

IRRP Stakeholder Meeting

October 24, 2008

IRRP Stakeholder Meeting Agenda

Welcome 10:00AM – 10:05AM

Program Overview 10:05AM – 10:30AM

20% RPS 10:30AM – 11:45AM

Lunch Break 11:45PM – 12:15PM

Beyond 20% 12:15PM – 1:45PM

Closing 1:45PM – 2:00PM

Today's Objectives

- Break the Silence
- Let you know what we are doing
- Lay foundation for Stakeholder Input
 - Is the scope correct?
 - Have we missed issues?
 - Priorities
 - Schedule
 - Communication structure working groups?
- Updated Program Plan

IRRP Stakeholder Meeting

Grant Rosenblum

Manager, Renewables Integration

IRRP Stakeholder Meeting October 24, 2008

CAISO Renewables Integration Program

Maximize Renewable
Resource Participation

CAISO Corporate Goal:

Support the integration of renewable resources into the California power grid to fulfill State policy objectives

Grid Operations
Infrastructure
Markets
Regulatory Activities

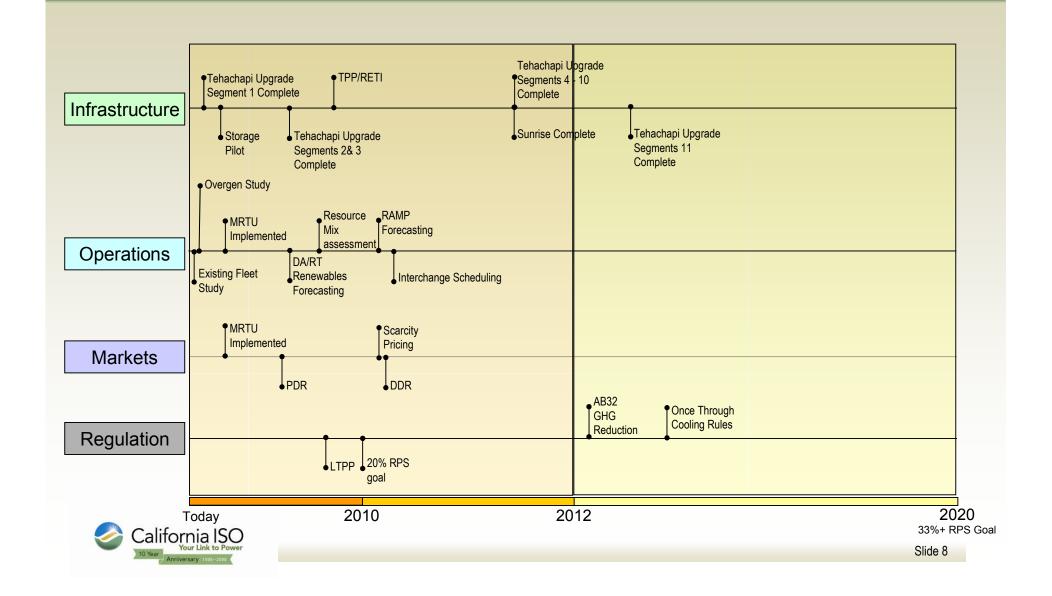
Reliability

Cost Efficiency

Vision and Program Structure

Past Activities

- **2007** Report
- April 2008 Stakeholder Meetings
 - Stakeholder Feedback



Vision and Program Structure

- Two Inter-related/Overlapping Phases
 - 20% RPS
 - Beyond 20% RPS: 33-50%?
- For each phase
 - Identify impacts of renewable resources on the grid
 - Implement or facilitate solutions
- Coordinate with other electric power sector market and policy developments (e.g., once through cooling, long-term RA, greenhouse gas regulations, DR policy)
- Program seeks to be technology neutral and market driven
- Leverage expertise/resources of other agencies and market participants
 - CEC, IRC, etc.
 - Working Groups?

Renewables Roadmap

Operational Needs Assessment Operational Tools

Clyde Loutan
Senior Advisor, Regional Transmission Engineer

IRRP Stakeholder Meeting October 24, 2008

Results of the November 2008 Integration of Renewable Resources Study

- Load Following is necessary to maintain stable operations
 - Load following Capacity requirements will increase

700 - 800 MW

500 - 900 MW

- Regulation is required to maintain frequency and maintain interchange schedules
 - Regulation capacity requirements can double certain hours

170 - 250 MW

100 - 500 MW

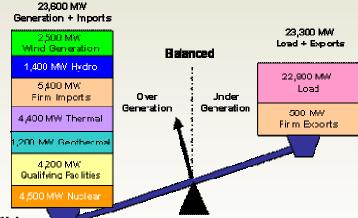
- Can the existing generation fleet meet the energy deliverability characteristics to integrate 20% RPS?
 - Load Following capacity, speed of ramp and ramp duration
 - Regulation capacity, speed of ramp and ramp duration
 - Frequency Responsiveness
- Sensitivities
 - High Hydro
 - Low Hydro
 - Once Through Cooling

Methodology

- The methodology is currently under development (Working with Plexos)
- The study will utilize the Monte Carlo production cost simulation model to determine:
 - The number of hours A/S cannot be met
 - The number of hours and magnitude of unserved energy
- Unit commitment consistent with MRTU timelines
- Load and wind forecasting errors would be used for different timeframes
- Evaluating the ability to model frequency responsive needs into the unit commitment process

Deliverables

- Identify and quantify A/S deficiencies, unserved energy
- Evaluate potential options to improve overall coordination of existing resources
- Recommend potential improvements to existing scheduling, reserve procurement, supplemental energy dispatch and regulation algorithms
- Foundation for 33% RPS operational assessment; depending on the level of limitations identified and in the model and analytical approach


Timeline

- Draft Report Early December 2008
- Stakeholder Meeting December 2008
- Revised Draft Posted for comments January 2009
- Final Report February 2009

Over-Generation Analysis

- Identify and quantify over-generation occurrences
 - Quantify the frequency, duration and magnitude of overgeneration
 - Identify issues associated with over-generation
- Sensitivities
 - High Hydro
 - Low Hydro
- Methodology
 - Statistical Analysis
 - Historical generation by technology
 - Assumptions (Thermal, Hydro, Imports)

Over-Generation

Deliverables

- Not who, but how much
- Expected curtailment hours by season
- Expected curtailment MWH by season
- Recommendations/conclusions

Timeline

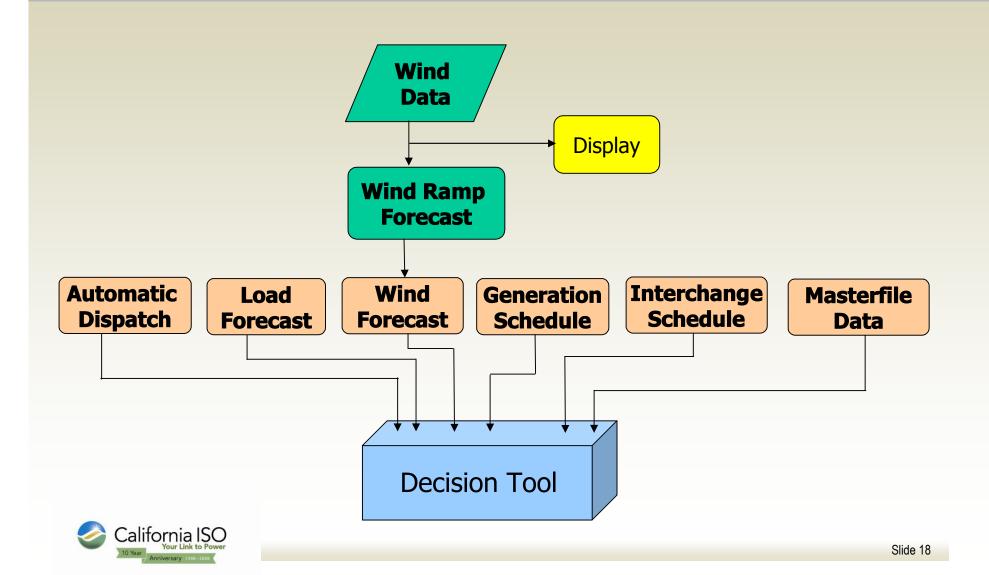
- Draft report posted for comments Third week of October 2008
- Stakeholder Meeting November 2008
- Revised draft posted for comments early December 2008
- Final Report December 2008

Operational Tools

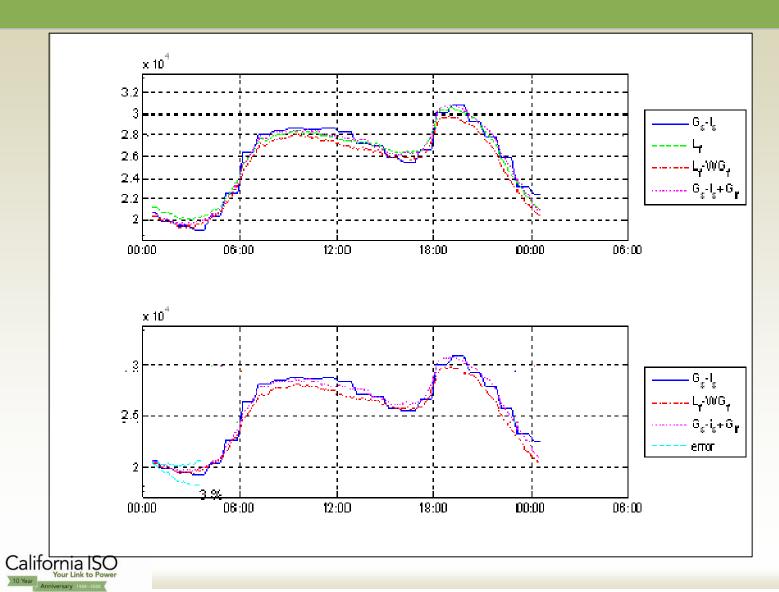
Objectives

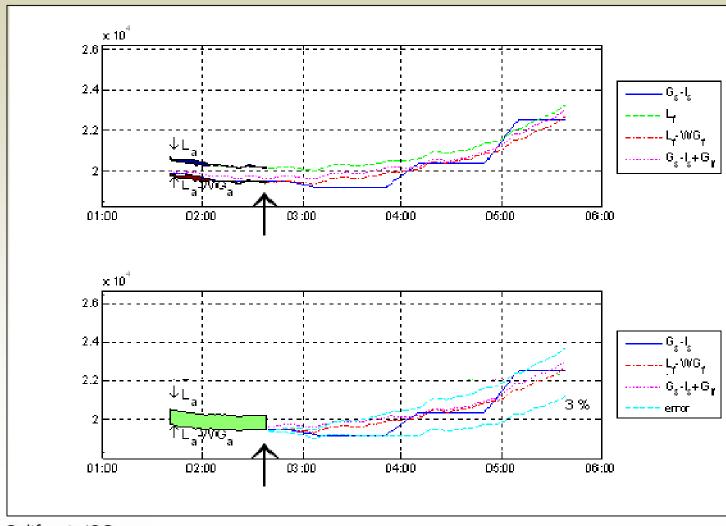
- Develop visualization tools to help operators deal with renewable integration. The team includes BPA, CAISO, WAPA, MISO, New England ISO, and PJM
- Integration with Market Systems

Ramp


- 24-hours look ahead peak & off-peak
- 2-3 hours look ahead with 5-minute resolution
- Provide probabilities of expected ramps
- Forecast the impacts of unpredicted wind ramps

Timeline


Prototype by December 2008


Operational Tools

24-Hours Look Ahead

3-Hours Look Ahead

Operational Tools & Forecasting

Jim Blatchford Sr. Policy Issues Representative

IRRP Stakeholder Meeting October 24, 2008

Operational Tools

PIRP

- Solar Paper
- Wind Paper
- Application Enhancements
- Meetings

Operational Tools - PIRP

- Solar Technical Paper
 - Vetted 2007-2008
 - Incorporated into BPM
- Wind Technical Paper
 - Start the Stakeholder Process
 - Incorporate Findings from Internal Engineering &
 - **AWS Truewind Studies**
 - Incorporated into BPM
- PIRP App. Enhancements
- PIRP Monthly Meetings

Forecasting

RFB Goals

- Ensure HA PIRP Forecast is the Most Accurate.
- Develop Accurate Day Ahead Forecast (RUC Input)
- Use Latest Technology Available
- Reduce Operating Costs
- Develop 5-min forecast in-house (Real Time input)

RFB Criteria

- DA Forecast
 - <15 % RMS
- HA Forecast
 - <7% RMS</p>
- 5-min Forecast in-house

$$RMS = \sqrt{\frac{\sum \varepsilon^2}{n}}$$

Forecasting Issues

AWS Truewind Study

Facility	N	Next Operating Hour		
	Annual MAE	% mons < 12%	% mons < 14%	Annual MAE
Plant E	13.83%	22.2%	55.6%	19.83%
Plant H	13.65%	16.7%	58.3%	18.60%
Plant F	15.30%	0.0%	16.7%	19.43%
Plant I	6.80%	100.0%	100.0%	15.38%
Plant A	11.30%	66.7%	83.3%	15.63%
Plant O	14.18%	33.3%	50.0%	18.44%
Plant J	12.94%	25.0%	66.7%	21.17%
Plant K	14.57%	16.7%	50.0%	20.57%
Plant L	14.76%	16.7%	50.0%	21.41%
Plant G	15.29%	8.3%	16.7%	17.80%
Plant D	8.13%	100.0%	100.0%	41.41%
Plant B	14.59%	0.0%	50.0%	20.64%
Plant C	12.43%	25.0%	50.0%	17.44%
Plant M	14.91%	16.7%	58.2%/	18.77%
Plant N	14.86%	16.79	37 7	4.49%

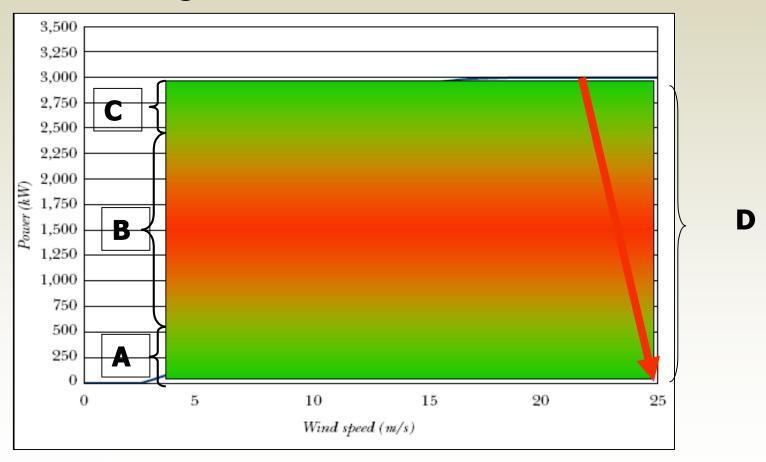
54.4%

13.32%

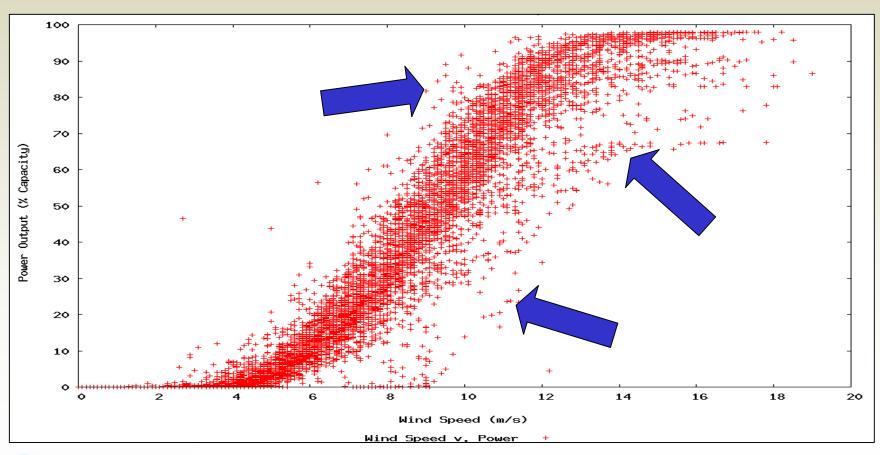
Internal Root Cause Analysis

Outage Reporting

Data Redundancy


Independent Power Sources

Compliance


18.85%

Dissecting the Power Production Curves

Continue to Improve the Curves w/ Data Quality

Studies

- Ramp/Spike Events
- High Speed CutoutConsequences
 - How Often Over Speed
 - •% Change of Power
 - Return Ramps after Over Speed
 - Ramp Down Curve
- Ramps
 - Correlation with Diurnal Patterns

Metrics as a Function of:

- Season
- -Time of day
- Look out period
- Wind Production/Load
- Cross correlation between forecast time periods
- Auto Correlation
- Persistency Forecast
- Inter-agency Coop

PIRP Meetings

Tentative Schedule

Nov 21, 2008	Dec 19, 2008
Jan 23, 2009	Feb 20, 2009
Mar 20, 2009	Apr 17, 2009
May 22, 2009	Jun 19, 2009

Topics

- Wind White paper
- BPM Schedule
- -And More

Market Products

Udi Helman
Principal, Market and Product Development

IRRP Stakeholder Meeting October 24, 2008

Market Development For Renewable Integration

- Effect of MRTU market design and planned enhancements (MAP) on renewable integration
- Evaluate further modifications to existing products and pricing rules (Market Initiatives Roadmap, etc.)
- Evaluate whether new market products are needed to stimulate needed capabilities (Roadmap, etc.)
- Possible pilot projects for alternative technologies to demonstrate capability and market value in ancillary services
- Evaluate market aspects of interdependencies with other electric power sector market and policy developments (e.g., once through cooling, long-term RA, greenhouse gas regulations)
- Coordination with other ISOs/RTOs to facilitate market development

Some Principles for CAISO Market Design

- Market design should be "technology neutral"
- Market design should be more "complete" over time
 - In this context, we mean that products and pricing should be available to represent binding constraints and elicit needed capabilities to relieve those constraints
- New market products must not be duplicative with existing products
- New market products should reflect stakeholder interest as well as CAISO evaluation of operational/market needs

Are Market Design Changes Needed for 20% RPS?

- Operational assessments suggest that the existing fleet is sufficient to support 20% RPS, but that additional capabilities would enhance integration (and are needed beyond 20%)
- CAISO 2007 Study identified needs for:
 - Additional ramp capability for load following and regulation
 - Quick start capability
 - Wider operating ranges from existing resources
 - Load shifting from peak to off-peak hours
- And addressed markets for
 - Additional Regulation Up and Regulation Down
 - Resource Adequacy

MRTU and Planned Enhancements will support meeting the 20% RPS (and beyond)

- MRTU will improve scheduling and dispatch of existing resources
 - Integrated Forward Market (IFM) and Residual Unit Commitment (RUC)
 - Improved Real-time unit commitment and economic dispatch
- Planned MRTU enhancements could stimulate market response in support of renewable integration
 - Scarcity Pricing during Regulation and Operating Reserve Shortages
 - Increased Demand Response -- Proxy Demand Resource (PDR) and Dispatchable Demand Response (DDR)

Other Near-Term Market Development Options

- Roadmap includes many items that could improve efficiency of scheduling and dispatch
- Thirty Minute Operating Reserves
 - Issue paper available November 2008
- Revisit DEC Bid Cap after MRTU implementation?
 - Stakeholder interest associated with wind integration
- Additional market issues discussed in afternoon session

End of Morning

Lunch

Operational Needs Assessment Beyond 20%

Clyde Loutan Senior Advisor, Regional Transmission Engineer

IRRP Stakeholder Meeting October 24, 2008

Future Resource Mix

- Determine the best mix of resources that would be required to provide regulation, load following and ramping needs to meet the higher RPS goals.
 - Speed of delivery of energy
 - Fast ramp
 - Ramp duration
 - Fast Regulation
 - Frequency Responsive Reserve
 - Quick Start Units
 - Multiple start/stop units
 - Resources with Low P_{min}
 - Resources with regulating capability

Future Resource Mix

Methodology

- The methodology is currently under development (Working with Plexos and PNNL)
- Build on existing fleet 20% RPS results
- Coordinate and build upon Nexant study
- Feed into CPUC LTPP

Future Resource Mix

Deliverables

- Recommend potential improvements to existing scheduling timelines
- Recommend potential improvements to existing reserve procurement, supplemental energy dispatch and regulation algorithms
- Identify future system requirements which may result in new market products
- Recommend possibly changes to unit commitment and dispatch strategies

Timeline

Final Report – Q3 2009

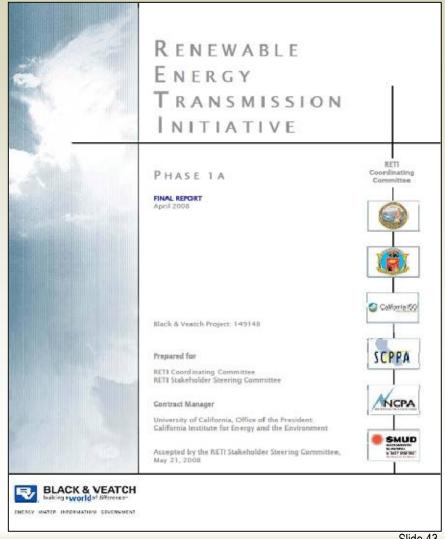
Transmission Planning

Beyond 20%

David Le Lead Regional Transmission Engineer

IRRP Stakeholder Meeting October 24, 2008

Transmission Expansion - Coordination Efforts


- RETI
- Western Governors Association
- CPUC LTPP

CAISO Coordination with RETI

Utilize RETI forum to:

- Obtain information on priority CREZs.
- Produce conceptual plans for accessing CREZ
- Coordination with POUs
- Inputs into CAISO transmission planning process
- ✓ Phase II schedule and work plans currently in development by RETI

Market Products

Beyond 20%

Udi Helman
Principal, Market and Product Development

IRRP Stakeholder Meeting October 24, 2008

Market Products beyond 20%

- Over next 2-3 years, more detail on key policy and regulatory drivers of resource mix will be available:
 - Regional renewable development
 - Greenhouse gas policy
 - Cap and trade system? California-only, WCI or national? Electricity-only or multisectoral?
 - Once-through cooling
 - Possible changes in Resource Adequacy program and Long-term Procurement Plan
- We will also have more information on
 - MRTU performance
 - Integration of Demand Response and Storage
- Operational assessments of renewable integration will need to be updated on an ongoing basis to inform market needs

Key Market Design Topics

- Next Generation of Ancillary Services
 - Modifications to existing Ancillary Service Products and Specifications
 - e.g., to support demand response and storage participation
 - Additional Types of Operating Reserve
 - Frequency Responsive Reserves
 - A function of NERC/WECC decisions
 - Fast Regulation
- Future design of Resource Adequacy program
 - Bilateral or Auction Market? Multi-year Forward?
 - Consideration of specific resource capabilities?

Vision Beyond 20%

David Hawkins Lead Renewables Power Engineer

IRRP Stakeholder Meeting October 24, 2008

"To 20 Per Cent and Beyond"!!!

Wind Generation

Solar Generation

Resources Required for Renewables Integration

Generation Portfolio

Storage

Demand Response

Hydro Generation

Quick Start Units

Fast Ramping

Wider Operating Range (lower P_{min})

Regulation capability

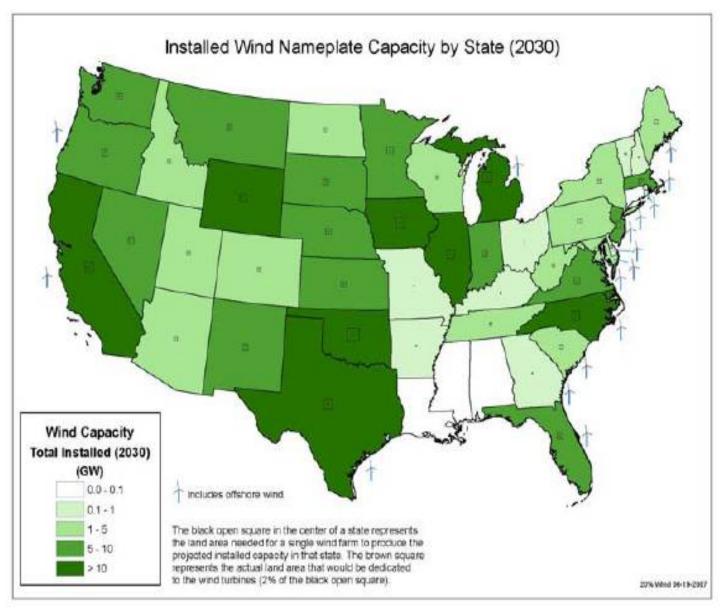
Shift Energy from off-peak to on-peak

Mitigate Over Generation

Voltage Support

Regulation capability

Price sensitive load


Responsive to ISO dispatches

Frequency Responsive

Responsive to Wind Generation Production

Figure 1-8. 46 states would have substantial wind development by 2030

Land Requirements

Altogether, new landbased installations would require approximately 50,000 square kilometers (km²) of land, yet the actual footprint of land-based turbines and related infrastructure would require only about 1,000 to 2,500 km² of dedicated land—slightly less than the area of Rhode Island.

The 20% Wind Scenario envisions 251 GW of land-based and 54 GW of shallow offshore wind capacity to optimize delivered costs, which include both generation and transmission.

Slide 49

Source: July 2008 DOE Report on 20% Wind by 2030

Vision Beyond 20% - how do we integrate large amounts of renewables?

20% is only one milepost on the road for integrating large amounts of renewable resources.

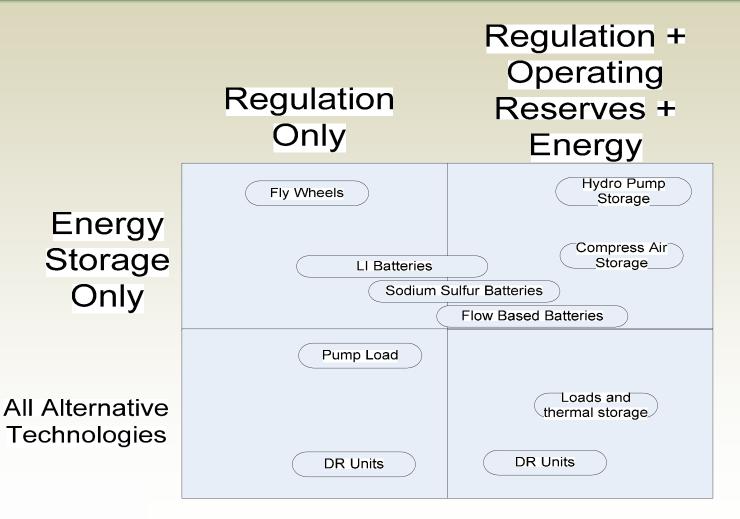
- Changes to Interchange Scheduling
 - New Strategies for reducing barriers between control areas
- Changes to NERC and WECC Standards
- Integration of Storage
- ADI Ace Diversity Interchange
- R&D

Potential changes to interchange scheduling

- Today we are limited to block hourly schedules or dynamic interchange schedules.
- Joint project with BPA to explore the concept of scheduling the delivery of wind energy from BPA to CAISO on a 10, 15, 20, or 30 minute basis.
 - Shared regulation burden and potential reduction in regulation
 - Requires information on forecast energy production for the wind plant
 - Requires agreement with SC on how to schedule the energy
 - Needs metrics on how to evaluate results
- ACE Diversity Interchange and ACE sharing between BA's

Changes to NERC and WECC Standards

- Current NERC BAL standards (CPS-1 and CPS-2) require much tighter frequency and interchange controls than most other areas in the world (especially Europe)
- New version of BAL standards 7-11 are being developed and should be available in 2009 for comments and approval
 - These new standards will make it easier to handle the variability of intermittent resources
- Proposed Frequency Response Requirement standard (30 second response) will require new strategies and potentially new capabilities to meet this standard.



Integration of Energy Storage

- Review of other ISO/RTO implementation of storage
 - Midwest ISO
 - NY ISO
 - ISO-NE
- CAISO discussion paper under development
 - Identification of product need
 - Technical issues
 - Market issues
 - Settlement concerns
- Potential pilot test program

Identification of Storage Target Market

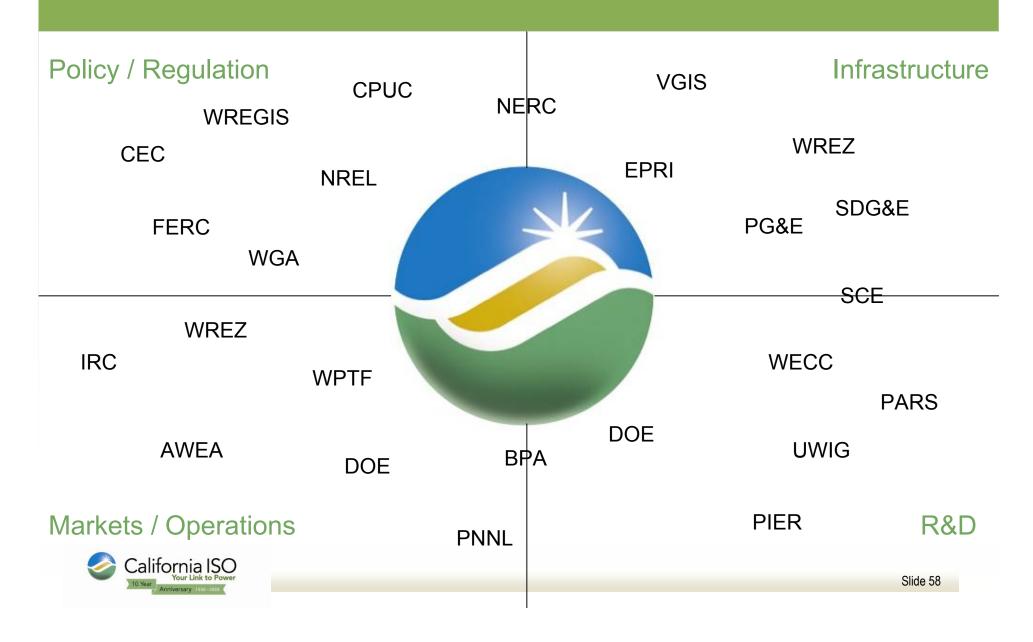
Energy Storage

Potential value of energy storage facilities -- a Control Area Operator's perspective

- Fast response to control signals, frequency response, and automated dispatch commands
- High ramp rates
- High reliability and stability, environmentally friendly
- Easy to start and stop
- Lower cost energy but usually limited energy supply
 - Inconsistent with tariff requirement for min. 1 hour of energy
- Increases the supply of Regulation Services
- Large storage facilities can provide critical night time loads to help balance system

Energy Storage

- Document issues, barriers, and opportunities for energy storage facilities – rewrite discussion paper
- Internal CAISO review of project plan and timeline
- Installation of a 2 MW LI Battery facility for regulation in October-November 2008
- Develop proposed pilot test of storage facilities for regulation services – potential implementation in Q2 2009
- Discussion of the detailed pilot test plan with Stakeholders



R&D Projects

- Intelligent Agent project for matching wind generation energy production with available transmission capacity
- Deployment of new technology to predict impact of storm fronts on wind parks and detection of wind sheer
- Use of SynchroPhasor technology to
 - Improve transient stability models of wind farms
 - Measure the damping of the grid and potential increase the dynamic stability limits on key transmission paths (i.e. COI)
- 2009 EPRI Project Enabling Transmission for Large Scale Renewable Integration
- Critical Operating Constraints Forecasting for Renewables Integration

Industry Integration

Next Steps

- Working Groups
 - Storage
 - PIRP Calls
 - Resource Mix Study
 - Market and Policy Issues
 - Other?
- Develop working group processes
- Feedback due November 7th
 - Feedback to jblatchford@caiso.com

