced Virtual Supply Bid by Trader

Example 2b: Generator's Net Revenues after Additional Virtual Supply Bid by Trader

Day Ahead Market

Unit	MW	DEB	MCP	Net
1	200	\$15	\$66	\$10,200
2	200	\$25	\$66	\$8,200
3	200	\$35	\$66	\$6,200
4	200	\$45	\$66	\$4,200
5	200	\$55	\$66	\$2,200
6	0	\$65	\$66	\$0
7	0	\$75	\$66	\$0
	1,000			\$31,000

		DA	RT	
_	MW	MCP	MCP	Net
Virtual Supply	25	\$66	\$65	\$25

Total	\$31,025

^{*} Generator's profits are just over base case of \$30,000 due to small increase in DA MCP from \$65 to \$66 in this example.

Is LMPM in RUC Needed under Nodal Convergence Bidding?

- If virtual supply "crowds out" physical supply in IFM, need for increased reliance on RUC.
- Current mitigation under this scenario:
 - RA requirements set to cover full requirements in local
 - RA unit have must-offer obligation with \$0 RUC bid
 - Startup/min loads bids of all units subject to mitigation
- Potential additional mitigation in RUC
 - Add CC and AC run prior to RUC -> units dispatched up in AC RUC run subject to bid mitigation (per PJM)
 - May be needed especially if changes in start-up and minimum load bidding being considered are adopted.
 - May need provide for mitigation of RUC bids for non-RA units with local market power

